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 In spite of the significant advancement in face recognition expertise, 

accurately recognizing the face of the same individual across different ages 

still remains an open research question. Face aging causes intra-subject 

variations (such as geometric changes during childhood & adolescence, 

wrinkles and saggy skin in old age) which negatively affects the accuracy of 

face recognition systems. Over the years, researchers have devised different 

techniques to improve the accuracy of age invariant face recognition (AIFR) 

systems. In this paper, the face and gesture recognition network (FG-NET) 

aging dataset was adopted to enable the benchmarking of experimental 

results. The FG-Net dataset was augmented by adding four different types of 

noises at the preprocessing phase in order to improve the trait aging face 

features extraction and the training model used at the classification stages, 

thus addressing the problem of few available training aging for face 

recognition dataset. The developed model was an adaptation of a pre-trained 

convolution neural network architecture (Inception-ResNet-v2) which is  

a very robust noise. The proposed model on testing achieved a 99.94% 

recognition accuracy, a mean square error of 0.0158 and a mean absolute 

error of 0.0637. The results obtained are significant improvements in 

comparison with related works. 
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1. INTRODUCTION 

The need for automated human face recognition cannot be overemphasized as it is required for identification 

and authentication in various real-life applications. Examples of these applications include border control, voting 

systems, health care, attendance capturing, and access control. The variant nature of the face with the passage of time 

has been found from rigorous research to be responsible for the intra-class variations that make facial recognition 

systems to return a non-match for genuine users. This factor is called “aging” and it makes matching of “query face 

templates” with stored templates of users’ faces in databases unreliable and insecure. 

It is generally accepted that the use of deep learning for face recognition application was possible 

due to many factors of which data augmentation [1] is a part. Face recognition is affected negatively by 

synthetic makeup and research has shown that synthetic makeup is one of the reasons why celebrities have 

trouble with face recognition systems. The lifestyle of celebrities usually involves a lot of activities that 

require several unique synthetic makeups. This causes serious ambiguity issues in face recognition.  

https://creativecommons.org/licenses/by-sa/4.0/
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The artificial colors, contouring and uneven skin tone associated with artificial makeovers pose a challenging 

problem in face recognition that some researchers [2] have attempted to solve using deep convolutional 

neural networks with promising results. The application of convolutional neural network (CNN) to solve  

the facial artificial makeup challenge involved the use of augmented pictures of subjects with various types 

of artificial makeovers. 

In some instances, the input images were split into two categories, a category with closely matched 

pairs of face images and the other categories were unmatched pairs. The goal was to increase the disparity in 

the unmatched face image pairs and the similarity in the matched face image pairs [3]. The face images of  

the subjects were fed into CNN networks in pairs with the aim of reducing false matches and increasing true 

matches across age groups. The age-invariant face recognition was achieved using distance metrics on  

well-ordered pairs of matched and unmatched face images. Standard databases such as the Face and Gesture 

Recognition Network Aging Database (FG-NET AD) [4], the MORPH database, the CAD database,  

the Asian Face Age Dataset (AFAD) and a lot more have been the pool from which researchers working on 

age-invariant face recognition systems get face images to augment. These standard aging databases provide  

a platform to standardize research outputs on age-invariant face recognition. The majority of the databases 

have a limited number of face images that are not large enough for deep learning applications and are thus 

augmented using a large array of standardized data augmentation processes. 

Some researchers use unique face images from subjects who volunteer to have their face image used 

for age-invariant face recognition research [5]. The aim is usually to get face images from subjects that cover  

a minimum of twenty to thirty percent of a subject’s lifetime. These images are augmented and used to 

develop age-invariant face recognition models. A key part of the research using individual volunteer subject 

images is highlighting the number of participating subjects, the number of face images originally acquired, 

the number of augmented face images, the median age [6], the minimum and maximum age and the 

separation between acquired images of each subject. The data augmentation process done on face images 

helps researchers work on the intra-class and inter-class variations sought for age-invariant face recognition [7].  

The inter-class and intra-class variations help in the modeling of appropriate datasets for the development of 

age-invariant face recognition systems. The augmented face images are often used as data input to  

several deep learning models like the convolutional neural networks to create robust age-invariant face 

recognition systems [8]. 

In some applications, data augmentation is used to separate subject-specific facial features that are 

stable from variations in other facial features caused by aging [9]. This leads to the generation of age-

invariant face recognition systems that are robust to variations in facial features caused by aging.  

