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Abstract. Small base stations (SBSs) play a vital role in 5G communication to
improve the throughput of cellular networks. However, care needs to be taken to
ensure that improving the throughput of a cellular network via SBS deployment
does not lead to unacceptable interferences that negatively impact the network’s
overall efficiency. The unpredictable nature of SBS deployment also has
implications for energy consumption. This research study proposes a weighted-
sum modified particle swarm optimization (PSO) algorithm to find the density of
SBSs that maximizes the throughput and energy gains of a cellular network.
A stochastic geometry approach is taken to the optimization process, and some
form of SBS sleep strategies are also explored at high and low traffic levels. The
study showed that the strategic sleep mode favours lower densities of SBSs at
lower transmission power levels than the random sleep mode at low traffic
levels. The strategic sleep mode selects higher densities of SBSs at higher
transmission power levels than the random sleep mode at high traffic levels. The
strategic sleep mode provided a better optimal solution to the SE and EE
maximization problem at both high and low transmit levels. The proposed PSO
algorithm generated all Pareto optimal fronts regardless of the network traffic
level. In contrast, the ParetoSearch algorithm could generate the Pareto optimal
front at only low traffic levels. The result of this study provides cellular network
engineers with a means of simultaneously adjusting network parameters to
achieve the desired throughput and energy savings in SBS-enhanced cellular
networks.

Keywords: Heterogeneous cellular networks � Stochastic geometry � Particle
swarm optimization � Small base station �Macrocell � Small cell � Throughput �
User equipment

1 Introduction

The proliferation of new network services and the ever-increasing number of mobile
devices has prompted the need for innovative ways to meet the resulting geometrical
increase in traffic [1]. Small base stations (SBSs) are used to improve the throughput of a
cellular network [2]. The increased levels of data traffic may be served by the

AQ1

AQ2

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
K. Arai (Ed.): FICC 2022, LNNS 438, pp. 1–19, 2022.
https://doi.org/10.1007/978-3-030-98012-2_64

A
ut

ho
r 

Pr
oo

f

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-98012-2_64&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-98012-2_64&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-98012-2_64&amp;domain=pdf
https://doi.org/10.1007/978-3-030-98012-2_64


uncoordinated deployment of SBSs to traffic hotspots within the area of already existing
macro cells [3]. The use of SBSs provides the possibility of managing energy con-
sumption with the help of the correct type of sleep-mode technique without any decline
in the Signal-to-Interference-Plus-Noise Ratio (SINR) of the cellular network [4].

A load profile is used in the energy industry to manage power generation, trans-
mission, distribution, and utilization. The same concept can be applied in cellular
communication to manage uncoordinated SBS deployment in a way that uses energy
optimally [5]. The use of temporal and spatial variations in data traffic levels to
selectively put SBSs to sleep offers a potent means for network operators to deploy
SBSs to achieve throughput and energy consumption goals [6]. SBSs provide a feasible
means of increasing network throughput, but with the probability of causing unin-
tended deterioration of the cellular network’s Quality of Service (QoS) and unman-
ageable network operation expenses due to increasing energy consumption costs.

This research study proposes particle swarm optimization to arrive at the required
density and transmit power of the SBSs that serves the network connectivity needs of
every UE in a cellular network without any drop in QoS and at network operator
managed energy consumption costs. A two-tier traffic-aware heterogeneous cellular
network (HCN) is modelled using stochastic geometry, and the closed-form of its
energy-spectral-efficiency is derived. A multiobjective optimization problem to
simultaneously maximize the spectrum and energy efficiency of the two-tier HCN is
formulated and solved using particle swarm optimization. The proposed PSO-based
algorithm is then compared with the ParetoSearch algorithm in MATLAB2018b for
random sleep mode at low traffic levels.

The remaining part of the paper is organized thus; Section 2 summarises the
existing literature on SBSs deployment optimization, and Sect. 3 details the study’s
methodology. In Sect. 4, the results of the simulations are presented and discussed. The
paper is then concluded, and a reference section is provided.

2 Literature Review

Multiobjective optimization problems (MOP) are formulated to study the tradeoff
between throughput and energy consumed in heterogeneous cellular networks (HCNs).
In developing a MOP, the goal is to eventually change the MOP into a Single-objective
Optimization problem (SOP) that can be solved quickly. In sample research, a MOP
was formulated to study the tradeoff between energy efficiency (EE) and spectral
efficiency (SE) in an HCN [7]. Transmit power limitations and minimum rate
requirements were used as constraints. The MOP was changed into an SOP through
weights that telecommunication service providers can tune to achieve the desired SE
and EE tradeoff. Future cellular networks thrive on fine-tuned spectral and energy-
efficient systems.

