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ABSTRACT

The supersonic dehydration of natural gas is gaining more attention due to its numerous advantages over
the conventional natural gas dehydration technologies. However, supersonic separators have seen
minimal field applications despite the multiple benefits over other gas dehydration techniques. This has
been mostly attributed to the uncertainty in ascertaining the design and operating parameters that
should be monitored to ensure optimum dehydration of the supersonic separation device. In this study,
the decision tree machine learning model is employed in investigating the effects of design and oper-
ating parameters (inlet and outlet pressures, nozzle length, throat diameter, and pressure loss ratio) on
the supersonic separator performance during dehydration of natural gas. The model results show that
the significant parameters influencing the shock wave location are the pressure loss ratio and nozzle
length. The former was found to have the most significant effect on the dew point depression. The
dehydration efficiency is mainly dependent on the pressure loss ratio, nozzle throat diameter, and the
nozzle length. Comparing the machine learning model-accuracy with a 1-D iterative model, the machine
learning model outperformed the 1-D iterative model with a lower mean average percentage error
(MAPE) of 5.98 relative to 15.44 as obtained for the 1-D model.

© 2021 The Authors. Publishing services provided by Elsevier B.V. on behalf of KeAi Communication Co.
Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/

by-nc-nd/4.0/).

1. Introduction

Over decades, the production of natural gas has been on a steady
increase, and the growth in output is expected to increase even
more as cleaner and more environmentally friendly sources of
energy are sought (Karimi and Abdi, 2009). According to the US
Department of Energy, gas demand is expected to increase by about
31% between 2015 and 2035 (Alnoush and Castier, 2019). Natural
gas comprises of methane, ethane, propane (Wajdi and Marcelo,
2019), n-butane, isobutene, carbon dioxide, nitrogen, isopentane,
oxygen, n-pentane, hydrogen, helium, hexane, hydrogen sulphide
and mercaptans (Sanni et al., 2020). The associated liquids are
usually separated from the gas stream by using phase separators,
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which operate on the density difference principle. At the same
time, the entrained liquid must be removed via other process sys-
tems. Traditional natural gas dehydration methods usually entail
high capital and operating costs (Ding et al., 2020). Relevant units
may contain rotating components, which usually require complex
crew operations, safety issues, and frequent schedules for mainte-
nance (Othman et al., 2020). The addition of chemicals, such as
hydrate inhibitors in traditional methods, poses serious environ-
mental problems (Wajdi and Marcelo, 2018). Conventional natural
gas dehydration uses a contactor-regenerator column set up with a
hygroscopic liquid desiccant (Wajdi and Marcelo, 2019).

Due to liquid entrainment in the gas phase which renders the
gas wet, there is need to separate these phases. Any free fluid
present is usually separated using phase separators, but the
entrained liquid phase will require an additional removal process
(Yang et al., 2014b). Some conventional methods currently being
used to separate natural gas include absorption, adsorption,
refrigeration, and cryogenic separation (Yang et al, 2014b).
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Absorption involves the use of absorbents, and these absorbents
include ethylene glycol, CaCl;, (HOCH,CH>),0, triethylene glycol,
and CgH1305 (Cao and Bian, 2019). The ease of absorbent regener-
ation and flexible treatment ability are some of the advantages of
the absorption method, but the vast equipment required makes
absorption process noncommercially viable (Xuewen and Jiang,
2019).

Adsorption, on the other hand, is a surface phenomenon that
uses a solid or liquid absorber to absorb the absorbate. Common
solid adsorbents in the industry include activated alumina, mo-
lecular sieves and silica gel (Zhang et al., 2014). Shallow dew points
can be achieved using these conventional solid adsorbents as they
are also suitable for cryogenic separation processes, which require
very low gas content feed. Still, substantial investment and high gas
pressure loss are some of the disadvantages (Xuewen and Jiang,
2019). Membrane separation technology also can be used for
adsorption where the gas mixture is effectively separated by a
synthetic membranes made mostly from polymers or other hybrid
materials (Ruiz, 2015). This technology holds significant potentials
because of some advantages including process simplicity, reduced
land use and secondary pollution. However, large-scale industrial
applications for membrane separation still has significant prob-
lems, including significant hydrocarbons loss during the process
(Xuewen and Jiang, 2019).