Data augmentation has been used to adapt face images for applications on mobile devices and cloud 

environments that operate in real-time [10]. The face images for such niche applications are, usually 

augmented to be compatible with mobile device applications. Data augmentation is done in various ways. 

Famous among them are rotation, the addition of noise, landmark perturbation and synthesis techniques [11]. 

Face images are augmented to dramatically increase their numbers, size and suitability for deep learning 

applications. Face images that are not augmented usually cause overfitting, pose variance, misalignment and 

illumination variations. The issue of illumination variations in face images is also addressed using data 

augmentation techniques like face lighting as seen in [12] to create robust face recognition systems. 

Sometimes data augmentation is done to avoid the need for paired face images and the true age of face  

image samples [13]. 

In this work improving the accuracy of an age invariant face recognition (AIFR) system using data 

augmentation technique on a classical pre-trained convolution neural network is the focus of this study.  

It AFIR system was achieved by augmenting the FG-Net dataset at the preprocessing phase with different 

types of noise that incidentally improved the accuracy of the system. This was largely because the pertained 

CNN adapted for training the proposed AIFR model was robust to noise. 

 

 

2. PROPOSED RESEARCH METHOD FOR THE IMPROVED AGING INVARIANT FACE 

RECOGNITION USING DATA AUGMENTATION 

This section describes the proposed research method for the improved age invariant face recognition 

using data augmentation. This network was designed to improve the recognition of the intra-class subject 

(same person) at different ages using data augmentation. The general procedure comprised of the same 

traditional steps: image acquisition, pre-processing, feature extraction, classification and system evaluation. 

In this work, the image pre-processing steps taken using data augmentation technique improved  

the performance of the system greatly. Four basic pre-processing steps were utilized. Feature extraction  

is the process of capturing the preferred trait descriptors but using the CNN instead of a handcrafted method. 

In this model, a pre-trained CNN architecture (Inception-ResNetv-2) was adopted. Classification is necessary 
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to recognize the identity of the subject. This model utilized the Softmax classifier, which was used for multi-

class classification. The system (model) performance was evaluated for its testing accuracy, testing loss, 

mean squared error and mean absolute error. The general processes for improved AIFR using data 

augmentation are shown in Figure 1 to Figure 3. 
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Figure 1. Basic block diagram for proposed age invariant face recognition training phase 
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Figure 2. Basic block diagram for proposed age invariant face recognition testing phase 
 

 

     
     

(a) (b) (c) (d) (e) 

 

Figure 3. A sample cropped image from FG-net dataset with various noise addition: (a) Original image,  

(b) Image with Gaussian distribution noise, (c) Image with Poisson distribution noise, (d) Image with  

the distribution of salt &pepper noise, (e) Image with the speckle noise distribution 

 

 

2.1.  Data acquisition 

The face and gesture recognition network ageing database (FG-NET AD) contains 1002 images 

from 82 different subjects with age ranging from newborns to 69 years. However, ages up to 40 years are  

the most populated in the database. With the exception of recent images that were acquired digitally, other 
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images in the database are the scanned photographs of subjects found in personal collections. Consequently, 

the quality of images in the database depends on the skill of the photographer, the imaging equipment used,  

the photographic paper used and the overall photograph condition. The images exhibit considerable 

variability in resolution, image sharpness, illumination, background, viewpoint and facial expression, which 

makes it highly challenging data for age-invariant face recognition. Furthermore, occlusions in the form of 

spectacles, facial hair and hats are also present in a number of images [14-19]. The FG-NET database also 

contains an average of between 10-15 face images of each subject at different ages [15]. The total number of 

subjects by gender are 34 males and 48 females. While the total number of images by gender is 395 males 

and 607 females. The database of the FG-NET AD was too small for deep learning experiments. Thus, the need for 

data augmentation. 

 

2.2.  Training and testing the proposed AIFR model 

In this section, we shall consider; training the deep learning model using the transfer learning technique, 

using the trained deep learning model for adaptive face recognition in FG-NET and data augmentation. 

 

2.2.1.  Training the deep learning model using transfer learning technique 

Transfer learning was used to train the Inception-ResNet-v2 network on the pre-processed FG-NET 

database for age-invariant face recognition. The training process was systematic and it is summarized thus: 

a. Load the pre-processed FG-NET database into MATLAB using ImageDatastore object. 

b. Split the database into a training set (80% images) and validation (testing) set (20% images). 

c. Resize all images in the train and test sets to 299x299 to make them compatible with the Inception-

ResNet-v2 network.  

d. Load Inception-ResNet-v2 network in MATLAB. 

e. Specify training options for transfer learning. 

f. Re-train Inception-ResNet-v2 network on the train set of pre-processed FG-NET. 

g. Test the trained network on the validation set. 

h. Compute the network accuracy. 