A shared spectrum scenario was used to analyze the SE-EE tradeoff in a two-tier
heterogeneous cellular network. The result of the simulations showed that improvement
in SE using overlaid small base stations (femtocells) is strongly dependent on load level
and the power consumption pattern of the serving base station. A multiobjective
optimization problem was formulated to solve the SE-EE tradeoff challenge. The
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multiobjective optimization problem was solved to yield the Pareto optimal tradeoff
points between SE and EE. Quality of Service (QoS) was taken as the constraint of the
optimization problem. The SE-EE tradeoff was quantified as a Lebesgue measure [8].
Multiobjective optimization was used to analyze the tradeoff between spectrum and
energy efficiency in a heterogeneous cellular network focusing on the system’s device-
to-device communication. The key parameters were resource allocation for spectral
efficiency and power allocation for energy efficiency. The interference in the network
was considered a constraint. The e-constraint method was used to solve the multiob-
jective optimization problem that maximizes the EE and SE without any minimum rate
decline for device-to-device and cellular users [9]. The result was a two-stage iterative
algorithm that converges quickly to the Pareto-optimal solution.

A firefly inspired algorithm examined the relationship between area spectral effi-
ciency and energy efficiency in HCNs [10]. In the sleep/active mode of HCN operation,
the resource management problem was solved using a deactivation algorithm. A study
investigated using a deactivation algorithm to manage resources within an HCN. The
findings showed that spectral efficiency decreased whenever there was a limit to which
power could be consumed. The limitation on consumed power and its adverse effect on
spectral efficiency was mitigated using a Semi-Markov decision-making process along
with the deactivation algorithm [11]. The spectral efficiency was improved by 38.5%,
and the energy efficiency was improved by 19.2%. The use of the proposed sleep-mode
algorithm showed an improvement in throughput by 34% compared to the non-sleep
mode variant. The study, however, considered only the OFDMA-based HCN. A particle
swarm optimization algorithm was used to find a tradeoff between SE and EE in a
simulated eco-friendly cellular network [5]. The experiment focused on 5G base stations
that could be turned on/off at various levels of instantaneous traffic load conditions. The
investigation yielded an energy saving of up to 3.53 kW per day at a data rate of 22.4
Gbps. The data rate achieved was 80.64 Mbps, with full coverage of the entire network.
The area spectral efficiency was investigated from a base station’s perspective to emulate
a practical multi-user scenario in a heterogeneous cellular network [12].

Results have consistently shown that the spectral efficiency of HCNs improves with
any increase in the density of small base stations within the macro area. Still, this
improvement comes at the expense of increased energy consumption or deteriorating
energy efficiency. In a related study, the area spectral efficiency and energy efficiency
were jointly optimized using the firefly algorithm in a two-tier heterogeneous cellular
network to derive the optimal system parameters for any weight of area spectral effi-
ciency and energy efficiency [13]. The study showed that increasing the number of
users in the network made the optimization problem more challenging to solve, indi-
cating the need for more physical resource blocks to meet the increased demand for
spectral resources.

The existing research has shown a tradeoff between SE and EE in HCNs that can be
optimized. Still, to the best of the authors’ knowledge, the current literature does not
provide any numerical analysis of the relationship between the SBS density and SBS
transmit power with the energy-spectral-efficiency (ESE) of a sleep-mode activated
HCN at various traffic levels. This research study seeks to answer the question of the
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numerical implication of optimizing the ESE of a sleep-mode enabled HCN on the
density and transmit power of randomly deployed SBSs at various network traffic
levels.

3 Methodology

3.1 The Heterogeneous Cellular Network Model

It is assumed that the base stations and user equipment in the heterogeneous cellular
network are OFDMA enabled. All HCN BSs at all tiers work in the open-access mode.
There is a perfect channel estimate for all transmitters within the HCN. The macro base
stations are distributed using the Poisson point process (PPP). The macro base station is
independently distributed with density dN . The macrocell has a radius RN . All users can
connect to the macro base station (MBS) anywhere within the macrocell. The distance
between the UE and the MBS is rN . The probability density function (PDF) of the UEs
within the macro cell becomes:

ZM rNð Þ ¼ 2pdNrNexp �dNprN
2� �
; rN � 0;RNð Þ ð1Þ

The small base stations are distributed using the Poisson point process (PPP). The
small base stations are independently distributed within the macrocell with density dj.
The small cell base stations improve the coverage probability of the macrocell. The
small cell has a radius Rj. The small cell improves the network’s throughput, especially
when mobile traffic is high. Each small cell user can connect to the nearest SBS when it
is within the proximity of an active SBS. The distance between the UE and an active
SBS is rj. The probability density function (PDF) of the UEs within the active small
cell becomes:

ZS rj
� � ¼ 2pdjrjexp �djprj

2� �
; rj � 0;Rj

� � ð2Þ

The PDF of any UE’s distance from the BSs of all tiers within the HCN becomes:

Zi rð Þ ¼ 2pdiriexp �pdiri
2� �
; r � 0;Rið Þ ð3Þ

3.2 Coverage Probability of the Two-Tier Heterogeneous Cellular
Network

The user may connect to the MBS of the first tier or the SBSs of the second tier. The
UEs are assumed to know the distance of all BSs from all tiers within its proximity. The
UEs use the minimum distance ðminfairigÞ to select a BS for connection. ri represents
the relative distance between UE and all BSs within its proximity. ai represents the
bias.
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The probability of the UE connecting to any BS of tier i becomes:

Pc ¼ P airi\alrl8l 6¼ ið Þ ¼
Z 1

r¼0
ZiðrÞðP airi\alrl8l 6¼ ið ÞÞdr ð4Þ

alrl are the relative distances of other BSs in the HCN to the UE.

3.3 The Mobile Traffic Profile

The real-world traffic profile shows more traffic during the day (10:00–23:00 h) and
less traffic at night (00:00–09:00 h). It is assumed that the actual values of traffic are
continuously monitored and used to update the normalization scale to reflect its real
normalized value [5]. SBSs are expected to be turned off during low traffic periods
while the MBS remains active. The normalized range of values for high traffic is
0:71� u� 1. The normalized range of values for high traffic is 0:5� u� 0:7: The
normalized range of values for high traffic is 0� u� 0:49.

3.4 The Small Base Station Sleeping Strategy

The small base stations in the HCN can be put to sleep based on mobile traffic demands
and mobile user activity. The two modes of putting SBS to sleep considered in this
study are random sleep mode and strategic sleep mode.

3.5 Random Sleep Mode

In this mode, the SBSs in the HCN is put to sleep randomly. The power consumed by
the BS in sleep mode is Psleep. The MBS and selected SBSs are kept awake with a
transmission power that compensates for the sleeping activity within the HCN. Ber-
noulli trial was used to model sleeping in the random sleep mode. The probability that a
base station is independently operating, active, or awake is given as u. Thus the
likelihood that an SBS in the HCN is asleep is 1� u, independently. In random sleep
mode, the average total power consumption in the HCN is expressed as:

CR ¼ dju Pr;j þDjbPj
� �þ dj 1� uð ÞPsleep ð5Þ

Psleep\Pr;j and CR is the average power consumption for a random sleep mode
enabled HCN. Pr;j is the static power of the SBS. bPj is the power of radio-frequency
output of the SBS. Dj represents the slope of the load-dependent power consumption
for the SBS. dj is the stochastic density of the SBS.

3.6 Strategic Sleep Mode

It is dynamic and considers the activity of mobile equipment users within the HCN.
When the level of activity in the HCN is low or high, the SBSs are put to sleep
according to the function, I : 0; 1½ � Which represents the activity level of the coverage
area of the HCN. The activity level xð Þ determines the level of operation of the SBSs.
The SBSs are kept awake with probability IðxÞ and put to sleep with probability
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1� IðxÞ, independently. The strategic sleep mode is load-aware and location-aware. It
can model the traffic profile and user location-based activity into the HCN’s energy
optimization process. The average power consumption using strategic sleep mode
becomes:

CS ¼ djE If g Ps;j þDjbPj
� �þ dj 1� E If gð ÞPsleep ð6Þ

CS is the average power consumed by the SBSs of the HCN in strategic sleep mode.
E If g is the statistical expectation that an SBS is awake. Ps;j is the static power of the
SBS.

3.7 The SINR Model

The UE is assigned orthogonal carriers. The total bandwidth and power are shared
among the UE in the network. Therefore, the general equation for the SINR of any UE
in the HCN network is given by:

SINRi ¼ PiG2
i

NoW
ð7Þ

3.8 The SINR for Small Cell Users

Every subchannel bj in the small cell is occupied by only one user. Therefore the SINR
of each user within the coverage of the SBS j becomes:

SINROF;bj
i:j ¼ kbjj P

bj
j g

bj
1;j

Nobj
ð8Þ

SINROF;bj
i:j is the signal-plus-interference-to-noise ratio of any user assigned an

orthogonal carrier bj 2 WJ in small cell j.