Supersonic separator technology does not include rotating (dy-
namic) components, and it does not require the addition of chem-
icals (Marcelo, 2016). The primary components of a supersonic
separator include a swirling device as well as the de Laval
converging-diverging nozzle alongside a diffuser extension. Niknam
etal.(2019)investigated the effect of supersonic nozzle geometry on
separation efficiency with specific interest on the internal body of
the nozzles. They observed that a small inner body radius has no
significant effect on the position of the shockwave. Also, an
enhanced physical phase separation was observed for higher sta-
bility swirling velocity magnitude. The swirling device converts
axial velocity to angular velocity, and this helps to enhance cen-
trifugal separation of the condensed stream phase (Wajdi and
Marcelo, 2019). Niknam et al. (2018a) also investigated nozzle per-
formance and cooling capacity in terms of temperature, pressure
and gas type in a fixed geometry. And they highlighted that the
criterion for nozzle performance is provided by prediction of exact
shock wave position. They further noted that the shock wave posi-
tion is unchanged during alteration of fluid type or pressure scale.
The nozzle is where condensation occurs at supersonic speed. Dur-
ing this process, water and other possible condensates are separated
from the stream (Niknam et al., 2016). The performance of a super-
sonic separator has been studied using numerical simulation and
computational fluid dynamics techniques while considering the
effects of inlet pressure and inlet temperature. Supersonic separa-
tors have seen minimal field applications despite the numerous
advantages they provide over other gas dehydration techniques. One
of the major problems yet to be resolved is the effective monitoring
of the design and operating parameters for optimum dehydration
throughout the nozzle's design life (Mahmoodzadeh and
Shahsavand, 2013). Most of the published studies on supersonic
separation of Natural gas mainly investigated the factors responsible
for the effective separation of the gas without establishing the level
of significance those factors had on the dehydration efficiency, dew
point suppression, and shockwave location. These levels of signifi-
cance are essential for the efficient design and operation of the su-
personic dehydration system. Also, the published studies only
considered a limited number of factors and a small range of their
operating conditions. Given the full range of possible conditions, the
use of machine learning techniques makes it possible to simulate
this range of conditions.
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This study investigates the performance of a supersonic sepa-
rator during natural gas dehydration using the decision tree ma-
chine learning model while also exploring the effect of inlet and
outlet pressure, nozzle length, throat diameter, and pressure loss
ratio on the water removal process. Supersonic separator technique
benefits (such as absence of moving parts, low power consumption,
pressurized product, etc) have influenced interest in Natural gas
application over the past decade. The challenge has been on how to
identify and optimize the inlet conditions and parameters for sus-
tainability and profitability. For optimal performance of supersonic
separator, the is need to identify feed conditions to maintain su-
personic flow throughout the nozzle diverging section. The deci-
sion tree creates a reliable and straightforward model that
overcomes the shortcomings of numerical and 1-D models, such as
the neglect of the swirling effect and the inability to consider two-
phase flow. Unlike previous numerical models, the proposed arti-
ficial method covers a number of boundary conditions and nozzle
geometry since sonic conditions at supersonic separator throat is
mandatory for operation. Literature has shown that identifying
some of the optimum inlet conditions have posed some technical
issues in the field practice for this technology (Cao and Bian, 2019).
This study is aimed at predicting the effect of the dynamic para-
meters of the nozzle inlet and outlet on the selective dehydration
of natural gas with respect to the separation efficiency.

2. Supersonic gas separation

The basic principle of the supersonic separation is the throttling
process, commonly known as the Joule-Thomson (JT) process i.e.
the J-T effect. Joule Thomson Valve is a throttle valve or constant
flow design device used to cause large pressure drops and large
temperature drops. The compressed gas extends from high to low
pressure with constant enthalpy, thus converting the potential
energy into kinetic energy; thereby accelerating the gas to super-
sonic speed limit (Othman et al., 2020). The changes in gas tem-
perature during expansion depend not only on the initial and final
pressures, but also on how expansion occurs. The two factors that
can change the fluid temperature during adiabatic expansion are:
change in internal energy or conversion between kinetic and po-
tential internal energy (Wang, 2020).