 

2.2.2.  Using the trained deep learning model for adaptive face recognition in FG-NET 

The trained deep learning model was used for testing the images from the FG-NET dataset by following 

the steps below: 

a. Read an image from the FG-NET database in MATLAB. 

b. Convert the image into an RGB format if it is a grayscale image. 

c. Detect and crop the face of the subject in the image using the Viola-Jones Face Detector. 

d. Resize the image to 299x299 to make it compatible with Inception-ResNet-v2. 

e. Load the re-trained Inception-ResNet-v2 network from Section 2.2.1 

f. Pass the image from step (d) to the re-trained network for class prediction. 

g. Observe the prediction result and compare it to the ground truth. 

 

2.2.3.  Data augmentation (the concept of image noise addition) 

Gaussian, Poisson, Salt & Pepper, and Speckle noises were chosen to be added to the images from 

the FG-Net dataset [20]. Some amounts of these noises were added in each of the images in order to 

artificially inflate the datasets using label preservation transformation. Image noise addition and label 

preservation transformation are data augmentation techniques [21-30]. 

a. Image Gaussian noise addition 

Gaussian noise modeling involves the addition of different random RGB values to each pixel in  

the image. The random values are mined from an arbitrary variable with mean (μ) value of zero and a 

variance 1.4 from normal density function. The mean and variance are selected to introduce a reasonable 

amount of noise. The mathematical model is as shown in (1) [31-33]. 
 

P(𝑍) =
1

√2𝜋𝛿
𝑒−(𝑧−𝜇)/2𝛿2

 (1) 

 

where P(𝑍) = Gaussian distribution noise in image, 𝜇 = Mean, 𝛿 = Standard deviation. 
b. Image Poisson noise addition 

Poisson noise is modeled by a Poisson procedure. Poisson noise is generated when a random 

variable is created for each pixel. The random variable has a Poisson distribution as shown in (2) [31-35].  

An arbitrary sample is mined from every arbitrary variable. 
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P(𝑘) =
𝑒−𝜆(𝜆)𝑘

𝑘!
  (2) 

 

where, P = Probability distribution, 

𝐾 = The number of Photons measured by a given sensor element,  
𝜆 = 𝑀𝑒𝑎𝑛;  that is equivalent to the value of the pixel. 

c. Salt and pepper noise addition 

Salt and Pepper noise can originate from transmission errors while carrying out analog-digital 

conversions. The salt and pepper noise was modeled by altering the value of each pixel of the image with  

a probability of 0.02. The pixel was altered either to black, (0, 0, 0) or white, (255, 255, 255) in RGB values, 

both cases with a probability of 0.01 and 0.15 respectively. The Salt and Pepper mathematical model is as 

shown in (3) [24, 31, 36-39]. 
 

P(s) = {
P𝑎      𝑓𝑜𝑟 𝑠 = 𝑎
P𝑏      𝑓𝑜𝑟 𝑠 = 𝑏
0       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  (3) 

 

Where, P𝑎P𝑏=Probability Density Function (PDF) of a and b, 

 P(s) = Distribution of salt &pepper noise in image, 

 𝑎, 𝑏 = array image size  

d. Speckle noise image addition 

Speckle noise is a rough multiplicative noise. Speckle noise is generated by multiplying each pixel of  

the image by an arbitrary value. Arbitrary values are mined from an arbitrary variable with a mean 0.9 and a variance 

of 0.1 by a normal density function. The Speckle noise mathematical model is as shown in (4) [24, 31-34, 40]. 
 

𝑔(𝑥, 𝑦) = 𝑓(𝑥, 𝑦) ∗ 𝜇(𝑥, 𝑦) + 𝜉(𝑥, 𝑦)  (4) 
 

where, 𝑔(𝑥, 𝑦) = observed image, 

𝑓(𝑥, 𝑦) = 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑣𝑒 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡  

𝜉(𝑥, 𝑦) = additive component of the speckle noise. 

