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A B S T R A C T   

One of the essential properties of natural gas is its compressibility factor (z-factor), which is required for the 
efficient design of natural gas pipelines, storage facilities, gas well testing, gas reserve estimation, etc. Its 
importance has led to the development of several approaches involving new laboratory methods, equations of 
state (EOS), empirical correlations, and artificial intelligence for estimating gas compressibility factors. Most of 
the developed Z factor models have a limited range of applicability. They are unsuitable for predicting Z factors 
of highly pressurized gas reservoirs and natural gas systems with pseudo-reduced temperatures less than 1. 
Where such models exist, they are scarce and less accurate. In this study, three machine learning models, 
including the Gradient Boosted Decision Tree (GBDT), Support Vector Regression (SVR), and Radial Basis 
Function-Neural Network (RBF-NN), were developed for predicting the z-factor of natural gas mixtures with a 
range of Ppr and Tpr of 0–30 and 0.92–3.0, respectively. The results showed that the Gradient Boosted Decision 
Tree (GBDT) model outperformed other selected machine learning algorithms and published correlations. The 
proposed model gave a superior coefficient of determination (R2 score), and root mean square (RMSE) of 0.99962 
and 0.01033, respectively. Also, the variation of the Z factors from the GBDT model with pseudo-reduced 
pressures at different pseudo-reduced temperatures using the isotherm plot was found to be adequate. Hence, 
the GBDT model in this study is a reliable method for predicting Z factors of natural gas mixtures with Ppr and Tpr 
of 0–30 and 0.92–3.0, respectively. The plot revealed that the GBDT model performed extremely well in pre-
dicting compressibility factor with an MAPE of about 1%. The findings of this study shows that the proposed 
intelligent model can be utilized in predicting the gas Z-factor.   

1. Introduction 

The compressibility factor, also known as the gas deviation factor or 
Z-factor, is a correction factor that defines how a real gas behaves 
compared to ideal gas behavior. The gas compressibility factor, also 
known as Z-factor, plays the determinative role for obtaining thermo-
dynamic properties of gas reservoir. Literature have highlighted that 
obtaining fluid properties from gas and oil reservoirs has been of great 
importance to many researchers and petroleum engineers. The signifi-
cance of this knowledge becomes more brilliant when the oil and gas 
capacity of reservoirs, dissolved gas, aquifer model and other reservoir 
properties depends directly or indirectly on fluid properties [1]. It 
compares the molar volume of gas in real conditions to the molar volume 

of the same gas at ideal conditions to determine how far a gas deviates 
from its ideal behavior at a similar temperature and pressure. The 
Z-factor is extensively used in numerous engineering disciplines when 
working with gases at low pressure and temperature, ideal gas rela-
tionship is a useful and typically satisfactory method. The application of 
the ideal gas equation causes errors at higher pressures and tempera-
tures because Z-factor is usually defined as a function of reduced tem-
perature and reduced pressure [1]. Therefore, the Z-factor is introduced 
to correct these errors. The gas compressibility factor (Z-factor) is a 
critical parameter in upstream and downstream operations, an accurate 
estimation of the property will be evident in material balance, gas 
reservoir simulation, gas reserve evaluation, gas processing and well 
control calculations [2]. The Z-factor values are commonly determined 
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Table 1 
Some selected Literature relevant to this Study.  

Author’s Work Aim of the Study Method/Approach Adopted Outcome of the Study Gaps in the Study 

Azizi et al. [13] To develop an explicit 
correlation for Z-factor 

Mathematical model which contained 20 
tuned coefficients. 

Accurate correlation which rapidly 
estimates Z-factor for sweet gases. 

Valid for a narrow range of pseudo- 
reduced Pressure and Temperature: 
0.2 ≤ Pr ≤ 11 (217 Pr values) and 
1.1 ≤ Tr ≤ 2 (14 Tr values). 

Festus and 
Ikiensikimama 
[14] 

Evaluation of widely used 
natural gas Z-factor correlations 
for reservoirs in the Niger Delta 

A statistical approach and also the use of 
cross plots to evaluate the best correlation. 

The best correlation for Niger Delta 
Field through the ranking method 
used was Beggs and Brill, with a 
percentage absolute error of 3.234. 

The result is specific to Niger Delta 
fields and was ranked with a narrow 
range 0.5796 ≤ Tr ≤ 1.758 and 
0.410 ≤ Pr ≤ 8.985. 

Heidaryan et al. 
[2] 

To develop accurate correlation 
to quickly estimate Z-factor as a 
function of Tpr and Ppr 

Multiple rational regression equation - a 
numerical method 

The correlation performed better 
than three common Z-factor 
correlations when compared by their 
statistical parameters. 

The equation developed was not 
suitable for estimating Z-factor of 
Tpr < 1.2. 

Kamyab et al. 
[15] 

To obtain a method for 
predicting Z-factor 

Back Propagation-Artificial Neural 
Network with data gotten directly from 
Standing and Katz (S&K) chart 

The results showed that the ANN 
model performed better, faster and 
covered a wider range of reduced 
pressure. 

Although the model has shown 
good results for the Average 
Absolute Error (0.1060), it can be 
improved. Also, it is not for HPHT 
reservoirs. 

Al-Anazi et al. 
[16] 

Prediction of compressibility 
factor for sour and natural gases 

A Multi-layer feed forward neural network 
based on experimental data obtained from 
seven studies. 

From the statistical parameter 
criteria AAD, RMSE, and R2 gave 
0.965, 0.024 and 0.991 respectively. 

From the analysis of the proposed 
and investigated Z-factor models, it 
is observed that the new model did 
not perform better than most of the 
other models in terms of R2. 

Baniasadi et al. 
[17] 

Prediction of Natural gas 
compressibility factor 

Artificial neural network to develop the 
model based on the input M-factor, Tr and 
Pr. 

The developed model had an 
incredible accuracy (R2 value of 
0.99992) which was better than the 
other equations compared. 

Low ranges of Pr (0.02 ≤ Pr ≤ 8) and 
Tr (1 ≤ Tr ≤ 2) which means low 
range of applicability. 

Sanjari and Lay 
[6] 

A simple empirical correlation 
that rapidly predicts Z-factor of 
natural gas that outperforms 
other empirical correlations. 

Use of experimentally derived data to 
develop correlation. 