Static vanes are installed at the nozzle inlet so as to create a
swirling gas flow. The resulting water droplet is separated by cen-
trifugal force applied to the nozzle wall. The thin film of water on
the walls moves in the direction of flow towards the separation
channel. The separation duct leads to the heated degassing sepa-
rator. From there, the return of slip gas to the mainstream, and
condensed water is removed (Karimi and Abdi, 2009). After sepa-
rating the water, it is very important to restore the gas pressure by
altering the kinetic energy; thus, the imposition of a shock wave.
Shock waves usually occur when the speed of the gas exceeds the
speed of generated sound. With supersonic nozzles, shock waves
are generated by a rapid increase in the diameter of the nozzle
downstream the nozzle throat (diffuser). Fig. 1 shows the volume,
pressure, and temperature profile of the gas flowing through a
supersonic nozzle. Due to the sudden drop in temperature and
pressure, the water vapour in the gas stream condenses and falls as
droplets, while the methane gas continues to flow through the
nozzle-channel (Okimoto and Brouwer, 2002).

In fact, the Joule-Thomson effect is achieved by expanding the
gas through a valve that is well insulated to prevent heat transfer to
or from the gas. In the supersonic gas separation technique, the
flow passes through a nozzle at its throat, where it is accelerated to
a high supersonic speed (Cao and Bian, 2019). Due to the rapid
expansion at the nozzle outlet, the desired condensate is formed as
a mist. The swirling centrifugal energy transport these film-like
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Fig. 1. PVT profile of a gas passing through the Supersonic Nozzle (Netusil and Ditl,
2012).

liquids towards the wall, where they flow through a proper struc-
ture and are evacuated with some of the sliding gas. The now dry
gas flows continuously through the anti-swirl device and the dif-
fusers (Niknam et al., 2018b). Here the flow is reduced, and the
kinetic energy is converted to pressure, thus, about 75—80% of the
inlet pressure is restored. To achieve supersonic gas velocity, the
inlet diameter must be at least /5 times the nozzle throat-
diameter, and the converging length must be greater than or
equal to the throat diameter (Wen et al,, 2011). Increasing the
nozzle length increases separation efficiency due to an increase in
the nozzle wall surface area required for particle collision. On the
other hand, a longer nozzle length than the critical length, will
increase temperature due to friction loss, which in turn causes the
evaporation of already condensed (separated) liquids, leading to
decreased separation efficiency (Alnoush and Castier, 2019).
Consequently, there should be an optimal or critical length of 10
times the throat diameter for optimum performance.

Separation is enhanced by centrifugal forces, which separate the
droplets on the walls of the nozzle. Dry gas continues to move
forward while the liquid phase (usually with some slip gas) is
separated. Repeated swirls create centrifugal forces, and the higher
the centrifugal force, the easier it is for droplets to drop to the wall
to achieve separation (Bian et al, 2019). High-velocity inform
higher swirling force that help separate liquid droplets onto the
wall of the nozzle. Reducing swirling intensity leads to a reduction
in centrifugal force which subsequently results in lower separation
efficiencies. Swirls can be moderated by regulating the vanes at the
nozzle inlet to achieve optimum low temperatures and moderate
centrifugal forces for the separation process (Yang and Wen, 2017).

An optimal swirling force is required for the best separation; not
too strong to avoid energy losses and not too weak to cause a
reduction in centrifugal forces. Shock waves are produced to
recover the initial pressure of the gas. This is achieved when su-
personic velocities (i.e. Mach numbers >1 but less than 5) change to
sonic velocities (i.e. Mach number = 1) caused by rapid enlarge-
ment of the nozzle diameter (Castier, 2014); for hyper sonic flows,
the Mach number >5, while for subsonic flow, the Mach number
is < 1), at static condition Mach number = 0. The existence of
shockwaves increases the swirl intensity of droplets needed for
efficient separation. The gas expansion results in a sufficient tem-
perature drop that reaches the water vapour's dew point temper-
ature in the gas. However, a higher inlet pressure delivers more
energy necessary for maintaining the supersonic speed required for
efficient separation. Furthermore, the temperature and pressure
drop required for an efficient separation in the supersonic nozzle,
increases with the pressure loss ratio.