 

2.3.  Network architecture for feature extraction and classification 

The architecture adapted for this experiment is the Inception-ResNet-v2, which is a convolutional 

neural network that is trained on more than a million images from the ImageNet database and is used  

in ImageNet large-scale visual recognition challenge. The network is 164 layers deep. It can classify images 

into 1000 object categories and has an image input size of 299x299. In this research work, a pre-trained 

Inception-ResNet-v2 network was used. The convolutional neural network has already learned to extract 

powerful and informative features from natural images. It was used as a starting point to learn representative 

features from the FG-NET database using transfer learning for age invariant face recognition.  

The architecture was robust to noises used in the data augmentation stage [20, 31, 33, 41]. The architecture of 

the convolutional neural network is described in Table 1. 

 

 

Table 1. A detail architecture of the convolution neural network (modified Inception-ResNet-v2) used for 

feature extraction and classification 
Block Type Repeat  Depth Filter / Stride Output size Branch 1       Branch 2 Branch3 
1  Convolution     3×3/2  149×149×32  (32)     
1  Convolution     3×3/1  147×147×32  (32)    
1  Convolution      3×3/1  147×147×64  (64)   
1  Max Pooling     3×3/2  73×73×160     
1  Convolution     3×3/2  73×73×160  (96)     
1  Convolution     3x3/1  71×71×192  (64, 96)   (64,64,64,96) 
1  Convolution     3×3/2  35×35×384  (192)     
1  Max Pooling    3x3/2  35×35×384    
2  Inception-A   5  3    35x35x256  (32)  (32, 32/2)       (32,48,64/2) 
3  Reduction-A  1  3    17x17x256  (384) (256,256,384)  
4  Inception-B   10  3    17X17X896  (192) (128,160,192)  
5  Reduction-B  1  3    8x8x1792 (256,384/2) (256,288/2) (256,288,320/2) 
6  Inception-C   5  3    8x8x1792 (192)  (192,224,256)  
7  Average Pooling     8×8  1792      
8  Dropout      Keep 0.8   1792      

9  Softmax     Classifier 82       
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3. RESULTS AND DISCUSSION 

In this section, the evaluation methodology and results of the research are given and  

a comprehensive discussion is made the comprehensive discussion. 

 

3.1.  Evaluation methodology 

The performance evaluation metrics adopted in this work include testing accuracy, mean absolute 

error (MAE), mean square error (MSE), and loss function. These metrics are the most widely used for 

classification evaluation in the biometric and forensic analysis [2, 42-48]. 

 

a. Mean squared error 

The MSE is a measure of the quality of a predictor, it is always non-negative, and values closer to 

zero are better. Where, 𝑛 in this case, is the number of iterations, Yω is the training loss and 𝑌𝜙 is the testing 

loss. Therefore, MSE is computed as shown in (5) [49]. 
 

𝑀𝑆𝐸 =  
1

𝑛
∑(𝑌𝜔 − 𝑌𝜙)2

𝑛

𝑖=1

 (5) 

 

The mean squared error is the mean ( 
1

𝑛
∑ .𝑛

𝑖=1 ) of the squares of the errors (𝑌𝜔 − 𝑌𝜙)2 

b. Mean absolute error 

The MAE is a measure of the dissimilarity between two variables. In this case between Yω which is 

the training loss and 𝑌𝜙 which is the testing loss. 𝑛 is the number of iterations. Therefore, MAE is computed 

as shown in (6) [50]. 
 

 

 

 

The MAE is an average of the absolute errors|Yϕ-Yω|. 

c. Loss function 
Categorical cross-entropy and center loss were used as the loss functions for the improvement of  

the research model design. A loss function tells how good a classifier. Categorical cross-entropy is a loss 

function used to calculate the dissimilarity between two likely distributions. This dissimilarity is calculated 

for each point in the training and testing database. The mathematical expression used to evaluate  

the probability of dissimilarity is as shown in (7) [51, 52]. 

 

 

 

 

 

For an instant, (x, y) can be defined as, where: 𝑥 = input value, 𝑦 is true value, ŷ is predicted value by the 

system, 𝑁 is sum of iteration and 𝐶 is sum of class labels. 

Wen et al.,proposed a loss function called center loss in addition to using the categorical cross-entropy loss. 

The notion is to increase the discriminative power of the totally learned features by decreasing the intra-class 

variations. The center loss function is as shown in [8]. 
 