The new technique outperformed the 
other methods with an average 
absolute relative deviation (AARD) 
of 0.6535. 

The proposed correlation contains 
many tuned (8) coefficients and 
their values depend on the range of 
Pr values. 

Sanjari and Lay 
[18] 

The use of Experimental data in 
designing an ANN to estimate 
the Z-factor of natural gas. 

Artificial neural network (ANN) based on 
back-propagation method 

The neural network predicted 
natural gas compressibility factors 
using Tpr and Ppr with AARD of 
0.593. 

According to the study, a single 
statistical measurement was used to 
validate the accuracy of the ANN 
model. Only a single hidden layer 
was used. An increase in the layers 
can achieve better results. 

Shokir et al. [19] Development of a simplified 
model that predicts Z-factor in 
sweet, sour, rich and lean gas 
condensate reservoirs 

The use of Genetic Programming based Ppc 

and Tpc models 
The new method gave better results 
compared to other EOS and 
correlations considered in the study. 

A short range of Z-factor can be 
predicted (0.456 ≤ z ≤ 1.361) 

Chamkalani et al. 
[20] 

To develop a smart, but precise 
model to predict the Z-factor 
within wide ranges of Tpr and Ppr 

conditions. 

Coupled simulated annealing (CSA) 
algorithm with the conventional Least 
Square Support Vector Machine, known as 
CSA-LSSVM 

The CSA-LSSVM outperformed the 
ANN it was compared to. 

The model comes with a noisy 
pattern which is observed when the 
Pr is lower than 2. 

Kamari et al. 
[21] 

Prediction of Z-factor for sour 
gases using an intelligent 
approach. 

CSA-LSSVM Based on the results, CSA-LSSVM 
outperformed all the equations of 
state and the empirical correlations. 

The data used to build the model 
has narrow ranges of values and the 
accuracy outside the range of values 
for training is questionable. 

Fatoorehchi et al. 
[22] 

Development of an explicit 
formula to predict natural gas Z- 
factor. 

The Adomian decomposition method was 
used. 

The formula developed was found to 
be good in converging to an accurate 
Z-factor. 

Although accurate, a lot of variables 
and computation is involved. 

Fayazi et al. [23] To estimate gas Z-factor Machine learning algorithm – LSSVM The LSSVM model outperformed the 
other existing predictive models % 
AARE of 0.19 and correlation 
coefficient of 0.999. 

The range of pressures and 
temperatures where the model 
thrives is unclear. 
The model may not be general since 
the composition, which is particular 
to a single fluid, is considered in 
developing the model. 

Ghiasi et al. [24] To estimate gas Z-factor for 
retrograde gas systems 

LSSVM based on Constant Volume 
Depletion 

The proposed model outperformed 
the 120 other models it was 
compared with. 

From the results, the new model had 
an R2 value of 0.970. This accuracy 
can be improved. 

Li et al. [25] To predict gas Z-factor of gas 
condensate for wide range of 
pressures. 

A model based on EPT EOS combined with 
Elliott and Daubert binary interaction 
coefficient correlation, Hosseinifar and 
Jamshidi characterization methods, and 
Ahmed et al. (1985) splitting. 

The proposed model outperformed 
ten other empirical correlations with 
R2, AARE and MSE of 0.989, 1.45% 
and 0.000577, respectively. 

The model developed was not based 
on dimensionless parameters (Pr, 
Tr) and therefore will not be 
applicable to every gas condensate. 

Mahmoud [26] Determination of gas 
compressibility factor for High 
pressure gas reservoirs 

Linear Regression function to fit data and 
develop a new correlation 

The correlation developed predicts 
Z-factor for very high-pressure gas 
reservoirs: 20,000 psi for mixture or 
Pr of 30. 

Applicable temperature range for 
the model was not considered. 

Mohamadi- 
Baghmolaei 
et al. [7] 

To predict accurately the 
compressibility factor 

ANN, Fuzzy Interface System (FIS), 
Adaptive Neuro-Fuzzy System (ANFIS) 
and Equation of State optimization with 
Genetic Algorithm 

The accuracy of intelligent models 
proved to be better than the 
empirical models. 
Also, an improvement was observed 

The data used to develop the model 
had Z-factor values between 0.66 
and 2.04. Expanding the application 
range is therefore necessary. 

(continued on next page) 
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Table 1 (continued ) 

Author’s Work Aim of the Study Method/Approach Adopted Outcome of the Study Gaps in the Study 

for the optimized EOS. Overall, the 
ANN was the most accurate with an 
R2 of 0.9999. 

Sarrafi et al. [27] Accurate determination of 
compressibility factor 

Adaptive Network-based Fuzzy Interface 
System with Neural Network 

From the statistical analysis of ANFIS 
and other older models, in particular 
the DAK correlation, the ANFIS 
yielded the highest accuracy. 

The study did not consider Tr < 1. 
This range is necessary in order to 
meet more areas across downstream 
and upstream. 

Shateri et al. [28] Prediction of natural gas Z- 
factor 

Wilcoxon generalized radial basis function 
network (WGRBFN) was applied using 978 
data point obtained from literature. 

The data was split 50-50 for training 
and test data and has an R2 for the 
training set and test set of 0.9241 and 
0.9195 respectively. 

Although the robustness of the 
model was shown through the 
results, there is room for improved 
accuracy of the proposed model. 

Azubuike et al. 
[1] 

To estimate Z-factor using 513 
data point from Niger Delta 
region. 

Back Propagation Neural Network with 
Levenberg-Marquardt procedure for the 
optimization 

The model developed had a good 
accuracy in terms of rank (lowest 
rank – 1.37) and performance plot. 

Small range of Tpr and Ppr for Z- 
factor prediction 

Azubuike et al. 
[29] 

Estimation of Z-factor for HPHT 
natural gas systems and the 
evaluation of selected Z-factor 
correlation 

Laboratory measurement of natural gas Z- 
factor 

Selected correlation for study was 
seen to perform well within low 
pressure ranges and show higher 
deviation at elevated pressure 
region. 

The evaluation was done based on 
narrow range of pressures and 
temperatures. 

Kamari et al. 
[30] 

Estimation of gas Z-factor for 
natural gas 

A gene expression programming (GEP) 
algorithm was employed to create a 
corresponding of states model. 

