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Abstract. The interest of this paper is to examine the controllability and observ-
ability of control system in the configuration state-space of uncertain optimal con-
trol system. The control system is designed based on the realization of capital asset
values where a special case of asset management is modelled and optimized. Thus
some necessary and sufficient conditions of the controllability and observability of
the deterministic systems and the corresponding uncertain systems for the case of
uncertain optimal control system with application in capital asset management is
considered.
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1 INTRODUCTION

Controllability and Observability are important properties in control systems. They
represent the ability to move a system around its entire configuration space using
certain manipulations. The controllability and observability of a system are math-
ematical duals which play important roles in control problems such as optimal con-
trol. These have played important roles in control theories such as in [1, 2, 3, 4, 5].
Recently, researchers such as [6, 7, 8] and a host of others have been considering con-
trollability and observability problems in dynamic systems. However, most works
done in this area concentrated on the deterministic and stochastic controllability and
observability problems. In this work, an uncertain controllability and observability
of dynamic systems is carried out by formulating a capital asset management control
problem for uncertain dynamic system such that the uncertain dynamic system is
limited to systems involving uncertain processes.

The choice of Uncertainty theory over the conventional probability theory exists
when the sample size is small to estimate a probability distribution and degree be-
lief are ascertained from experts to work in place of frequency since human beings
always overweight unlikely events. Here, the general controllability and observabil-
ity for uncertain system in Uncertainty theory is presented based on Klamka and
Mahmudov works.

2 PRELIMINARIES

Uncertainty theory is a branch of mathematics for modelling belief degrees. The the-
ory is based on some concepts which may be referred to [9]. For easy interpretation,
some of the concepts are given.
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Let Γ be a nonempty set and L be a σ- algebra over Γ such that (Γ, L) is a
measurable space. Each element Λ ∈ L is called an event.

Definition 1 [10]: A set function M defined on the σ-algebra over L is called an
uncertain measure if it satisfies the following axioms:
Axiom 1. (Normality Axiom): M{Λ} = 1 for the universal set Γ.
Axiom 2. (Duality Axiom): M{Λ} + M{Λc} = 1 for any event Λ.
Axiom 3. (Subadditivity Axiom): For every countable sequence of events, Λ1,Λ2, . . .,
we have

M

{ ∞⋃
i=1

Λi

}
≤
∞∑
i=1

M{Λi} (1)

Axiom 4. (Product Axiom): Let (Γk, Lk,Mk) be uncertainty spaces for k = 1, 2, . . .
The product uncertain measure M is an uncertain measure satisfying

M

{ ∞∏
k=1

Λk

}
= min1≤k≤∞Mk{Λk} (2)

where Λk are arbitrarily chosen events from Lk for k = 1, 2, · · · , respectively.

Definition 2 [11]: Let (Γ, L,M) be an uncertainty space and let T be a totally
ordered set. An uncertain process is a function Xt(γ) from T × (Γ, L,M) to the set
of real numbers such that {Xt ∈ B} is an event for any Borel set B of real numbers
at each time t.

Definition 3 [12]: An uncertain process Cσ is said to be a Liu process if
(i) C0 = 0 and almost all sample paths are Lipschitz continuous,
(ii) Cσ has stationary and independent increments,
(iii) every increment Cs+σ − Cs is a normal uncertain variable with expected value
0 and variance σ2. The uncertainty distribution of Cσ is

Φσ(x) =

[
1 + exp

(
−πx√

3σ

)]−1

, x ∈ < (3)

and the inverse distribution is

Φ−1
σ (y) =

σ
√

3

π
ln

y

1− y
, y ∈ < (4)

Definition 4 [10]: Let ξ be an uncertain variable. Then the expected value of ξ is
defined by

E[ξ] =
∫ +∞

0
M{ξ ≥ x}dx−

∫ 0

−∞
M{ξ ≤ x}dx (5)

provided that at least one of the two integrals is finite
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Definition 5 [11]: An uncertain process Xt is said to have independent increments
if

Xt1 −Xt0 , Xt2 −Xt1 , · · · , Xtk −Xtk−1

are independent uncertain variables where t1, t2, · · · , tk are any times with t0 < t1 <
· · · < tk
That is, an independent increment process means that its increments are indepen-
dent uncertain variables whenever the time intervals do not overlap. It is noted that
the increments are also independent of the initial state.