The term supersonic is used to describe velocities that exceed
the speed of sound (that is, Mach >1 but less than 5). The Mach
number from literature is the moving object's velocity through a
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medium divided by the sound velocity in air. Mach number is often
used for both moving objects and fast flowing liquids within
channels. It is a number that cannot be measured because it is
defined as the ratio of two velocities, thus, it is a dimensionless
number. Since the sound velocity increases with temperature, the
actual moving object's velocity at Mach 1 depends on the sur-
rounding liquid's temperature. Mach number is very useful in
characterizing the velocity of moving fluids because the fluid
properties are similar when the Mach number is constant (Yang
et al,, 2014).

3. Methodology

Machine learning has had a significant impact on data-driven
research methods today. Depending on the problem to be solved
and the nature of the data available, different machine learning
models can be used. To determine the optimum operating condi-
tions and design for the supersonic separator, six variables (nozzle
length, input pressure, output pressure, input temperature, nozzle
diameter, and pressure loss ratio) considered to determine three
target outputs (shock wave location, dew point depression and
separation efficiency). These outputs are good indicators of the
separator's performance (Xiao et al., 2009). This application was
created as a supervised learning problem, and a data was created
containing the desired results so that machine learning could solve
the problem. A supervised machine learning task could be a clas-
sification problem or a regression problem. For regression prob-
lems, the goal is to predict a continuous or a real number.
Classification and regression tasks can easily be distinguished by
checking for continuity in the output. Whenever there is continuity
amongst the possible outcomes, the problem is then a regression
problem.

The task presented in this study is a regression problem since all
outputs are continuous. Two different supervised learning algo-
rithms for regression are used to build the models in this study. The
decision tree is used for the modeling, and support vector machines
are used for validation. Experimental data from existing literature
was gathered and used to build a robust model that can be used for
forecasting the performance of the supersonic separator under
various operating conditions. The following equations define the
output parameters (Ding et al., 2020);

Dew point depression
ATd = Tdy, — Tdour (1)
where Td;, is the inlet gas dew point temperature, and Td,: .the
separator-outlet dew point temperature.

Separation efficiency

Qary
Qin

where Qin, Qdry, Quee are the inlet, dry and wet gas mass flow rates of
the outlets, respectively.

Pressure loss ratio.

The pressure loss ratio input parameter is defined mathemati-
cally by equation (3);

XIOO%:W x 100% (2)
in

Pin*Pout

Pr = 2

(3)

Where Pr, Pj,, Poyt represent Pressure loss ratio, inlet pressure,
and outlet pressure.
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3.1. Data description

Data obtained from Karimi and Abdi (2009), Yang et al. (2014),
and Jing et al. (2014) were used in the DT-modeling, and Table 1
shows a sample of the data.

3.2. Data characteristics

The data set characteristics determine to a large extent which
machine learning algorithm should be used, as some algorithms
perform better than others for a given dataset. The following
properties characterize the supersonic modeling dataset;

1) Low dimensional

2) All variables are continuous, not categorical
3) Three target outputs

4) Six input variables

(5) Variables have different scaling

(
(
(
(

The properties given above are why the decision tree and sup-
port vector machines are used for the modeling exercise. Given the
wide range of possible operating conditions on the field, a wide
range of input features were also considered, as shown in Table 2. A
total of 112 data points were collected, and split into 70%, 15%, and
15% for training, testing and validation respectively.

Table 2 also shows the statistical details of the input parameters.
It shows 0.1, 7, 1,0.15, 274.15 and 12.7 are the minimum of the ob-
servations for nozzle length, pressure-in and out, pressure loss
ratio, temperature-in, and throat diameter; while 0.7, 700, 490,
0.86, 373, and 36.71 are the maximum of the observations for
nozzle length, pressure-in and out, pressure loss ratio,
temperature-in, and throat diameter respectively. The mode which
is the value that occurs most often, the range that is simply the
maximum observation minus the minimum value and median
(number that is in the middle of the observations) are all tabulated
in Table 2 for the input parameters used for the investigation. 95%,
99% and 99.9% confidence limits of the input variables were also
determined. These are the numbers at the upper and lower end of a
confidence interval. Setting 99.9% confidence limits means that if
you took repeated random samples are taken repeatedly from the
input variables and the mean calculated; the confidence limits for
each input parameter values, the confidence interval for 99.9% of
the variables would include the parametric mean.