The superiority of the model was 
shown from statistical and graphical 
analysis. It had an R2, Ea, and RMSE 
of 0.898, 3.45 and 0.04, respectively 

The model had a short range of Pr, 
Tr and z, therefore having a short 
range of applicability. 

Azizi et al. [31] To accurately predict gas Z- 
factor 

Artificial Neural Network with a structure 
of 2:5:5:1 

From the statistical analysis of Z- 
factor, the ANN was found to be 
more effective than other 
correlations. 

Low range of application for the 
model developed due to the low 
range of data used. 

Okoro et al. [32] Accurate prediction of Z-factor The use of gas well inflow performance 
data in Visual Basic.net 

It was concluded that the Hall and 
Yarborough deviation model is the 
best for Niger Delta. 

Although accurate when compared 
to the other models, it will be less 
accurate for wider ranges of 
temperature and pressure. 

Salem et al. [33] Predict and compare z- factor 
values from different AI 
techniques. 

Radial Basis Function (RBF), ANN, Fuzzy 
Logic (FL), Functional Network (FN) and 
Support Vector Machine (SVM). 

The results showed that Neural 
Network could predict Z-factor 
better than other AI techniques. 

The accuracy can be further 
improved with further optimizing 
or modeling techniques. 

Ekechukwu and 
Orodu [34] 

An explicit correlation for the 
accurate determination of 
compressibility factor. 

Hybrid optimization technique - 
Levenberg-Marquart Algorithm 
-orthogonal distance regression (LMA- 
ODR) model 

The model developed performed 
better than the other correlations 
according to the statistical 
performance metrics 

The range of pseudo-reduced 
temperature is shorter than the 
original range for S&K chart. This 
should be improved. 

Gaganis et al. [4] To develop an efficient method 
that predicts gas Z-factor for 
natural gas streams 

A hybrid modeling technique was 
employed which combined Truncated 
Regularized Kernel Ridge Regression (TR- 
KRR) algorithm, with a simple linear- 
quadratic interpolation scheme 

The model performed extremely well 
when compared with the S–K chart 
and other correlations. 

The model was built by combining 
three models for each specific 
region of Pr values but, achieving 
similar or greater results with wider 
ranges of Pr and Tr should be 
considered. 

Maalouf et al. 
[35] 

To accurately predict gas Z- 
factor 

Truncated Regularized – Kernel Ridge 
Regression algorithm 

The TR-KRR model is more 
computationally efficient than the 
traditional SVM. 

Comparison was done between two 
models. Improved models can be 
implemented to achieve higher 
accuracy. 

Sidrouhou et al. 
[36] 

To match Z-factor from existing 
correlation that best 
corresponds to the Algerian 
natural gas. 

Experimental study on Algerian natural 
gas in a PVT laboratory. 

The study showed reduction in error 
for the modification of model by 
updating the coefficients of the 
model from experimental results. 

The study is specifically for a single 
reservoir in Algeria. 

Tariq and 
Mahmoud [37] 

To predict gas Z-factor for HPHT 
gas reservoirs 

Artificial Neural Network model trained 
with Levenberg− Marquardt algorithm 

A model was created to predict Z- 
factor for 0.1 < Pr < 40. 

Although the accuracy was good, 
the proposed ANN did not 
outperform some of the older 
correlations using the R2 metric. 

Lin et al. [38] To develop an efficient model 
for gas Z-factor prediction 

Group Method Data Handling (GMDH) 
Network 

Comparison between the estimated 
value and expected value of z was 
given, and it was observed that the 
R2 was close to 0.999. The result of 
the proposed model gave the lowest 
RMSE of 0.0066. 

According to the study, the model is 
accurate but fails to meet a wide 
range of application. The 
calculation range is set to 0 ≤ Ppr ≤

12, 1.1 ≤ Tpr ≤ 2.1. 

Ogbunike and 
Adeyemi [39] 

Predicting compressibility factor 
for high pressure and high 
temperature. 

Stochastic and robust gradient-based 
optimization algorithm 

The error analysis showed that the 
new model was accurate. 

More data can be used to improve 
accuracy and range of applicability. 

Wang et al. [40] To develop a novel empirical 
formula of natural gas 
compressibility factors is 
obtained, which is suitable for 
the pseudo-reduced pressure 
range of 0.2–30. 

Multivariate nonlinear regression is used 
to fit the 6988 data of the Standing–Katz 
chart 

The verification result shows that the 
mean absolute error, mean relative 
error and root mean square error 
between the calculated values and 
the measured values are 0.01962, 
0.01626 and 0.02511 respectively. 
The proposed correlation is superior 
to the other five methods because of 
its higher calculation accuracy. 

The model is suitable for calculating 
natural gas compressibility factors 
in the range of 0.2 ≤ Ppr ≤ 30 and 
1.05 ≤ Tpr ≤ 3.0.  

E.E. Okoro et al.                                                                                                                                                                                                                                
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through equations of state, experimental measurements, and empirical 
correlations. 

An accurate experimental measurement is the most reliable method 
of obtaining compressibility factor. However, these experiments are 
time-intensive and costly. It is also virtually impossible to measure the 
properties of every possible composition of gases. Consequently, this 
approach is seldom used [3]. Several “simple” empirical correlations 
have been developed, with standard Z-factor charts used to evaluate the 
accuracy of these correlations. Sometimes, these correlations yield poor 
results, due to their calculation convergence issues or low precision [4]. 
With the emergence of new technology and techniques, many authors 
have sought out new ways to improve accuracy in the prediction of 
Z-factor under various conditions. Some have taken the approach of 
digitizing the Standing and Katz chart for ease of application [5]. Some 
of the currently available methods in literature are applicable only to a 
limited pseudo reduced pressure range, usually Ppr < 15; some of these 
models did not consider low ranges of pseudo reduced temperature (Tpr 
< 1). The application of two or more hybrid models has led to discon-
tinuity at certain boundaries. Recently, several studies [6–9], sought to 
accurately predict the Z-factor but, the wide range which includes low 
pressures and temperatures as well as high pressures and temperatures 
were seldom considered. This is because, the focus of these studies was 
on improving prediction accuracy. 