3.9 The SINR for Macro Cell Users

Every subchannel bN in the macrocell is occupied by only one user. Therefore the SINR
of each user within the coverage of then MBS N becomes:

SINROF;bn
i:N ¼ kbnN P

bn
N g

bn
1;N

NobN
ð9Þ

SINROF;bn
i:N is the signal-plus-interference-to-noise ratio of any user assigned an

orthogonal carrier bN 2 WN in macrocell N.

6 E. Noma-Osaghae et al.

A
ut

ho
r 

Pr
oo

f



3.10 Sum Rate for Small Cell and Macro Cell Users

The sum rate is expressed mathematically as:

Rbn ¼ PcLog 1þ qð Þ ð10Þ
Rbn is the throughput on channel n. Pc is the coverage probability and q is the signal-
plus-interference-to-noise-ratio.

The total throughput RTð Þ of the HCN network model becomes:

RT ¼ RN þRJ ð11Þ
RN and RJ represent the sum rate of the macrocell and small cells, respectively.

3.11 The Energy-Spectral-Efficiency (ESE) the HCN

The spectral efficiency is given as:

SEOF ¼ ROF
T

W
ð12Þ

Where ROF
T is the throughput of the two-tier HCN.

The energy efficiency of the HCN for random sleep mode is given as:

EEOF
ran ¼

ROF
T

dju Pr;j þDjbPj
� �þ dj 1� uð ÞPsleep

� �þ Ps;N þ bDNPN
� � ð13Þ

The energy efficiency of the HCN for strategic sleep mode is given as:

EEOF
stra ¼

ROF
T

djE If g Ps;j þDjbPj
� �þ dj 1� E If gð ÞPsleep

� �þ Ps;N þ bDNPN
� � ð14Þ

Therefore, the ESE for the HCN in random sleep mode becomes:

ESEOF
ran ¼ SEOF

W

dju Pr;j þDjbPj
� �þ dj 1� uð ÞPsleep

� �þ Ps;N þ bDNPN
� � ð15Þ

The ESE for the HCN in strategic sleep mode becomes:

ESEOF
stra ¼ SEOF

W

djE If g Ps;j þDjbPj
� �þ dj 1� E If gð ÞPsleep

� �þ Ps;N þ bDNPN
� � ð16Þ
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3.12 The ESE Optimization Problem

Maximize

EE ¼ fEE ð17Þ

Maximize

SE ¼ fSE ð18Þ

Subject to:

C1: qi;j � qrequired

C2: qi;n � qrequired

C3:
XJ
j¼1

XI

i¼1

bPi;j �
XJ
j¼i

PJ
max

C4: dj;min � dj � dj;max

PJ
max - The maximum transmit power of the SBS.

dj - Density of SBS.
EE; SE - Energy efficiency and spectral efficiency, respectively.
qrequired - The SINR threshold for SBS UE and MBS UE.
C1, C2 - Ensures the data rates of all UE do not fall below the pre-set threshold.
C3 - Ensures power allocated do not exceed the maximum for all SBSs combined.
C4 - Ensures that the allowable density of SBS is not exceeded.
fEE – The HCN energy efficiency using a selected multiple access technique.
fSE – The HCN spectral efficiency using a selected multiple access technique.

An algorithm (Algorithm 1) that simultaneously maximizes the SE and EE of the
two-tier HCN was developed and tested using MATLAB2018b. The algorithm opti-
mizes the SE and EE of a two-tier heterogeneous cellular network subject to the
variables the network operator wishes to control. The developed algorithm allows the
network operator to tune the network’s parameters to attain the simultaneous levels of
EE and SE needed from the HCN. The algorithm was based on a modified nature-
inspired particle swarm optimization technique that simultaneously considers several
optimization possibilities until a Pareto-optimal front is achieved. The Pareto-optimal
front contains the possible solutions to the multiobjective optimization problem in
Eqs. 17 and 18. The Pareto-optimal front provides points not dominated by other points
outside the front.
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4 Results and Discussion

The two-tier HCN is evaluated through numerical simulations in MATLAB2018b. The
obtained results are thoroughly discussed. The simulation parameters are obtained from
[6] and [7] and are presented in Table 1.