Definition 6 [11]: Suppose Ct is a canonical Liu process, and f and g are two
functions. Then

dXt = f(t,Xt)dt+ g(t,Xt)dCt (6)

is called an uncertain differential equation. A solution is a Liu process Xt that
satisfies (3) and (4) identically in t.
Definition 7 [11]: Let Xt be an uncertain process. Then for each γ ∈ Γ, the func-
tion Xt(γ)is called a sample path of Xt.

Definition 8 [9]: An uncertain process Xt is said to be sample-continuous if almost
all sample paths are continuous functions with respect to time t.

Definition 9: Uncertainty Distribution of Solution. [12] Let α be a number
with 0 < α < 1. An uncertain differential equation

dX(t) = f(t,X(t))dt+ g(t,X(t))dC(t) (7)

is said to have an α-path X(t)α if it solves the corresponding ordinary differential
equation

dX(t)α = f(t,X(t)α)dt+ |g(t,X(t))|Φ−1(α)dt (8)

where Φ−1(α) is the inverse uncertainty distribution of standard normal uncer-
tain variable, that is,

Φ−1(α) =

√
3

π
ln

α

1− α
, α ∈ < (9)

3 THE ASSET MANAGEMENT MODEL

Asset management problem is mainly based on decision making and the understand-
ing of probable asset degradation and trading-off capital investments, maintenance
costs, risks and other uncertainties to optimize decisions made by investors.

However, it is assumed that an individual invests his/her wealth in capital asset,
A(t), of a large business for time, t, ranging from t0 to tn. Suppose he/she starts with
a known initial net worth X0(t). At time t, what fraction of his/her net worth, ψ,
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must he/she choose to utilize on capital asset and what fraction of his net worth, τ ,
must he/she choose to be incurred on liability of the business such that the expected
present value of the utility of asset, J(X), are maximized?

Table 1. Definition of Parameters to the model
Parameter Description

X(t) Net worth at time t (state variable)

τ(t) Liability ratio (control) at time t, τ ∈ <
σr(t) Diffusion volatility of liability (with variance σ2

r per unit time)

ψ(t) Capital asset ratio at time t (control) ψ ∈ <
σb(t) Diffusion volatility of asset (with variance σ2

b per unit time)

κ(t) Capital gain on asset due to inflation at time t

σp(t) Diffusion volatility on asset price (with variance σ2
p per unit time)

β(t) Mean rate of return on asset at time t

ω(t) Mean interest rate of liability at time t

C(t) Liu canonical process at time t

µ(t) Consumption level at time t

j(t) Tax ratio at time t

g(t) Depreciation ratio at time t

h(t) Asset supplies ratio at time t

η subjective discount rate, e.g., A
η+1 = Present value

λ degree of relative risk, where (1− λ) is the risk aversion

U Utility function

Therefore, a dynamic optimization model of the expected present value of asset
over a given the life cycle based on Uncertainty theory is herein presented following
the study of portfolio selection by [13]. It is assumed that the goal of the asset
management is to choose the optimal utilization and asset allocation policies for
maximizing a value function which discounts exponentially future uncertain values
of Hyperbolic Absolute Risk Aversion (HARA) utility function over a given time
horizon with net worth of tangible assets as the state variable.

The risky asset is assumed to earn an uncertain return and an uncertain gain
with mean rate of return and capital gain. Furthermore, we express the change in
liability as sum of liability service with an assumption of uncertainty, consumptions,
investment and net foreign supply, less taxation, depreciation and revenue over a
period of time [14]. Thus, we have

J(X) = maxψEC


tn∫
t0

1

λ
e−ηt(ψX(t))λdt

 (10)

subject to

dX(t) = [(κ+β)ψ−(ω(ψ−1)+µ+h−j−g)]X(t)dt+[ψσp+ψσb−σr(ψ−1)]X(t)dC(t)
(11)