The use of Artificial Intelligence (AI) approaches to solve problems in 
the oil and gas industry has become very popular, due to the non-linear 
relationship between input parameters and output parameter. Many 
published literatures have used powerful artificial intelligence/machine 
learning techniques to achieve incredible results due to their response 
speed and capability to pick hard-to-spot trends in the data provided 
[10–12]. Recently, explicit correlations and AI models have been 
developed or modified to consider some of the challenges in estimation 
of gas compressibility factor. A critical issue is accurately estimating the 
gas Z-factor for high pressure and high temperature (HPHT) reservoirs. 
This would require higher values for Z-factor dependent properties 
which, for most cases, is just the Tpr and Ppr. The advantage of AI (such 
as Artificial Neural Networks, ANNs) over traditional correlations is 
that, when it comes to fitting parameters, neural networks contain 
several degrees of freedom. Therefore, they can capture non-linearity 
better than regression methods. The ANN technique can be used to 
model various scientific problems in engineering domains and they are 
also superior to regression models in that they can be trained and 
improved as new data becomes available, thereby improving prediction 
accuracy [1]. 

Table 1 shows some relevant literatures to this study where the aims, 
approaches or methods adopted, and results of the study are 
summarized. 

One of the essential properties of natural gas is its compressibility 
factor (z-factor), which is required for the efficient design of natural gas 
pipelines, storage facilities, gas well testing, gas reserve estimation, etc. 
Its importance has led to the development of several approaches 
involving new laboratory methods, equations of state (EOS), empirical 
correlations, and artificial intelligence for estimating gas compressibility 
factors. Most of the developed Z factor models have a limited range of 
applicability. They are unsuitable for predicting Z factors of highly 
pressurized gas reservoirs and natural gas systems with pseudo-reduced 
temperatures less than 1. Where such models exist, they are scarce and 
less accurate. The estimation of gas compressibility factor is important 
because it is the relative change in the volume of the gas with respect to 
the change in pressure at constant temperature. 

In dealing with gases at a very low pressure, the ideal gas relation-
ship is a convenient and generally satisfactory tool. At higher pressures, 
the use of the ideal gas equation-of-state may lead to errors. Thus, the 
advantage of this study; basically, the magnitude of deviations of real 
gases from the conditions of the ideal gas law increases with increasing 
pressure and temperature and varies widely with the composition of the 
gas. Studies of the gas compressibility factors for natural gases of various 

compositions have shown that compressibility factors can be general-
ized with sufficient accuracies for most engineering purposes when they 
are expressed in terms of the following two dimensionless properties: 
Pseudo-reduced pressure and Pseudo-reduced temperature.In the gas 
industry, it is an important tool for computing reservoir fluid properties 
either directly or indirectly. Accurate estimation of compressibility 
factor (z) is very essential, most especially when it comes to quick 
estimation of initial gas in place. It is also an important factor to rely on 
when dealing with gas metering, where the volume flow of gas obtained 
from the orifice meter depends on the accuracy of the z-factor. Natural 
gas compressibility factor (z) is also a key factor in the gas industry for 
natural gas production and transportation. 

Tariq and Mahmoud [37], attempted to increase the range of 
application of Z-factor by developing model for pseudo-reduced pres-
sure ranging from 0.1 to 40 and pseudo-reduced temperature ranging 
from 1.05 to 3.05 using ANN algorithm. While considering 
high-pressure high-temperature (HPHT) conditions, they did not ac-
count for Tpr less than 1. Orodu et al. [41], considered Tpr less than 1 but, 
did not extend the Ppr to 30. Liu et al. [42] through experimental results 
of five groups of HPHT natural gas samples indicated that the Z-factors 
of these natural gases under reservoir conditions are considerably higher 
than those of conventional natural gases. Wang et al. [40] proposed a 
correlation for calculating gas Z-factor for a wide range of pressure 
conditions using the data from Standing-Katz chart; they did not cover 
the HPHT conditions. Having a simple and robust correlation to identify 
Z-factor values for HPHT reservoirs has become a requirement in the oil 
and gas industry. This study will delve into AI and machine learning 
techniques that avoids using more than one hybrid model which implies 
the combination of models in predicting results. Single models will be 
analyzed and compared through statistical criteria to achieve accurate 
prediction of compressibility factor for wide ranges of Ppr and Tpr less 
than 1. The objective of this study is to predict accurately the 

Fig. 1. Flowchart showing the Model Workflow.  
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compressibility factors for wide ranges of pseudo-reduced pressure and 
temperature using single algorithm for the full range (0 ≤ Ppr ≤ 30; 0.92 
<Tpr ≤ 3.0). 

2. Methodology 

The main goal of intelligent software is to connect sets of input and 
output variables while keeping the system specifications in mind [7]. 
Intelligent models are more effective in time-consuming situations 
involving non-linear mathematical modeling, adaptive learning, and no 
significant relationship between a system’s input and output. Amongst 
the various machine learning classification, supervised learning fits the 
purpose of this study. Supervised learning can either be a regression task 
or a classification task. If the model’s expected outputs are continuous 
values, a supervised learning technique will be used for the regression 
task, whereas a classification task will have outputs in predetermined 
classes. For the prediction of compressibility factor, supervised learning 
technique was employed. Two inputs (Tpr and Ppr) were used to predict 
output (Z-factor). Three different models were built and evaluated based 
on some selected metrics to select the best performing model for a wide 

range of Tpr and Ppr. 

2.1. Workflow for the model 

Fig. 1 shows a simple workflow for the study starting from the data 
collection phase down to the selection of the best model. The following 
tools and libraries were used in this study: Python 3 (Jupyter Lab), 
Numpy, Pandas, Scikit-learn, Matplotlib, Seaborn and Pickle. 

2.2. Data gathering and processing 

The initial gas compressibility data was obtained from an HPHT gas 
field in Gulf of Guinea, and more data set were simulated using Beggs 
and Brill’s correlation inputted into a Python program to generate a 
wide range of Tpr. Beggs and Brill’s correlation was selected because it 
works accurately at low temperatures but begins to deviate at higher 
temperatures. The source data can be found online (https://github.com/ 
f0nzie/zFactor/blob/master/notebooks/SK%20data.xlsx). The com-
bined source data contained 57,060 data points for 0 < Ppr < 15 and 0 <
Tpr < 3.904 data points were within the range of 16 < Ppr < 30 and 1.4 <
Tpr < 2.8, and finally 150 data points were within the range of 0 < Pp r <

14.85 and 0.92 < Tpr < 1.0. Down sampling was done to the first batch of 
data points to reduce the chances of bias towards the range of values in 
the batch of data points, and also to avoid over fitting of the proposed 
models. Down sampling is basically lowering a larger set of data points 
of a particular class so as to match the set of data points. This is to allow 
for fairly equal representation of classes in the dataset. The limitation of 
this study is that the data composition did not account for CO2 and H2S 
impurities. 