Table 1. Simulation parameters

Parameter Value

MBS transmit power bPNð Þ 31 W

SBS transmit power bPj
� �

Variable

MBS fixed power consumption 130 W
SBS fixed power consumption 4.8 W
Traffic distribution Normalized
Total number of channels 10
The bandwidth of each sub-channel (b) 30 kHz
Path loss exponent (a) 4
SBS sleep mode power consumption (Psleep) 2.9 W
Number of channels allocated to MBS 6
Number of channels allocated to SBS 4
SBS density (dj) Variable
MBS density (dN) 10–1 m−2

SINR threshold of small cell (qj) Variable

The slope of load-dependent power consumption of SBS ( Dj) 4.7
The slope of load-dependent power consumption of MBS (DN) 8.0
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4.1 Energy Spectral Efficiency (ESE) of OFDMA Based HCN
with Varying MBS Power

The plot in Fig. 1 gives a glimpse into the tradeoff between energy efficiency and
spectral efficiency for OFDMA based HCN in no-sleep mode. When the transmit
power of the MBS is varied, the full range of values for the tradeoff between energy
efficiency and spectral efficiency can be seen from the point where all base stations,
including the MBS, are shut off, at the origin (the point where SE and EE are zero). The
energy efficiency rises almost linearly with the spectral efficiency until the energy
efficiency reaches its maximum value at 3:3� 1010 bits=s=m2=W. Beyond the maxi-
mum value for energy efficiency, the tradeoff between EE and SE becomes noticeable.
The spectral efficiency continues to increase till it reaches its maximum value at
2:52� 105 bps=Hz, but at the cost of a 22% drop in energy efficiency. After the
maximum EE is achieved, the tradeoff shows that the addition of SBSs to the network
needs to be optimized to ensure that the overall energy and spectral efficiency outlook
maintains the profile that the network provider can support.

Figure 2 shows the net energy and spectral efficiency tradeoff in the HCN when the
power of the SBS is varied while the power of the MBS is kept constant. The values of
SE and EE in Fig. 2 are unoptimized, and a clear tradeoff exists between the EE and SE
of the HCN. The peak EE attained by all three sleep modes is about
2:7� 1001 bits=s=m2=W. The HCN achieves the highest EE in strategic sleep mode,
while the highest SE is achieved in no-sleep mode. The improvement in EE in strategic
or random sleep modes is because some base stations are put to sleep according to the
level of traffic in the HCN. In sleep mode, interferences are minimized, and the HCN
can achieve a satisfactory level of network throughput. All deployed SBSs are kept
awake in no-sleep mode regardless of the network’s traffic level. Thus, the amount of
information sent per watt of energy consumed is reduced due to increased network
interference. In no-sleep mode, the network compensates for increased interference by
allowing all SBSs to transmit at a higher power level leading to a poor tradeoff between
energy and spectral efficiency.

10 E. Noma-Osaghae et al.
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Fig. 1. ESE of OFDMA based HCN with Macro Base Station (MBS) power varied.

Fig. 2. ESE of OFDMA based HCN with SBS power varied.
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4.2 Random Sleep-Mode ESE Optimization of OFDMA-Based HCN
Using Proposed Optimization Algorithm at High Traffic Levels

The result of the simulation of random sleep-mode energy and spectral efficiency
optimization for OFDMA-based HCN at high traffic levels is shown in Fig. 3. The
Pareto-optimal front is scanty, probably because some base stations are put to sleep in
random sleep mode. Another reason for the sparse plot may be the orthogonal nature of
sharing spectrum using OFDMA, where only one user is assigned a subchannel at a
time. The Pareto-optimal front was got by setting the traffic to a high level, varying the
SBS density dj and varying the transmit power of the SBS, bPj. The other parameters
such as MBS transmit power, bPN and the SINR threshold, q were fixed. From Table 2,
the optimum SE and EE attained by the OFDMA-based HCN was 2:1392�
106 bps=Hz and 1:7135� 1011 bits=s=m2=W respectively.

The corresponding optimal SBS density and SBS transmit power that achieves the
maximum SE and EE for random sleep-mode OFDMA-based HCN at high traffic
levels were 0:0890m�2 and 0:9923W. The result obtained in random sleep mode at
high traffic levels is the solution to the maximization problem of Eq. 17 and Eq. 18. It
reveals the density of SBS and the power at which the SBS should transmit to achieve
the optimum levels of SE and EE in the HCN. The unoptimized result for ESE opti-
mization in random sleep mode in Fig. 2 shows a much lower level of SE and EE.