This model has been solved, characterised, analysed and applied to real life
situation in [15], [16], [17].
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3.1 Optimality of the Solution

It is important to derive the optimal solutions of the capital asset management prob-
lem as it would help in selecting the best available values. The following theorems
are utilised in deriving the optimality of the proposed model.
Definition 10 (Principle of Optimality) [18]: For any (t, x) ∈ [0, T ) × < and
∆t > 0 with t+ ∆t < T , we have

J(t, x) = supDE

[∫ t+∆t

t
f(Xs, D, S)ds+ J(t+ ∆t, x+ ∆Xt)

]
(12)

where x+ ∆Xt = Xt+∆t

Theorem 4.6 (Equation of Optimality, [18]) Let J(t, x) be twice differentiable
on [0, T )×<, Then we have

−Jt(t, x) = supD [f(x,D, t)) + Jx(t, x)V (x,D)] (13)

where Jt(t, x) and Jx(t, x) are the partial derivatives of the function J(t, x) in t and
X respectively.

Proof. See ([18], pp. 15-16) 2

3.2 Optimal control of the model

The above equation of optimality is applied to the uncertain optimal control problem
to evaluate the optimal controls analytically.

Applying equation (3.3), we obtain

−Jt = maxψ

{
1

λ
e−ηt(ψX)λ − ψ(κ+ β)XJX + (µ+ j + g + h− (ψ − 1)ω)XJX

}
(14)

= maxψH (15)

where H stands for terms in the braces.

∂H

∂ψ
= 0 (16)

(condition the optimal ψ satisfies)

∂H

∂ψ
= e−ηt(ψX)λ−1X − (κ+ β − ω)XJx = 0 (17)

(ψX)λ−1X = (ω − κ− β)Jxe
ηt (18)

(ψX) =
[
(ω − κ− β)JXe

ηt
] 1
λ−1 (19)
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ψ =
1

X

[
(ω − κ− β)JXe

ηt
] 1
λ−1 (20)

Hence, by solving the above equations, we obtained the optimal ratio of the net
worth in capital assets as

ψ∗ =
(µ+ j + g + ω − h)λ− η

(1− λ)(κ+ β − ω)
(21)

However, the optimal liability ratio, τ ∗ can also be obtained as a control to the
system.
Since τ = ψ − 1

τ ∗ =

[
(µ+ j + g + ω − h)λ− η

(1− λ)(κ+ β − ω)

]
− 1 (22)

or

τ ∗ =
(µ+ j + g − h)λ− (1− λ)(κ+ β) + ω − η

(1− λ)(κ+ β − ω)
(23)

3.3 Solution to the Model

Here, the analytical and numerical solutions are derived.
For the analytic solution, the required problem under consideration is

J(ψ) = minψEC


tn∫
t0

1

λ
e−ηt(ψX(t))λdt

 (24)

subject to

dX(t) = [(κ+ β)ψ − (ω(ψ − 1) + µ+ h− j − g)]X(t)dt (25)

+[ψσp + ψσb − σr(ψ − 1)]X(t)dC(t) (26)

with α-path equation

dX(t)α = [(κ+β)ψ−(ω(ψ−1)+µ+h−j−g)]X(t)αdt+|[ψσp+ψσb−σr(ψ−1)]X(t)α|Φ−1(α)dt.
(27)

The analytical solution to the constraint is

X(t) = X0exp ([(κ+ β)ψ − (ω(ψ − 1) + µ+ h− j − g)]t+ [ψσp + ψσb − σr(ψ − 1)]C(t))
(28)

and its inverse uncertainty distribution is

Ψ(t)−1(α) = X0exp([(κ+β)ψ−(ω(ψ−1)+µ+h−j−g)]t+
[ψσp + ψσb − σr(ψ − 1)]t

√
3

π
ln

α

1− α
)

(29)
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Hence, by Theorem 2.8,

Ψ(t)−1(α) = E(X(t)α) (30)

3.4 Multifactor Model

The multifactor model can be expressed as:

J(X) = maxψEC


n∑
i=1

1

λ

tf∫
t0

e−ηt


ψ1 0 · · · 0
0 ψ2 0 0
...