Quality assurance and quality control (QAQC) checks were per-
formed on the pseduoreduced input parameters to ensure the reliability 
of the data. First, the data sets were checked for any duplicate values, 

Table 2 
Statistical analysis of the data points.  

Parameters Ppr Tpr Z-factor 

Count 1954 1954 1954 
mean 14.1145 1.8576 1.3603 
std 9.3403 0.5974 0.5111 
min 0 0.92 − 0.1164 
25% 4.9572 1.4 0.9536 
50% 13.9828 1.8 1.4231 
75% 22.375 2.4 1.7429 
max 30 3 2.66  

Fig. 2. Histogram plot of data points before processing.  
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and it was further analyzed for missing data within the range under 
consideration (0 ≤ Ppr ≤ 30; 0.92 <Tpr ≤ 3.0). After an initial analysis, 
some of the data point were discarded due to their inconsistency or 
existence as outliers and some were not relevant in developing the 
desired model due to their range. It is worth mentioning that the missing 
values can be imputed by a mid-point (arithmetic average, median, or 
mode). The mid-point is used as it can act as the best representative for 
the whole data.The processed data points were imported into the python 
interactive development environment. Using the software tools such as 
Pandas, NumPy and MatplotLib, tables and plots displaying statistical 
data were generated for the sum of 1954 data points used for the purpose 
of model building (Table 2). 

Fig. 2 shows the histogram representation of the source data for Ppr, 
Tpr and Z-factor before data processing and this characteristic allows the 
investigation of the data for its underlying distribution. The shape of the 
distribution for the histogram shows right-skewed distributions for the 
Ppr and Tpr because, the long tail extends to the right while most of the 
data points cluster on the left, as shown in Fig. 2. Thus, the Ppr and Tpr 
distribution are not symmetrical. The Z-factor shape distribution shows 
a symmetric trend and Bi-modal distribution for the data points. Fig. 3 
shows the data distribution for the processed data. Bi-modal distribution 
was observed for the Z-factor, indicating independent sources of varia-
tion. Both data distribution shows a right skewness, the data points 
naturally have a skewed distribution, because they are bounded, such as 
the concentricity data. Concentricity has a natural lower bound at zero, 
since no measurements can be negative. The majority of the data is just 
above zero. 

2.3. Machine learning algorithms 

After data processing, a total of 1954 data points were used to 

develop the model. These data points were randomly divided into three 
different groups: training, testing, and validation. Two different parti-
tioning ratios were tested (2:1:1, and 3:1:1). However, the 3:1:1 parti-
tioning rule yielded better training and testing results. Traditionally, to 
build a program that solves a particular problem, a step-by-step pro-
cedure or a sequence of lines to achieve the end result is written. This is 
what is commonly referred to as Algorithm. The program will generally 
take inputs provided, run it through the lines of code and generate 
output. Machine learning algorithms, through observing examples is 
trained to find complex connections between the inputs and output. In 
the learning phase, a model will take arbitrary input values within its 
applicable range to generate output. 

2.3.1. Gradient Boosted Decision Tree (GBDT) 
Gradient boosted decision trees are ensemble methods for classifi-

cation and regression issues. Ensemble methods aim to increase gener-
alizability or resilience over a single estimator by combining the 
predictions of numerous base estimators using a given learning algo-
rithm. Gradient tree boosting necessitates the optimization of a loss 
function, the use of a weak learner to produce predictions, and the use of 
an additive model to combine poor learners in order to reduce the loss 
function. The loss function to be selected is dependent on the nature of 
the problem. There are various kinds of loss functions that can be uti-
lized and it is possible to create custom loss functions. For example, 
squared error can be used if it is a regression task, while a logarithmic 
loss can be applied if the problem is a classification task. In gradient 
boosting, the weak or poor learners are decision trees [43]. The most 
common learners are trees because, the level of weakness can be altered 
by adjusting the depth parameter of the tree model (Fig. 4). At each 
level, a regression tree is fitted based on the negative gradient of the 
specified loss function. Trees are created greedily, with the best split 

Fig. 3. Histogram plot of the processed data points.  
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points determined by purity scores like Gini or loss minimization. In 
gradient boost, the tree depth is generally more than that of its prede-
cessor (Adaboost) but must not be too deep so as to keep the single 
estimator weak. Finally, Trees are added one at a time, and existing trees 
in the model are not altered. 

Although the gradient boost tree regressor already optimizes and 
builds upon weak decision tree models, it is important to understand the 
effects of hyper-parameters on the outcome of the model. This study is 
limited to the most important parameters in decision trees which are:  

i. Number of estimators: 

This controls the number of boosting stages to perform. Gradient 
boosted trees hardly over fit, so a large number usually gives better 
performance [44]. This is accessed by varying the n-estimator keyword 
argument in the regressor model. By default, this is set to 100. The 
default was maintained in building the model.  

ii. Maximum depth: 

The amount of nodes in the tree is limited by the maximum depth. 
The keyword max_depth is used to regulate this parameter. This 
parameter should be tuned for optimal performance; the best value is 
determined by the interaction of the input variables. For this study, the 
maximum depth is set to 10. 

2.4. Support vector regression (SVR) 

Support vector machine is a machine learning algorithm that is well 
known for classification problems. They can also be employed for 
regression tasks as well. The extension of the support vector machine 
(SVM) to solving linear and non-linear regression problems is what is 
known as support vector regression. 

2.4.1. Hyper-parameters for SVR  

i. Kernel function: 

This parameter is selected by specifying the keyword kernel with the 
desired kernel function in the SVR model being created. Linear kernel is 
used for linear problems while rbf, polynomial and sigmoid are used for 
non-linear problems. 

ii. C: This parameter is common to all SVM kernels. It trades off accu-
racy in classifying training data against simplicity of the decision 
surface. A high C value will try to fit all points as accurate as possible 
while a low C value pays less attention to all the points and results in 
a smooth decision surface.  

ii. Gamma: It controls the influence of a single point. The larger the 
value of gamma is the closer other points need to be to be affected. 