 

 

 

 

While 𝑐𝑦𝑖
 is the 𝑦𝑖𝑡ℎ class center of the features, 𝑁 is the number of iterations. Wen et al. observed 

that equation 8 does not attain the anticipated result. Two adjustments were made by Wen et al. to  

resolve this issue. The first adjustment is to bring up to date the centers based on a mini-batch as  

a replacement for the entire dataset. The second adjustment led to the introduction of two new variables, 𝛼, 
and the 𝛿 − 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛. α is used to regulate the learning rates of the centers and the δ-function is a Boolean 

that results in 1 if the situation is true and 0 if the situation is false. The (9) defines the updated function of 

the class center. 

 

Δ𝑐𝑗 (𝑦, ŷ) =
∑ 𝛿(𝑦𝑖

𝑁
𝑡=1 = 𝑗). (𝑐𝑗 − ŷ𝑖)

1 + ∑ 𝛿(𝑦𝑖 = 𝑗)𝑁
𝑡=1

 (9) 

MAE =
∑ |𝑌𝜙 − 𝑌𝜔|𝑛

𝑖=1

𝑛
 (6) 

ℒ𝑐𝑟𝑜𝑠𝑠(𝑦,ŷ) = − ∑.

𝑁

𝑡=1

∑ 𝑦𝑖
𝑡 . log(ŷ𝑖

𝑡)

𝐶

𝑖=1

 (7) 

ℒ𝑐𝑒𝑛𝑡𝑒𝑟(𝑦,ŷ) =
1

2
∑.

𝑁

𝑡=1

∑(ŷ𝑖
𝑡 − 𝑐𝑦𝑖

𝑡 )2

𝐶

𝑖=1

 (8) 
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The new center of each class is as shown in (10) 

 

 

 

 

While α ∈ [0, 1], Wen et al., introduced λ to balance the two-loss functions of the total loss function. The 

complete function is shown in (11). 

 

 

 

In the event 𝜆 is set to 0, the total loss function is equal to the categorical cross-entropy function. 

 

d. Accuracy 
Where true positive (TP) symbolizes all experimented activities be appropriate to positive groups 

classified properly as positive groups. True negative (TN) are all experimented activities be appropriate to 

negative groups classified into negative groups. False-positive (FP) are all experimented activities be 

appropriate to negative groups being classified as positive groups, and false negative (FN) are all 

experimented activities be appropriate to positive groups being classified as negative groups. 

 

 

 

 

e. System specification 
The training and testing of the proposed model was successfully completed on a CPU with Core i7 

processor and 64GB RAM in 10 hours using Matlab version 2018b software tools. 

 

3.2.  Results 

In this section, the research results are presented and explained. Table 2 shows the performance of 

the proposed age invariant face recognition model. The performance of the proposed AFIR system was 

measured using accuracy, loss, mean squared error and mean absolute error. The training/testing accuracy 

and loss plot of the proposed AFIR model are shown in Figure 4 and Figure 5 respectively. Furthermore,  

the progression plot of square errors vs. iterations and absolute errors vs. iterations of the proposed AFIR 

model are shown in Figure 6 and Figure 7 respectively. The MSE and MAE is as calculated by (5) and (6). 

 

 

Table 2. The performance of the proposed AIFR model 
Parameters Results 

Training accuracy 100% 
Testing accuracy 99.94% 

Training loss 0.008% 

Testing loss 0.003% 
Mean squared error (MSE) 0.0158 

Mean absolute error (MAE) 0.0637 

 

 

 
 

Figure 4. Training and testing accuracy plots of the proposed AFIR model 

𝑐𝑗
𝑡+1 = 𝑐𝑗

𝑡 − 𝛼. Δ𝑐𝑗
𝑡  (10) 

ℒ =  ℒ𝑐𝑟𝑜𝑠𝑠 + 𝜆ℒ𝑐𝑒𝑛𝑡𝑒𝑟   (11) 

Accuracy =
TP+TN

TP+TN+FP+TN
∗ 100%  (12) 
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Figure 5. Training and testing loss (error function) plots of the proposed AFIR model 

 

 

 
 

Figure 6. Progression plot of square errors vs. iterations of the proposed AFIR model 

 

 

 
 

Figure 7. Progression plot of Absolute errors vs. iterations of the proposed AFIR mode 

 

 

Table 2. The performance comparison of AIFR using mean absolute error (MAE) 

No. Publication Face dataset/dataset size Algorithm Evaluation protocol 
Performance 

evaluation (MAE) 

1 Proposed 
FG-NET/1002 

(using-data argumentation technique) 

Classification 

(CNN) 
20% test, 80% train data MAE 0.0634 

2 [53] FG-NET/1002 
Classification 

(CNN) 
N/A MAE 2.8 

3 [54] FG-NET/1002 Classification Leave-one-person-out MAE 3.31 
4 [55] FG-NET/1002 Classification 98.8% train, 1.2% test MAE 4.5 

5 [56] FG-NET/1002 Classification Leave-one-person-out MAE 4.8 

6 [57] FG-NET/1002 Classification 20% test, 80% train MAE 4.5 
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The performance comparison of Age Invariant Face Recognition (AIFR) system using percentage 

accuracy is as shown in Table 3. 