. . .
...

...
0 0 · · · ψn


λ

X1t

X2t
...
Xnt


1−λ

dt

 (31)

subject to dX1t
dX2t

.

.

.
dXnt

 =

 ψ1 0 · · · 0
0 ψ2 0 0

.

.

.
.
.
.

.

.

.

.

.

.
0 0 · · · ψn

 κ1 + β1 − ω1 0 · · · 0
0 κ2 + β2 − ω2 0 0

.

.

.
.
.
.

.

.

.

.

.

.
0 0 · · · κn + βn − ωn

 X1t
X2t

.

.

.
Xnt

 dt

+

 µ1 + h1 − j1 − g1 − ω1 0 · · · 0
0 µ2 + h2 − j2 − g2 − ω2 · · · 0

.

.

.
.
. .

.

.

.

.

.

.
0 0 · · · µn + hn − jn − gn − ωn

 X1t
X2t

.

.

.
Xnt

 dt

+

 ψ1 0 · · · 0
0 ψ2 0 0

.

.

.
. .
.

.

.

.

.

.

.
0 0 · · · ψn

 σ1p + σ1b − σ1r + 1 0 · · · 0
0 σ2p + σ2b − σ2r + 1 · · · 0

.

.

.
.
.
.

.

.

.

.

.

.
0 0 · · · σnp + σnb − σnr + 1

 X1t
X2t

.

.

.
Xnt

 dC(t)

(32)

which can be rewritten as

J(X) = maxψEC


tf∫
t0

1

λ
e−ηt(Uλ)TX1−λdt

 (33)

subject to
dX = FXdt+ UPXdt+ UQXdC(t) (34)

where

X =

 X1t
X2t

.

.

.
Xnt

 , (35)

U =

 ψ1 0 · · · 0
0 ψ2 0 0

.

.

.
. .
.

.

.

.

.

.

.
0 0 · · · ψn

 , (36)
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F =

 µ1 + h1 − j1 − g1 − ω1 0 · · · 0
0 µ2 + h2 − j2 − g2 − ω2 · · · 0

.

.

.
.
.
.

.

.

.

.

.

.
0 0 · · · µn + hn − jn − gn − ωm

 , (37)

P =

 κ1 + β1 − ω1 0 · · · 0
0 κ2 + β2 − ω2 0 0

.

.

.
.
.
.

.

.

.

.

.

.
0 0 · · · κn + βn − ωn

 and (38)

Q =

 σ1p + σ1b − σ1r + 1 0 · · · 0
0 σ2p + σ2b − σ2r + 1 · · · 0

.

.

.
. .
.

.

.

.

.

.

.
0 0 · · · σnp + σnb − σnr + 1

 . (39)

Equations (33) and (34) which is the model of risky capital assets is an uncertain
optimal control system whereby X(t) is the state, U is the control, F is n × n
dimensional constant matrix while P and Q are n×m dimensional constant matrices,
C(t) is the Liu process and J(X) is the objective functional.

4 CONTROLLABILITY AND OBSERVABILITY OF THE UNCERTAIN
SYSTEM

Let (Γ, L,M) be a complete uncertainty space with uncertain measure M on Γ and
a filtration {L(t)|t ∈ [0, T ]} generated by n-dimensional uncertain process {C(t) :
0 ≤ t ≤ T} defined on the uncertainty space (Γ, L,M).

Let l2(Γ, L(t),<n) represent the Hilbert space of all L(t)-measurable square inte-
grable uncertain variables with all values in <n. Also, let lL2 ([0, T ],<n) represent the
Hilbert space of all square integrable and L(t)-measurable process with the values
in <n. Let X(t) = X(t + s) for s ∈ [0, T ] represent the segment of the trajectory,
that is, X(t) ∈ lL2 ([0, T ], l2(Γ, L(t),<n)).