Fig. 4. Basic steps for Gradient Boost Trees [45].  
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Parameter tuning was done using grid search. Grid search is an 
optimization technique that allows us select the best set of hyper-
parameters which gives the best score according to some scoring metric. 
This is done by running combinations for set of specified parameter 
values for the SVR using param_grid argument contained in sklearn. 
model_selection. GridSearchCV. 

2.5. Radial Basis Function-Neural Network (RBF-NN) 

The RBF-NN is a form of neural network in which the activation 
function in the hidden layers is the Gaussian function. The activation 
function in a neural network specifies how a weighted sum of input is 
converted into an output from nodes in a layer. The base or hidden 
layer’s activation function takes the combined weighted inputs and 
transforms them using the Gaussian function. Fig. 5 shows a simple RBF- 
NN structure. The learning process, like that of any other neural 
network, is critical to RBF-NN performance. The purpose of this step is to 
fine-tune the network’s parameters to reduce some error criteria. The 
three essential parameters of an RBF-NN with the basic architecture of a 
single hidden layer are connection weights, widths, and centers. A two- 
stage training process is the traditional way for training RBF-NN. The 
centers of the hidden layer and their widths are determined in the first 
step using an unsupervised clustering technique like k-means [46] or 
decision trees [47]. The weights between the hidden layer and the 
output layer are learned in the second stage. The outcomes are often 
computed linearly with the simple linear least squares (LS), orthogonal 
least squares (OLS), or gradient descent algorithms. 

2.6. Performance metrics 

Performance metrics are used to judge or measure how well a model 
performs on a set of given data. The metrics used will depend on whether 
it is a classification or regression task. Since this study deals with a 
regression model it will require metrics for regression. Scikit-learn 
contains a module called metrics for the purpose of evaluating models. 
The following metrics was used to evaluate and compare the perfor-
mance of the Z-factor models.  

i. Mean Squared Error (MSE): 

The metric corresponds to the expected value (mean) of the squared 
error or loss. It is computed through the equation below. 

MSE
(
y, ypred

)
=

1
nsamples

∑nsamples − 1

i=0

(
yi − ypred i

)2 (1)  

where. 

ypred i is the predicted value of i-th sample, 
yi is the actual value 
nsample is the number of samples.  

ii. Mean Absolute Error (MAE): 

This metric computes the expected value of the absolute error or loss. 
It is calculated through the equation below. 

MAE
(
y, ypred

)
=

1
nsamples

∑nsamples − 1

i=0

⃒
⃒yi − ypred i

⃒
⃒ (2)    

ii. R2 Score (Coefficient of determination): 

It indicates the model’s goodness of fit, and hence a measure of how 
well the model is expected to predict unseen samples. The maximum 
score is 1.0 and can be negative if the model is very bad. 

R2( y, ypred
)
= 1 −

∑n
i=1

(
yi − ypred

)2

∑n
i=1(yi − yave)

2 (3)  

Where yave = 1
n
∑n

i=1yi 

3. Results and discussions 

Different modeling methods and optimization algorithms will be 
used in this study. As there is a wealth of information in the literature 
about all the used methods and material they are not described in this 
study. In this section, the performance of new models was compared 
using different metrics of accuracy. The accuracy of each model is first 
tested, followed by a comparison between the models and the base case 
(Standing and Katz chart) and finally comparison of the best model with 
other correlations. The results obtained from the first two sections help 
us to understand the predictive power of machine learning models and 
select the best model which was compared with other relevant 
correlations. 

3.1. Comparison between the actual and predicted values 

The word ‘actual’ was used from time to time to refer to the basis of 
comparing the models. Fig. 6 shows the frequencies of the actual 
compressibility values. The histogram distribution shows that the most 
frequent values of Z-factor are within 1.5–1.75. The second most 
frequent Z-factor values are within 0.75–1.0. This shape is not specif-
ically defined, but we can note regardless that it is bi-modal, having two 
separated classes or intervals equally representing the maximum 

Fig. 5. An rbf-nn structure.  Fig. 6. Frequency distribution of the actual Z-factor.  
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frequency of the distribution for the Z-factor. 
Fig. 6 was used as the basis for comparing the three proposed models 

as shown in Figs. 7–9. The three proposed models predicted a bi-modal 
distribution of the Z-factor values. The distribution also shows a high 
variation which means that the Z-factor values are widely spread out 
about the center of a data set. The distribution of Z-factor predicted by 
the gradient boosted regression model in Fig. 7 shows a close similarity 
with that of Fig. 6 (the actual). The two most frequent range of Z-factor 
for the GBDT model is the same as the actual, and also a general look at 
the distribution symmetry reveals the closeness of the two distributions. 
Figs. 8 and 9 show the distribution obtained using the RBF-NN and SVR. 
Some of the bins in Figs. 8 and 9 were over-estimated when compared to 
the actual. The inaccuracy in properly estimating the Z-factor can be 
attributed to the fact that neural networks require much more data than 
the traditional machine learning algorithm [48]. 

3.2. Regression plot for the models 

This section examines the characteristic departures of Z-factor 

predicted values from Normality. For the graphical analysis of predic-
tion accuracy, the plots shows the cross-plot in which the vertical and 
horizontal axes depict the predicted and experimental data nodes. If the 
Z-factor data distribution approximates a sample from a normal distri-
bution, the scatter plot will fall along a line from the bottom-left to the 
top-right of the plot. The interpretation is enhanced with a line of “ex-
pected Z-factor values” if the sample data points are drawn from a 
normal distribution. The closer the predicted Z-factor points are to the 
line, the more closely the points approximate the expectation from a 
normal distribution. Comparison of experimental data and the proposed 
models as the best predicting correlation for all data points is shown in 

Fig. 7. Frequency Distribution of predicted Z-factor for GBDT.  

Fig. 8. Frequency Distribution of predicted Z-factor for RBF-NN.  

Fig. 9. Frequency Distribution of predicted Z-factor for SVR.  

Fig. 10. Regression plot for SVR.  

Fig. 11. Regression plot for RBFNN.  

Fig. 12. Regression plot for GBDT.  