Fig. 3. Random sleep mode ESE optimization of OFDMA-Based HCN using proposed PSO
optimization algorithm at high traffic levels.
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4.3 Random Sleep-Mode ESE Optimization of OFDMA-Based HCN
using Proposed Optimization Algorithm at Low Traffic Levels

The result of the random sleep-mode energy simulation and spectral efficiency opti-
mization for OFDMA-based HCN is shown in Fig. 4. The Pareto-optimal front is
convex and shows a high degree of freedom in the selection of SBS density, dj and SBS
transmit power, bPj to achieve the desired energy and spectral efficiency within the
HCN. At low traffic periods and in random sleep mode, most SBSs are put to sleep
randomly. The remaining SBSs available for offloading of traffic are few and scattered.
UEs tend to connect to SBSs at low traffic levels only when the SBS is very close. The
network operator tries to encourage connections to SBSs at low traffic levels through an
increment in the transmission power of the remaining SBSs, but most UEs would still
connect instead to the MBS. The preference for connection to the MBS instead of SBS
at low traffic periods is the reason for the convex Pareto-optimal front in Fig. 4. There
is the liberty to save as much energy as desired by lowering the SBS transmission
power or encouraging more UEs to connect to nearby SBSs by increasing the transmit
power of the remaining SBSs. The increase of SBSs transmit power causes a reduction
in the energy efficiency and an increase in the spectral efficiency. A drop in the transmit
power of the remaining SBSs would increase the energy efficiency at the expense of
reduced spectral efficiency. From Table 2, the solution of the optimization problem for
random-mode OFDMA –based HCN was an SBS transmit power of 0.0462 W and an
SBS density of 0.6871 m�2 which corresponds approximately to a SE and EE of
2:5933� 105 bps=Hz and 2:6332� 1010 bits=s=m2=W. The Pareto optimal front in
Fig. 5 was obtained for comparison using the ParetoSearch algorithm in MATLAB
2018b. The negative values on the plot axes show that the objective function SE and
EE functions are maximized. The Pareto optimal front obtained was also non-convex.
In comparison with the proposed PSO algorithm, the ParetoSearch did not provide the
exact location of the optimal values of SBS density and SBS transmit power that gives
the optimum values of SE and EE. Thus, the location of the solution to the optimization
problem for the ParetoSearch algorithm was chosen at random and was found to be a
little lower than the solution obtained using the proposed PSO algorithm, as seen in
Table 2. The ParetoSearch algorithm generated the Pareto optimal front for the HCN
only at low traffic levels. The ParetoSearch algorithm could not create the set of non-
dominated points at high traffic levels.
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Fig. 4. Random sleep mode ESE optimization of OFDMA-based HCN using proposed PSO
optimization algorithm at low traffic levels.

Fig. 5. Random sleep mode ESE optimization of OFDMA-based HCN using ParetoSearch
algorithm at low traffic levels.
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4.4 Strategic Sleep-Mode ESE Optimization of OFDMA-Based HCN
with Varying SBS Density and SBS Transmit Power at High Traffic
Levels

The result of the simulation of the strategic sleep-mode ESE optimization of the
OFDMA-based HCN is shown in Fig. 6. The Pareto-optimal front was got by fixing
the SINR threshold and varying SBS density and SBS transmit power. The Pareto-
optimal front is non-convex and shows a simultaneous maximization of the SE and EE.
The Pareto-optimal front for strategic sleep-mode at high traffic levels is nearly linear,
although there are still gaps in the front. In strategic sleep mode, the SBSs are either
awake or put to sleep by considering the temporal and spatial variation in user-
generated traffic. Thus, the optimization problem for the strategic sleep mode is dif-
ferent from what is obtained using random sleep mode. From Fig. 6, the optimum
values of SE and EE are 2:187� 106 bps=hz and 1:7428� 1011 bits=s=m2=W
respectively, for the strategic sleep mode at high traffic levels.

Table 2. ESE Optimization for OFDMA-Based HCN
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The strategic sleep mode’s optimum SE and EE achieved at high traffic levels are 2%
higher than the optimum value for SE and EE in OFDMA-based HCN using random
sleep-mode. The reason for the disparity in SE and EE between the strategic sleep mode
and random sleep mode is the responsiveness of the strategic sleep mode to spatial
variations in traffic. The responsiveness of the strategic sleep mode to both temporal and
spatial variations in traffic is seen in the solution to the optimization problem for the
required SBS density 0:0899m�2ð Þ and transmit power ð0:9965WÞ that maximizes the
EE and SE of the OFDMA-based HCN, as shown in Table 2. The SBS density and SBS
transmit power values for the strategic sleep mode is 1% higher for the SBS density and
almost 0.4% higher for the SBS transmit power. This result indicates that network
operators should consider using strategic sleep-mode for HCNs if the quality of service
of all users in the network does not fall below a given threshold and thus, save energy
and improve the throughput of the network where it is needed.