3.3. Computing resources

Python is a popular and widely used tool for many data science
and machine learning applications. Python has libraries for data
loading, statistics analysis, natural language editing, image editing,
visualization, and so on. Libraries such as scikit-learn, matplotlib,
pandas, and NumPy were used in this study.

Table 1
Sample of data used for this study.

Petroleum Research 7 (2022) 372—383
3.4. Modelling workflow

Machine learning and data analysis are fundamentally iterative
processes. Machine learning workflows define which phases are
implemented during a machine learning project. The typical phases
include data collection, data pre-processing, building datasets,
model training and refinement, evaluation, and deployment to
production. Depending on the model to be used, the data might
require pre-processing, wherein an appropriate technique is used
to bring all features in the dataset to the same scale. All pre-
processing techniques are available in the sklearn pre-processing
class in the scikit-learn package. A suitable algorithm is then
selected, and a model is built using the training dataset. The per-
formance of the built model is then evaluated using the test dataset.
The results given by the training and test data accuracy are used in
determining how well the model has performed on the given
dataset.

3.5. Decision tree

Decision trees are often used for regression problems. First of all,
they learn a hierarchy of problems that lead to solutions. In the
machine learning, these sets of logical questions are called tests (as
opposed to test sets, which are the data used to test how general a
proposed model is). As in this study, the data are presented mainly
as a continuous function. To create the tree, the algorithm examines
all possible tests to find the most informative one for the target
variable. The data is then shared along that axis. Basically, the test is
a division of the portion of the data being considered along one
axis. The recursive data division is repeated until each module area
(each decision tree sheet) contains only one target value (regres-
sion value). The leaves in a tree that contain data points with the
same target value are called pure. The partitioning of a dataset
might look like the chart shown in Fig. 2.

3.6. Controlling the complexity of decision trees (preventing model
overfitting)

The goal of supervised learning is to create a model using
training data and to accurately predict new unseen data with the
same characteristics as the training set used. Training sets can be
generalized to test sets if the proposed model can accurately pre-
dict hidden data. The goal is to build a model that can generalize as
accurately as possible. There are two general strategies for pre-
venting over-adjustment in literature; (1) avoid creating the tree
early, and (2) create the tree and then collapse or delete the nodes
that contains few information. If a decision tree's depth is not
restricted, the tree can become arbitrarily deep and complex.

The process of generating the decision tree is the process of
continuously optimizing the division parameters to minimize the
loss function. In the process of decision tree generation, the pa-
rameters of the decision tree will gradually be optimized to the

Ref Nozzle length Pin Pout P:  Tin (K) Throat Diameter Shock location (x/ Dew point depression Separation efficiency
(m) (bar)  (bar) (mm) D) O] (%)
Karimi and Abdi 0.12 300 210 0.30 274.15 12.70 0.85 19.54 30.34
(2009)
Karimi and Abdi 0.12 300 210 0.30 293.15 15.94 0.85 20.35 3143
(2009)
Yang et al. (2014) 0.12 300 210 0.30 313.15 16.30 0.91 18.25 29.35
Jing et al. (2014) 0.12 300 210 0.30 333.15 17.40 0.93 19.85 30.63
Jing et al. (2014) 0.12 300 249 0.17 293.15 21.00 0.68 7.20 7.75
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Table 2

Descriptive statistical analysis of the flow parameters, nozzle length and throat diameter.

Petroleum Research 7 (2022) 372—383

Parameters Nozzle length (m) Pin (bar) Pout (bar) P Tin (K) Throat Diameter (mm)
mean 0.283 198.452 140.925 0.350 300.515 19.773
std 0.252 160.158 113.391 0.177 18.809 7.966
Median 0.12 200 150 0.70 293.15 16.30
Mode 0.12 300 210 0.75 293.15 12.70
Range 0.60 693 489 0.71 98.85 24.01
min 0.1 7 1 0.15 274.15 12.7
25% 0.11 100 66 0.25 293.15 15.94
50% 0.12 200 150 0.3 293.15 16.3
75% 0.6 300 210 0.385 300 21
max 0.7 700 490 0.86 373 36.71
Cl 95% 0.194-0.371 142-255 101-181 0.288—-0.413 294-307 17-22.6
Cl 99% 0.166—-0.4 124-273 88.4—193 0.268—0.432 292-309 16.1-23.5
C199.9% 0.134-0.432 104-293 73.9-208 0.245-0.455 289-312 15.1-24.5
- A A
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Fig. 2. Decision boundary of a tree after the partitioning of the dataset.