Let R be a linear operator on the Hilbert space l2(Γ, L(t),<n) with domain
D1(R). R ≥ 0 if 〈Rc, c〉 ≥ 0 for all c ∈ D1(R), R > 0 if 〈Rc, c〉 > 0 for all
nonzero c ∈ D1(R) and R is coercive (R− γI ≥ 0) if there exists a γ > 0 such that
〈Rc, c〉 ≥ γ ‖c‖2for all c ∈ D1(R).

Now, using the proposed model with the multidimensional constraint of uncer-
tain differential equation

dX(t) = FX(t)dt+ UPX(t)dt+ UQX(t)dC(t) (40)

for t ∈ [0, T ] with the function initial condition

X0 ∈ lL2 ([0, T ], l2(Γ, L(t),<n)), (41)

where the state X(t) ∈ l2(Γ, L(t),<n) and control ψ(t) ∈ <m = U . U and F are
n× n dimensional constant matrix while P and Q are n×m dimensional constant
matrices.

Thus, suppose the admissible controls U = lL2 ([0, T ],<m), then for any given
initial condition X0 ∈ lL2 ([0, T ], l2(Γ, L(t),<n)) and any admissible control ψ ∈ U
for t ∈ [0, T ], ∃ a unique solution X(t;X0, ψ) ∈ l2(Γ, L(t),<n) of the constraint
uncertain differential state equation (40), [19]



10 T. Latunde, A. F. Adedotun, J. O. Ajinuhi, O. J. Peter

4.1 Controllability

Definition 11: The uncertain dynamic system (40) is said to be relatively exactly
controllable on [0, T ] if

R(t)(U) = l2(Γ, L(t),<n). (42)

This implies that if all the points in l2(Γ, L(t),<n) can exactly be reached at
time T from any arbitrary initial condition X0 ∈ lL2 ([0, T ], l2(Γ, L(t),<n)).
Definition 12: The uncertain dynamic system (40) is said to be relatively approx-
imately controllable on [0, T ] if

R(t)(U) = l2(Γ, L(t),<n). (43)

This implies that if all the points in l2(Γ, L(t),<n) can approximately be reached
at time T from any arbitrary initial condition X0 ∈ lL2 ([0, T ], l2(Γ, L(t),<n)).

The relationship between the controllability concepts for the uncertain dynamic
system (40) and the controllability of the related deterministic dynamic system
below

dX(t) = FX(t)dt+ UPX(t)dt for t ∈ [0, T ] (44)

where the admissible control ψ ∈ l2([0, T ],<m).
Firstly, the deterministic system (44) is defined according to [1]. Let

Qj(t) = FQj−1(t) (45)

for j = 1, 2, 3, . . . and t > 0, with initial condition

Q(t) = Q0(0) = J, t = 0 ;Q(t) = Q0(t) = 0, t 6= 0 (46)

For instance, the sequence of the n×n dimensional matrices Qj(t) deduced from
the determining equation give:

Q0(0) = P, (47)

Q1(0) = FP, (48)

Q2(0) = F 2P. (49)

These can be written in a general notation as

Qj(t;T ) = {Q0(t), Q1(t), Q2(t), . . . , Qj−1(t), for t ∈ [0, T ]}. (50)

The following Lemma is given with respect to [1], relating to the controllability
of the deterministic system (44) in the time interval [0, T ]:

Lemma 1. The following conditions are equivalent:
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i. the deterministic system (44) is relatively controllable on [0, T ],

ii. the relative controllability matrix B(t) is non-singular,

iii. rank Qj(t;T ) = k.

Hence, the following lemma is formed with respect to [19, 4, 20] which will be
useful in the proof of the uncertain controllability and observability.

Lemma 2. For every c ∈ l2(Γ, L(t),<n), ∃ a process q ∈ lL2 ,<n×n such that the
controllability operator is expressed as:

G(t)c = B(t)Ec+
∫ T

0
B(t)(s)q(s)dC(s). (51)

Lemma 3. The uncertain system (40) is relatively controllable on [0, T ] if and only
if one of the following conditions hold:

i. E 〈G(t)c, c〉 ≥ γE ‖c‖2 for some γ > 0 and all c ∈ l2(Γ, L(t),<n)

ii. R(λ1, G(t)) converges as λ1 → 0+ in the uniform operator topology.

iii. λ1R(λ1, G(t)) converges to the zero operator as λ1 → 0+ in the uniform operator
topology.

iv. ker(l(t))∗ = {0} and Im(l(t))∗

Lemma 4. The uncertain system (40) is approximately controllable on [0, T ] if and
only if one of the following conditions hold:

i. G(t) > 0

ii. λ1R(λ,G(t)) converges as λ1 → 0+ in the strong operator topology.

iii. λ1R(λ,G(t)) converges to the zero operator as λ1 → 0+ in the weak operator
topology.

iv. ker(l(t))∗ = {0}.