E.E. Okoro et al.                                                                                                                                                                                                                                



Flow Measurement and Instrumentation 88 (2022) 102257

10

Figs. 10–12, the best-fit line (black line) through the training data in-
dicates the variance explained by each of the proposed models. Each 
model is a line of best fit minimizing the sum of the squared differences 
between each Z-factor data point and the line of best fit (45◦). If the Z- 
factor data point falls along the roughly straight line at a 45◦, then the Z- 
factor values are roughly normally distributed. According to the pre-
dicted data set, accuracy of models increases as the nodes become more 
concentrated. The evolutionary trend of improvement is clearly under-
standable by the comparison of the scattered diagrams model. Also, 
there are some poorly predicted nodes that approach their 

corresponding experimental values. The regression plot verifies the ac-
curacy of the gradient boosted regression model over the other models. 
In Fig. 10, it is observed that the RBF-NN model had predicted values 
that deviated far from the actual at lower and the upper portion along 
the line of best fit. The SVR performs better than the RBFNN model in 
Fig. 11, given that the predicted Z-factor values are relatively closer to 
the line of best fit. The GBDT model outperformed the RBF-NN and SVR, 
with most Z-factor data points falling on the line of best fit, as shown in 
Fig. 12. 

This approach has provided the best predictions compared with EoS- 

Fig. 13. Isotherm of 0.92 for the three proposed models.  

Fig. 14. Isotherm of 0.95 for the three proposed models.  

Fig. 15. Isotherm of 1.0 for the three proposed models.  

Fig. 16. Isotherm of 1.5 for the three proposed models.  

Fig. 17. Isotherm of 2.0 for the three proposed models.  

Fig. 18. Isotherm of 2.4 for the three proposed models.  
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based methods [25] and correlations (Table 1). Correlations have pro-
vided better results than EoS-based models but are not as accurate as 
AI-based models. 

3.3. Variation of Z-factor with pseudo reduced pressure at different 
pseudo reduced temperatures 

The Z-factor variations with pseudo reduced pressures (Ppr’s) at 
different pseudo reduced temperatures (Tpr’s) are presented in 
Figs. 13–19. It is mostly necessary to investigate natural gas Z-factor 
with respect to Ppr and Tpr in petroleum engineering applications. In this 
study, the Ppr range was 0.92–3.0. A general trend was observed for the 
isotherm plots: (i.) for Tpr’s of 0.92, 0.95.1.0, and 1.5, the isotherms on 
the lower portion of the plot significantly deviate from the ideal concave 
up, increasing relationship; (ii.) for Tpr’s greater than 1.5, the typical 
concave up, increasing curve was observed. 

As shown in Figs. 13–19, the GBRT most accurately fits the actual 
data points for all the Z-factor variation with Ppr’s and Tpr’s. The SVR 
follows the trend as well but tends to over-estimate the Z-factor for 
almost all Ppr points at Tpr of 0.92, 1.5, 2.0 and 2.4. The RBFNN has the 
largest deviation from the actual. For the Tpr at 1.0 and 1.5, the GBRT 
model to a good extent matched the actual curve with little errors. At 
higher Tpr values, the SVR model and RBFNN model were unable to 
make accurate predictions. For all the isotherms considered, the GBDT 
model had a great fit. The SVR model was better at lower isotherms than 
higher isotherms. Finally, the RBFNN had the worst fit progressing from 
the lower isotherms up to the highest isotherm considered. 

The isotherm plot was compared with existing correlations in pub-
lished literature. Tariq and Mahmoud [37], and Ekechukwu and Orodu 
[34] models were selected because they have wide range of applica-
bility, thus, will render the proposed model somewhat valid if it is 

observed to perform better. Also, a general trend was observed for the 
isotherm plots: for lower Tpr’s, the isotherms on the lower portion of the 
plot significantly deviate from the ideal “concave up, increasing” rela-
tionship; at high Tpr’s, the typical “concave up, increasing” curve was 
observed. We observed that Ekechukwu and Orodu [34] model deviated 
from the “concave up, increasing” trend to “concave down, decreasing” 
for Tpr of 2.0 (Fig. 21). Ekechukwu and Orodu ([34] model performed 
well at lower Ppr values but, did not fit the actual data points with Ppr 
values beyond 16 (Fig. 21). Tariq and Mahmoud (2019) model matches 
the actual data points but, under-predicts the values. 

At low Tpr’s, the GBDT model is able to match the data points of the 
actual more than the two correlations selected (Fig. 20). It is observed in 
Fig. 22 that even at high Tpr’s, the proposed GBDT model continues to 
match the data points accurately. However, the Ekechukwu and Orodu 
(2019) correlation tends to over-predict the Z-factor values, while the 
Tariq and Mahmoud [37] model still under-estimates the values of 
Z-factor. All model predictions showed a “concave up, increasing” 
relationship. 

3.4. Model accuracy 

3.4.1. SVR accuracy 
In building the support vector regression (SVR) model, a grid search 

was used which allows for the combination of different hyper- 
parameters so as to select the best combination in terms of some 
metric(s). The parameters of SVR considered were ‘C’, and ‘gamma’. 
According to VanderPlas [49], they are the two most important pa-
rameters to consider when building an SVR model. The resulting model 
at the end of the training phase had ‘C’ and ‘gamma’ values of 20 and 1 

Fig. 19. Isotherm of 3.0 for the three proposed models.  

Fig. 20. Z-factor prediction for notable correlation at Tpr 0.92.  

Fig. 21. Z-factor prediction for notable correlation at Tpr 2.0.  

Fig. 22. Z-factor prediction for notable correlation at Tpr 3.0.  
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respectively. SVR (C = 20, gamma = 1). Although, the SVR can be a very 
good estimator with the default hyper-parameters, tuning becomes 
important to achieve better results, thereby bringing the best out of the 
model. Table 3 shows the difference before and after optimization and 
the values showed an improvement after the optimization process. 

3.4.2. GBDT accuracy 
This model with default parameters performed better than the SVR 

model based on all the metrics used for evaluation. This shows how good 
this ensemble model was in developing the proposed model with the 
range of data points considered. A grid search was also done in building 
this model to get the best result. Optimization becomes important here 
to improve accuracy and avoid overfitting. Table 4 shows the effect of 
optimizing this model because the model tends to overfit easily and 
needs to be flexible due to the nature of the isotherms in the S–K chart. It 
shows that the GBRT gives the best correlation coefficient accuracy and 
minimum error. 