parameters that have lowest loss function, the model can inevitably
become complicated, but the complex model structure does not
improve the prediction accuracy. To improve the prediction accu-
racy, it is necessary to take pruning operations on the model. The
algorithm consists of two steps:

(1) Decision tree generation: Generate the corresponding deci-
sion tree based on the training data set, and the generated
model structure should be as large as possible.

(2) Decision tree pruning: Prune the decision tree model based
on the validation data set and select the best subtree
structure.

In building the supersonic separator model, the following two
parameters are set to ensure a model that will generalize well on
the test data: (1) Random State, and (2) Maximum depth. One
benefit of decision trees is that it does not require so much
parameter tuning, and thus, practical models can be built quickly.

3.7. Support vector machines (SVM)

Another supervised learning algorithm used in this study is the
support vector machine. The kernel support vector machines (or
simply SVMs) is an addition to the linear support vector machines
that allows the development of more complex models. During
training, SVM learns the importance of each training data points
that represents a decision limit between classes in the dataset.
Fig. 3 shows the decision limits made by the SVM, it is marked in
black, and the support vector is a larger dot with a wide border. The
distance from each support vectors is measured to make a

Fig. 3. Decision Boundary and Support Vectors found by an SVM.

prediction from the new end. The decision is based on the distances
from the support vector and the importance of the support vectors
used for the training.

3.7.1. Preprocessing data for SVMs

SVMs often works well, but it is sensitive to parameters'
configuration and data scaling. They require that all functions be
placed on the same scale. The dataset used for this study have
features changing on different scales. The maximum and minimum
values of each component in the dataset are presented in Fig. 4. It

1000 - A %
@® Min A
A Max (]
100
E
[}
a
=
jo3
9 10
2 [ ]
©
=
1 A @ A
[ ]
0 o 5 -
” _ﬂ)e\e(\g on e ?O““\)a‘ 4 ‘.\“\\Q

Feature Index

Fig. 4. Feature ranges for the supersonic modeling dataset.
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shows that the dataset features are of entirely different orders of
magnitude (the y-axis is on a logarithmic scale). It can pose serious
problems for the kernel SVM. One way to solve this problem is to
redefine each function on the same scale. The standard SVM kernel
scale method was to scale the data so that all functions ranged from
0 to 1. This was done using the MinMaxScaler pre-processing
method, and this was calculated manually using equation (4).

_ Xirain — minimum
- range

Xtrainm,[m (4)

Table 3 shows the effect of scaling the data using the MinMax
scaler. All values are between 0 and 1, hence putting all variables on
the same scale. The SVM model built with the scaled data would
produce better results.

3.7.2. HyperParameters applied in this study

The hyperparameters for the Support Vector Regreessor are: C:
Parameter C is a regularization parameter. This limits the weight of
each point, and a small C value means a very restricted model
where each data point can have very limited effects. Gamma: It
determines the degree of importance of adjacent points. Epsilon: It
specifies the epsilon-tube within which no penalty is associated in
the training loss function with points predicted within a distance
epsilon from the actual value. Tol: Tolerance for stopping criterion.
Max_iter: Hard limit on iterations within solver, or —1 for no limit.
Kernel: Specifies the kernel type to be used in the algorithm. It
must be one of ‘linear’, ‘poly’, ‘rbf’, ‘sigmoid’, ‘precomputed’ or a
callable. If none is given, ‘rbf’ will be used. If a callable is given it is
used to precompute the kernel matrix.