Theorem 1. The following conditions are equivalent:

i The deterministic system (44) is relatively controllable on [0, T ],

ii The uncertain system (40) is relatively exactly controllable on [0, T ] and

iii The uncertain system (40) is relatively approximately controllable on [0, T ].

Proof. Condition (i) implies condition (ii).
Suppose the deterministic system (44) is relatively controllable on [0, T ], then the
relative controllability matrix B(t)(s) is invertible and strictly positive definite for
all s ∈ [0, T ], [1]. Hence, for some γ > 0,

〈B(t)(s)X,X〉 ≥ γ ‖X‖2 (52)

∀s ∈ [0, T ] and ∀X ∈ <n.
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In order to proof the relative exact controllability of the uncertain system (44)
on [0, T ], the relationship between the controllability operator G(t) and the control-
lability matrix B(t) given in Lemma 2 as E 〈G(t)c, c〉 to be expressed in terms of
〈G(t)Ec,Ec〉.

Firstly,

E 〈G(t)c, c〉 = E

〈
B(t)Ec+

∫ T

0
B(t)(s)q(s)dC(s),Ec+

∫ T

0
q(s)dC(s)

〉
(53)

= 〈B(t), Ec, Ec〉+ E
∫ T

0
〈B(t)(s)q(s), q(s)〉 ds (54)

≥ γ

(
‖Ec‖2 + E

∫ T

0
‖q(s)‖2 ds

)
(55)

= γE ‖c‖2 . (56)

Thus, in the view of the controllability operator,

G(t) ≥ γI, (57)

which implies that the relative controllability operator G(t) is strictly positive defi-
nite and, the inverse operator G(t)−1 is bounded, [1]. Hence, the uncertain relative
exact controllability of uncertain dynamic system (40) on [0, T ] is proved from the
relative controllability of deterministic system on [0, T ] (44).

Condition (ii) implies condition (iii).
Since the state space for the uncertain dynamic system (40) is finite dimensional,
which implies that the exact and approximate controllabilities coincide, [1], Hence,
it is easy to conclude that the uncertain system (40) is relatively approximately
controllable on [0, T ].

Condition (iii) implies condition (i).
Suppose the uncertain dynamic system (40) is uncertainly relatively approximately
controllable on [0, T ] and its controllability operator is positive definite, that is,
G(t) > 0, then applying the resolvent operator λ1R(λ1, G(t)), where λ > 0, [19],
gives

E ‖λ1R(λ1, G(t))c‖2 → 0. (58)

which implies

E ‖λ1R(λ1, G(t))c‖2 = ‖λ1R(λ1, B(t))Ec‖2 +E
∫ T

0
‖Λ1R(λ1, B(t)(s))q(s)‖2 ds→ 0.

(59)
From this,

E
∫ T

0
‖Λ1R(λ1, B(t)(s))q(s)‖2 ds→ 0 (60)
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∀ q(s) ∈ lL2 [0, T ],<n×n, and consequently ∃ a subsequence λn such that ∀ c ∈
l2(Γ, L(t),<n),

‖λnR(λk, B(t)(s))c‖ → 0, (61)

almost everywhere on [0, T ].
Thus, the property holds ∀ 0 ≤ s < T because of the continuity of R(λ,B(t)(s)).

This implies that the deterministic system (44) is relatively approximately control-
lable on [0, T ].

However, considering the state space for the deterministic system (44) is finite
dimensional, that is, exact and approximate controllabilities coincides, [1]. There-
fore, it is concluded that the deterministic system (44) is relatively controllable on
[0, T ] 2

4.2 Observability

Here, the dual concepts of observability for the uncertain dynamic system (40) is
treated.