3.4.3. RBF-NN accuracy 
The RBF-NN model was built by manually adjusting some of the most 

influential parameters which are the optimizer and learning rate [50]. 
The optimizer for a neural network is responsible for reducing the loss 
function thereby increasing performance. The learning rate for an 
optimizer controls how fast the error loss is updated. The optimizer used 
was RMSprop and a learning rate of 0.01 was considered the best. The 
built RBF-NN model gave a training R2 score, test R2 score, MAE, MSE 
and RMSE of 0.97723, 0.97467, 0.05473, 0.00663 and 0.08144 

respectively. 

3.5. Comparison of the models prediction with other correlations 

The results of Z-factor prediction at different Ppr and Tpr values, using 
correlations from previous studies and the best approach in this study 
(the GBDT model), are presented in Table 5. The selected correlations 
for comparison were Beggs and Brill [51], Orodu et al. [41], Sanjari and 
Lay [18], Ekechukwu and Orodu [34]. Orodu et al. [41] presented three 
correlations for Z-factor prediction. We however selected the two cor-
relations with better performance according to the authors (Model 2 and 
Model 3). Sanjari and Lay [18] was selected because, it involved a ma-
chine learning approach. The benchmark for this comparison was the 
Standing and Katz chart. Considering that this chart has a minimum Tpr 
of 1.0, selected Ppr-Tpr pairs with Tpr ≥ 1.0 were used. The Orodu et al. 
[41] correlations were selected because, they were developed for low 
Tpr’s as well. The GBDT model in general, outperformed the other cor-
relations, for most of the selected pairs of Tpr and Ppr. Based on the points 
from Table 5, the mean absolute percentage error was calculated for 
each selected approach and presented in Fig. 23. As shown, it is clear 
that the proposed GBDT model outperformed the other correlations and 
therefore, verifies the authenticity of this model at these ranges of 
pseudo reduced temperatures and pressures. 

4. Conclusion 

Accurate determination of gas compressibility factor is critical in 
many aspects of petroleum engineering. It was observed that there is no 
single correlation or model that considered the low pseudo reduced 
temperature (i.e., Tpr <1). This study proposed a method of predicting z 

Table 3 
Table of accuracy for the SVR model.  

Parameter SVR Before SVR After Difference 

Train R2 score 0.94895 0.98222 0.03352 
Test R2 score 0.95836 0.98272 0.02406 
MAE 0.07359 0.06019 − 0.013 
MSE 0.01127 0.00476 − 0.00651 
RMSE 0.10616 0.06903 − 0.03718  

Table 4 
Table of accuracy for the GBDT model.  

Parameters GBDT Before GBDT After Difference 

Train R2 score 0.99787 0.99996 0.00212 
Test R2 score 0.99674 0.99962 0.00287 
MAE 0.02161 0.00561 − 0.01615 
MSE 0.00088 0.00010 − 0.00077 
RMSE 0.02966 0.01033 − 0.01933  

Table 5 
Z-factor correlation values at various Ppr and Tpr.  

Tpr Ppr Standing and 
Katz 

Beggs and 
Brill 

Orodu et al. [41] (Model 
2) 

Orodu et al. [41] (Model 
3) 

Sanjari and Lay 
[18], 

Ekechukwu & Orodu 
[34], 

This Study 
(GBDT) 

1.35 0.2 0.97 0.976 1.217 0.735 1.002 0.976 0.974 
1 1 – 0.862 0.967 0.757 1.011 0.429 0.527 
1.15 2 0.465 0.739 0.72 0.757 1.124 0.473 0.459 
1.2 3 0.535 0.671 0.598 0.745 0.442 0.544 0.542 
1.25 4 0.63 0.674 0.597 0.751 0.559 0.643 0.632 
1.3 5 0.718 0.738 0.666 0.809 0.671 0.737 0.733 
1.35 6 0.815 0.816 0.757 0.875 0.775 0.825 0.819 
1.4 7 0.9 0.894 0.852 0.937 0.869 0.907 0.894 
1.45 8 1 0.972 0.95 0.995 0.954 0.984 0.99 
1.5 9 1.08 1.05 1.05 1.0496 1.031 1.057 1.065 
1.6 10 1.135 1.127 1.151 1.102 1.103 1.127 1.137 
1.7 11 1.2 1.203 1.254 1.153 1.164 1.191 1.203 
1.8 12 1.25 1.28 1.358 1.201 1.218 1.251 1.244 
1.9 13 1.3 1.356 1.464 1.248 1.268 1.307 1.299 
2 14 1.34 1.432 1.571 1.293 1.315 1.358 1.344 
2.2 15 1.36 1.508 1.679 1.336 1.358 1.402 1.356  

Fig. 23. Mean Absolute Percentage error for correlation.  
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factor for low and wide range of pseudo reduced temperature using 
machine learning approaches. Three models were developed using SVR, 
RBFNN and GBDT. The models were tested and the GBDT was found to 
have the highest R2 score, lowest MSE and MAE of 0.9996, 0.00561 and 
0.00010 respectively. To verify these claims, the models were compared 
to the actual Z-factor values, and the GBDT had the best match. In 
establishing the credibility of the proposed GBDT model, it was 
compared to four empirical correlations from literature. The mean ab-
solute percentage errors (MAPEs) of the predictions made by each cor-
relation were computed and plotted. The plot revealed that the GBDT 
model performed extremely well in predicting compressibility factor 
with an MAPE of about 1%. It can be concluded from this study that:  

i. The proposed GBDT model, has been built to predict gas 
compressibility factor accurately within an extended range of 
pseudo-reduced temperature (0.92 < Tpr < 3.0).  

ii. For the regression plot, the GBDT model performed the best given 
that almost all predicted Z-factor data points are within the line of 
best fit.  

ii. A general trend was observed for the isotherm plots, for 0.92, 
0.95.1.0, and 1.5 pseudo reduced temperatures, the isotherms on 
the lower portion of the plot significantly deviate from the ideal 
concave up, increasing relationship.  

iv. At most of the selected pair of Tpr and Ppr, the GBDT model in 
general was seen to have predicted better than the other 
correlations. 

For further studies, application of MLP type of ANN and advanced 
version of gradient boosting models such as extremely gradient boosting 
(XGboost), AdaBoost (Adaptive Boosting), CATBoost and Light GBM can 
be used in estimating Z-factor for natural gas. 
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