A random forest is a meta estimator that fits a number of clas-
sifying decision trees on various sub-samples of the dataset and
uses averaging to improve the predictive accuracy and control over-
fitting. These include: Max_depth: The maximum depth of the tree.
If None, then nodes are expanded until all leaves are pure or until
all leaves contain less than min_samples_split samples. Criterion:
The function to measure the quality of a split. Supported criteria are
“mse” for the mean squared error, which is equal to variance
reduction as feature selection criterion, and “MAE” for the mean
absolute error. N_estimators: The number of trees in the forest.
Max_features: The number of features to consider when looking
for the best split. N_jobs: The number of jobs to run in parallel. Fit,
predict, decision path and apply are all parallelized over the trees.
Ccp_alpha: Complexity parameter used for Minimal Cost-
Complexity Pruning. The subtree with the largest cost complexity
that is smaller than ccp_alpha will be chosen.

Gradient Boosting Regressor hyperparameters includes: N_es-
timators: The number of boosting stages to perform. Gradient
boosting is fairly robust to over-fitting so a large number usually
results in better performance. Learning_rate: Learning rate shrinks
the contribution of each tree by learning_rate. There is a trade-off
between learning_rate and n_estimators. Max_depth: Maximum
depth of the individual regression estimators. The maximum depth
limits the number of nodes in the tree. Loss: Loss function to be

Table 3
Input values before and after scaling.
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optimized. ‘Is’ refers to least squares regression. ‘lad’ (least absolute
deviation) is a highly robust loss function solely based on order
information of the input variables. ‘huber’ is a combination of the
two. ‘quantile’ allows quantile regression. While that of the Extra
Tree Regressor includes: N_estimators: This is the number of trees
in the forest. Cc_alpha: Complexity parameter used for Minimal
Cost-Complexity Pruning. The subtree with the largest cost
complexity that is smaller than ccp_alpha will be chosen.

3.8. Correlation matrix

The relationship between all inputs and outputs is shown in the
correlation matrix (Fig. 5). A correlation matrix shows correlation
coefficients between variables considered in this study. The matrix
was computed using the standard Pearson correlation coefficient,
and the results were plotted as a heatmap. The correlation coeffi-
cient statistical significance is set between +1 and —1, which was
colour-code according to the correlation statistics (light to dark)
indicating a strong forward correlation or a weak/strong inverse
correlation. Positive correlations are displayed in shades of green
and negative correlation in shades of red/orange colour. Worthy to
note is the relationship between the pressure loss ratio and the
three target outputs. The pressure loss ratio has been determined to
be the most important of all input variables, hence the focus on this
parameter. There is a direct relationship between the pressure loss
ratio and the three outputs (dew point depression, separation ef-
ficiency, and shockwave location).

3.9. Model validation

Statistical Error Analysis of the Applied Models:

Root Mean Squared Error, Mean Absolute Error, Mean Squared
Error and Mean Absolute Percentage Error were the statistical error
analysis tools used for this study, and they are mathematically
presented as equations (5)—(8) respectively.

RMSE =, (5)

no5 002
;(yl n.Vz)

n

1 _
MAE=_> |yi—Jil
i=1

(6)

n
MSE:1

0 S i - y)?

i=1

(7)
1YY
MAPE =—» "1 —=1 x 100 (8)

nig Y
where

yi is the actual value,
¥; is the predicted value, and
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Fig. 5. Correlation matrix for the study.

n is the number of samples.

4. Results and discussion

The nozzle is an important component of a supersonic separator
that helps to generate supersonic current and separate the
condensate from natural gas stream, thus, the desired nozzle must
be clearly designed. The critical area of the nozzle throat de-
termines the mass of gas flow through this device (Yang et al.,
2014). During phase change, condensation mainly occurs at the
position of the shockwave; the supersonic nozzle geometry
configuration is also highly important. The drain location should be
aligned with the shockwave location. For each of the target outputs,
the decision tree's performance and support vector machines are
discussed. The effect of the most crucial input variable in predicting
the target output is also addressed under each prediction task.
However, discussions for the SVM model are limited by two rea-
sons. Firstly, the decision tree model generally outperformed the
SVM model; therefore, the decision tree model is adopted as the
model of choice in this study, hence a more thorough discussion is
centered around it. Secondly, investigating the SVM model is
difficult, that is, it can be difficult to understand why the prediction
was made, and the model is often difficult to explain.