 

 

Table 3. The performance comparison of AIFR using percentage accuracy 

 

 

3.3.  Discussion 

From the results presented in subsection 3.2, it is observed that the testing accuracy of the proposed 

model is 99.94%. This signifies that if this model is embedded into a smart surveillance camera, it could 

correctly identify the face of the same subject across large age variation (in this experimental setup  

an average of 25 years was used) with 99.94% accuracy. Other metrics used in the measurement of the model 

are testing error of 0.04%. The mean squared error is 0.0153, while the mean absolute error is 0.0637 with  

a maximum iteration setting of 5000 and epochs of 50. Details of these metrics interpretation and relevant 

areas presented in subsection 3.1. The proposed AIFR model performance metrics outperform the results 

recorded in the literature to the best of our knowledge when compared to others using a similar dataset. 

One of the novelties of this research work is that different types of noise augmentation were used to 

improve the accuracy of the AIFR system, as against the traditional practice of noise elimination at  

the preprocessing phase in order to improve the output accuracy. It is observed from these results that this 

new technique is more efficient form AIFR systems. The results show that a generic pre-trained classical 

CNN architecture (Inception-ResNet-v2) can be adapted in the AIFR domain. Thus saving processing time, 

computing resources and acquisition of huge training data that are not readily available in this AIFR domain. 

From the result obtained it is observed that the experimental design at the pre-processing phase greatly 

impacts the quality of the feature extracted and output of the classifier. Thus in this paper, the final result of 

the AIFR system is greatly improved as compared to other related works. 

 

 

4. CONCLUSION 

In this paper, a novel methodology of improving the accuracy of age invariant face recognition 

using noise augmentation technique and adapting a pre-trained deep convolution neural network (DCNN) 

was proposed. Experimentation was performed on the FG-Net dataset. The FG-Net dataset was augmented at  

the preprocessing stage using four types of noises to improve the features extracted and get a better 

classification. The augmented data was used to build an age invariant face recognition model. The model on 

testing was found to be very accurate in comparison to similar research works carried out on the same dataset. 

 

 

 

Author Study/methodology Results on percentage accuracy 

Proposed 
An Improved Age Invariant Face Recognition Using Data 

Augmentation 

The proposed model achieved a recognition 

accuracy of 99.94%. 

[58] 
Age-invariant face recognition system based on identity 

inference from appearance age 

The investigational study of face recognition was 

done using FGNET data. Experimental results 

achieved on AG-IIM showed training and 
verification accuracies of 89.8% and 88.2% 

respectively. 

[59] 
Age-invariant face recognition system using combined shape 
and texture features. This technique merged texture and shape 

feature sets to achieve age invariant facial recognition. 

The method realized an overall verification 

accuracy of 93% on FG-NET AD. 

[60] 

Feature-aging for age-invariant face recognition”. This 

method was used to forecast the aging of face structure in 

order to improve the consequence of age advancement on 
face recognition. 

Face recognition rates (%) of the Gabor methods 

and Age-invariant methods with face images from 

different age groups show the best performance of 
32.7% on testing accuracy. 

[61] 
Age invariant face recognition and retrieval system using 

coupled auto-encoder networks (CAN) 

Recognition rates of this method equated with state-

of-the-art algorithms on FGNET gave 86.5% 
recognition rate 

[62] A geometrical approach for age-invariant face recognition 
The scheme was capable of attaining a determined 

classification accuracy of 99% on FGNET database 

[63] 
Face recognition across time-lapse using convolutional neural 

networks 

Time-lapse run on FG-NET using numerous 

cataloging techniques like nearest neighbor, linear 

discriminant and subspace discriminant obtained 
results of 70.4%, 78.4%, and 80.6% respectively 

[64] 

Age invariant face recognition based on texture embedded 

discriminative graph model. This proposed model takes full 
advantage of the information of texture variations and 

geometry topology contained in face images. 

Experimentations were done on the FG-NET aging 

database, and a recognition accuracy of 64.47% was 

achieved 
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