4.5 Strategic Sleep-Mode ESE Optimization of OFDMA-Based HCN
with Varying SBS Density and SBS Transmit Power at Low Traffic
Levels

The result of optimizing the strategic sleep-mode energy and spectral efficiency of
OFDMA-based HCN at low traffic levels with varying SBS density and SBS transmit
power is shown in Fig. 7. The Pareto-optimal front was obtained by fixing the SINR

Fig. 6. Strategic sleep mode ESE optimization of OFDMA-based HCN using proposed
optimization algorithm at high traffic levels.

16 E. Noma-Osaghae et al.

A
ut

ho
r 

Pr
oo

f



threshold values of the MBS and SBS and varying the SBS density, and SBS transmit
power. The Pareto-optimal front was convex, showing a tradeoff between SE and EE.
The tradeoff was caused by UEs connecting to the MBS instead of nearby SBSs due to
the higher received signal strength of the MBS at low traffic levels. In strategic sleep
mode and at low traffic levels, the network operator can conserve more energy or
increase the network’s throughput. From Table 2, the value of the SBS density and
SBS transmit power that optimizes the SE 2:5752� 105 bps=Hz

� �
and EE

2:6248� 1010 bits=s=m2=W
� �

of the OFDMA-based HCN is given as 0.0456 m�2 and
0.4453 W respectively.

In strategic sleep mode and at low traffic levels, the OFDMA-based HCN achieves
a slightly lower optimal SE and EE than the random sleep mode at low traffic levels.
The lower SE and EE in the OFDMA-based HCN result from the orthogonal nature of
resource allocation and the adaptability of the strategic sleep mode to spatial variations
in traffic. The optimum SE and EE for strategic sleep-mode in the OFDMA-based HCN
were achieved at an SBS transmit power and SBS density of 54% and 1% lower than
that of the random sleep-mode technique at low traffic levels.

Fig. 7. Strategic sleep mode ESE optimization of OFDMA-based HCN using proposed
optimization algorithm at low traffic levels.
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5 Conclusion

This research study has shown that stochastic deployment of SBSs leads to SE and EE
inefficiencies if it is not well managed. The study considered two sleep modes (random
and strategic) to enable the conservation of energy and the preservation of the required
QoS of the network at all traffic levels. The strategic sleep mode achieves the better
optimum values of SE and EE at high and low traffic levels in OFDMA-based HCNs.
A weighted-sum modified PSO algorithm was proposed to simultaneously maximize
the EE and SE. The unoptimized values of the SE and EE of the OFDMA-based HCN
were lower than the optimized values. The proposed optimization algorithm was
compared with the ParetoSearch algorithm. The proposed PSO algorithm found the
Pareto optimal front for all traffic levels, but the ParetoSearch could only get the Pareto
optimal front at low traffic levels. The result of the study additionally showed that it is
inefficient to deploy small base stations without some form of sleeping techniques that
put underutilized small base stations to sleep at low traffic levels. The improvement in
the throughput and the amount of energy saved were considered in random and
strategic sleep modes. The proposed PSO algorithm provided the values of the SBS
density and SBS transmit power that optimized the SE and EE of the OFDMA-based
HCN. Regardless of the density of small base stations deployed, the strategic sleep
mode provided the best energy savings due to its temporal and spatial adaptability to
network traffic levels.

6 Future Work

The optimization technique explained in the paper would be extended to cloud radio
access networks (C-RANs) and non-orthogonal multiple access techniques.

Acknowledgment. We acknowledge the financial support of Covenant University Centre for
Research Innovation and Discovery.

References

1. Aykin, I., Karasan, E.: An activity management algorithm for improving energy efficiency of
small cell base stations in 5G heterogeneous networks. arXiv Prepr. arXiv1901.10021 (2019)

2. Ruscelli, A.L., Cecchetti, G., Castoldi, P.: Elastic QoS scheduling with step-by-step
propagation in IEEE 802.11 e networks with multimedia traffic. Wirel. Commun. Mob.
Comput. 2019 (2019)

3. Nguyen, K., Zhe-Tao, L., Sekiya, H.: Virtualization for flexibility and network-aware on 5G
mobile devices. In: 2019 IEEE 43rd Annual Computer Software and Applications
Conference (COMPSAC), vol. 1, pp. 928–929 (2019)

4. Dragičević, T., Siano, P., Prabaharan, S.R.: Future generation 5G wireless networks for
smart grid: A comprehensive review. Energies 12(11), 2140 (2019)