Suppose F and J generate C0-semigroup S1 and S2 on the Hilbert space l2(Γ, L(t),<n)
, that is, F and J generate continuous representation of semigroup S. Then the dual
of the uncertain system (40) is:

dX(t) = [F ∗ + J∗ +W ∗
1 +W ∗

2 ]X(t)dt+ UQX(t)dC(t). (62)

Thus, the following concepts are described:

• The observability map of uncertain system (40) on [0, T ] is expressed as the
linear operator O(t) : l2(Γ, L(t),<n)→ lL2 ([0, T ]) which is defined by

O(t)c = (W1 +W2)(S1 + S2)(T − s)E{c|L}. (63)

• The observability grammian of uncertain system (44) on [0, T ] is defined by:

Θ = (O(t))∗O(t). (64)

Definition 13 : The uncertain system (40) is said to be relatively observable
on [0, T ] if the operator O(t) is injective and its inverse bounded on the range O(t).
The means that the initial state can be uniquely and continuously constructed from
outputs in lL2 (Γ, L(t),<n).

Definition 14 : The uncertain system (40) is said to be approximately observ-
able on [0, T ] if

O(t) = {0}, (65)

that is, the initial state uniquely depends on the knowledge of the result in lL2 (Γ, L(t),<n).

Theorem 2. For the uncertain dynamic system (44), the following duality results
holds:
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i. The uncertain system (40) is relatively observable on [0, T ] if and only if the
dual system (62) is relatively controllable on [0, T ].

ii. The uncertain system (40) is approximately controllable on [0, T ] if and only if
the dual system is approximately controllable on [0, T ].

Proof. Since F and J generate a Co-semigroup S1(t) and S2(t) respectively on
lL2 (Γ, L(t),<n), then F ∗ and J∗ generate the Co-semigroup S∗1(t) and S∗2(t) respec-
tively. Also, since O(t) ∈ lL2 ([0, T ], l2(Γ, L(t),<n)),

(O(t))∗q =
∫ T

0
(S∗1 + S∗2)(T − s)(W ∗

1 +W ∗
2 )q(s)ds. (66)

Thus, the range of O(t) implies that of the controllability operator of the dual system
(62).
Let the controllability of the dual system (62) be represented by N(t), then

(O(t))∗ = N(t) and (N(t))∗ = O(t). (67)

i. Suppose the deterministic system (40) is relatively observable, there exists an
inverse (O(t))−1 on the range of O(t). Then,∥∥∥(O(t))−1q

∥∥∥ ≤ l ‖q‖ (68)

for all q ∈ lL2 ([0, T ],<n×n) and l > 0. Hence,

‖c‖ =
∥∥∥(O(t))−1O(t)c

∥∥∥ ≤ l
∥∥∥OT c

∥∥∥ = l ‖(N(t))∗c‖ . (69)

Therefore, the relative controllability of the uncertain system (40) follows from
Lemma 3 as thus. Suppose that the uncertain system is relatively control-
lable, then (N(t))∗ is injective and has closed range. This implies that from
(N0)∗ = O(t), O(t) is injective and has closed range. Thus, by the Closed
Graph Theorem, the inverse of O(t) is bounded on the range of O(t).

ii. However, by definition, the deterministic system (44) is approximately observ-
able if and only if

kerO(t) = ker(N(t))∗ = {0}. (70)

Therefore by Lemma 4, ker(N(t))∗ = {0} if and only if the uncertain system
(40) is approximately controllable. Hence the proof of the equivalence.

2

5 CONCLUSIONS

The necessary and sufficient conditions for the uncertain controllability and observ-
ability of a finite dimensional uncertain dynamic control system have been estab-
lished and proved. Thus the effectiveness of each input and output in the general
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operation of the control system can be determined. The application of this work is to
measure the controllability and observability degree of the system by using certain
admissible input factors to determine how the system can move around its configu-
ration space. Subsequently, we can observe the analytic and numerical solutions to
the multifactor system.
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