5. Alsharif, M.H., Kelechi, A.H., Kim, J., Kim, J.H.: Energy efficiency and coverage tradeoff in
5G for eco-friendly and sustainable cellular networks. Symmetry (Basel) 11(3), 408 (2019) AQ3

18 E. Noma-Osaghae et al.

A
ut

ho
r 

Pr
oo

f

https://arxiv.org/abs/1901.10021


6. Mowla, M.M., Ahmad, I., Habibi, D., Phung, Q.V.: An energy efficient resource
management and planning system for 5G networks. In: 2017 14th IEEE Annual Consumer
Communications & Networking Conference (CCNC), pp. 216–224 (2017)

7. Zhang, S., Zhang, N., Kang, G., Liu, Z.: Energy and spectrum efficient power allocation with
NOMA in downlink HetNets, vol. 31, pp. 121–132 (2018)

8. Rao, J.B., Fapojuwo, A.O.: An analytical framework for evaluating spectrum/energy
efficiency of heterogeneous cellular networks. IEEE Trans. Veh. Technol. 65(5), 3568–3584
(2015)

9. Hao, Y., Ni, Q., Li, H., Hou, S.: Robust multiobjective optimization for EE-SE tradeoff in
D2D communications underlaying heterogeneous networks. IEEE Trans. Commun. 66(10),
4936–4949 (2018)

10. Luo, Y., Shi, Z., Li, Y., Li, Y.: Analysis of area spectral efficiency and energy efficiency in
heterogeneous ultra-dense networks. In: 2017 IEEE 17th International Conference on
Communication Technology (ICCT), pp. 446–451 (2017)

11. Alostad, J.M.: Design of power and resource management in OFDMA networks using sleep
mode selection technique. Comput. Netw. 180, 107411 (2020)

12. Luo, Y., Shi, Z., Bu, F., Xiong, J.: Joint optimization of area spectral efficiency and energy
efficiency for two-tier heterogeneous ultra-dense networks. IEEE Access 7, 12073–12086
(2019)

13. Goudos, S.K.: Joint power allocation and user association in non-orthogonal multiple access
networks: An evolutionary approach. Phys. Commun. 37, 100841 (2019)

Optimizing Stochastic Small Base Station Deployment 19

A
ut

ho
r 

Pr
oo

f



Author Query Form

Book ID : 518000_1_En

Chapter No : 64

Please ensure you fill out your response to the queries raised below
and return this form along with your corrections.

Dear Author,
During the process of typesetting your chapter, the following queries have
arisen. Please check your typeset proof carefully against the queries listed below
and mark the necessary changes either directly on the proof/online grid or in the
‘Author’s response’ area provided below

Query Refs. Details Required Author’s Response

AQ1 This is to inform you that corresponding author have been identified as per the
information available in the Copyright form.

AQ2 Per Springer style, both city and country names must be present in the affiliations.
Accordingly, we have inserted the city name “Kaduna” in affiliation “2”. Please
check and confirm if the inserted city name “Kaduna” is correct. If not, please
provide us with the correct city name.

AQ3 As references [5, 12] and [7, 15] are similar, duplicate references has been
removed and renumbered accordingly.

A
ut

ho
r 

Pr
oo

f



MARKED PROOF

Please correct and return this set

Instruction to printer

Leave unchanged under matter to remain

through single character, rule or underline

New matter followed by

or

or

or

or

or

or

or

or

or

and/or

and/or

e.g.

e.g.

under character

over character

new character 

new characters 

through all characters to be deleted

through letter   or

through characters

under matter to be changed

under matter to be changed

under matter to be changed

under matter to be changed

under matter to be changed

Encircle matter to be changed

(As above)

(As above)

(As above)

(As above)

(As above)

(As above)

(As above)

(As above)

linking characters

through character    or

where required

between characters or

words affected

through character    or

where required

or

indicated in the margin

Delete

Substitute character or

substitute part of one or

more word(s)
Change to italics

Change to capitals

Change to small capitals

Change to bold type

Change to bold italic

Change to lower case

Change italic to upright type

Change bold to non-bold type

Insert ‘superior’ character

Insert ‘inferior’ character

Insert full stop

Insert comma

Insert single quotation marks

Insert double quotation marks

Insert hyphen

Start new paragraph

No new paragraph

Transpose

Close up

Insert or substitute space

between characters or words

Reduce space between
characters or words

Insert in text the matter

Textual mark Marginal mark

Please use the proof correction marks shown below for all alterations and corrections. If you  

in dark ink and are made well within the page margins.

wish to return your proof by fax you should ensure that all amendments are written clearly