4.1. Shockwave location

Shockwaves are formed in the diffuser section of the nozzle.
They are responsible for recovering up to 80% of pressure losses.
They also aid the separation of phases in the nozzle. Shockwave
location is often expressed as a dimensionless parameter i.e. x/
D,where

x is the distance between the inlet and the arbitrary cross-
section,
D is the convergent diameter of x.

4.1.1. Decision tree

References in the literature show that the placement of shock
waves has a significant impact on the overall performance of the
nozzle and depends to a large extent on the extreme pressure
conditions (Shooshtari and Shahsavand, 2013; Vaziri and
Shahsavand, 2015). The decision tree model features/important
attributes help to identify the variables that are most informative in
predicting the target output. The feature importance chart is
plotted, and Fig. 6 shows the importance of each variable. The de-
cision tree produced a model with an R? value of 0.91 relative to the
SVM, for the prediction of shockwave location. This then reveals
that the DT model outperforms the SVM model for this prediction
task.

The model identified the variables P, (Pressure loss ratio) and
nozzle length as the two most important features for determining
the shockwave location inside the supersonic region of the nozzle.
Other parameters are either not significant, or that the information
they reveal is already considered and accounted for by another
variable. The model's feature (variable) importance lies between
0 and 1, with 1 meaning completely informative and O being not
informative at all. The pressure loss ratio has an importance score of

Throat Diameter (mm)

Tin (K)

Pr

Feature

Pout (bar)

Pin (bar)

Nozzle length (m)

0.0 01 03 0.4

Feature Importance

0.2 0.5 0.6

Fig. 6. Feature importance chart for the prediction of shockwave location.
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about 0.59, while nozzle length and pressure out have an impor-
tance score of about 0.33 and 0.07, respectively. All other input
parameters have negligible values.

Ligrani et al. (2020) explained that the shock wave motion
generated at the nozzle are caused by large pressure fluctuations
when the flow was very turbulent. Pressure fluctuations were also
observed at the bottom of the shock wave. The results show that
the shockwave's axial position is shifted away from the diffuser as
the pressure loss ratio decreases. Also, increasing the pressure loss
ratio contributes to a reduction in temperature and pressure. These
phenomena (throttling process) have their own advantages and
weaknesses in the separation process; the drop in temperature
inside the nozzle promotes improved condensation and higher
dehydration efficiency. A drop in pressure leads to condensation of
the liquid from the gas stream as the temperature drops. On the
other hand, large pressure drops cause large pressure losses which
poses a serious problem to the pipeing system, especially if the
supersonic nozzle is installed inline.

The degree of pressure loss ratio, shock wave, and flow rate has a
significant effect on dehydration efficiency (Ding et al., 2020). The
normal shock phenomenon usually occurs after the collection point
to increase the temperature and pressure the natural gas. According
to Niknam et al. (2016), the sensitivity to the shockwave location to
pressure boundary values is greater than the temperature bound-
ary values. Due to the non-isentropic behavior of the shock wave,
there is a very large pressure difference between the inlet and
outlet gas streams. Therefore, it is necessary to select a suitable
pressure loss ratio to ensure condensation. This further implies that
the degree of randomness of the shockwave/changes in entropy
results in large pressure descrepances from the inlet though to the
exit of the nozzle. Fig. 7 shows the relationship between the axial
shockwave location and the pressure loss ratio. The pressure loss is
increased due to the turbulence at the inlet and the large vorticities
near the shock wave; this relationship is as illustrated in Fig. 7. The
main cause of supersonic nozzle separation is the shock wave, and
the trend shows that the shock wave location has a direct rela-
tionship with the pressure loss ratio.

The nozzle flow is swift and initially adiabatic with very little
friction loss because the flow is one-dimensional, with a favorable
pressure gradient, the only exception being when shock waves are
generated and nozzles are relatively short. An isentropic pattern in
the entire nozzle is, therefore, sufficient for the preliminary design
(Papamoschou and Zill, 2004; Naveen et al., 2019). Thus, the vari-
ables of state on the onset of condensation depend strongly on the
cooling rate of the nozzle. The smaller the radius of curvature and
height of the nozzle, the larger the nozzle's cooling rate; thus, the
greater the increasing rate of liquid mass fractions (Bolanos-Acosta
etal., 2019). With internal supersonic flow, the interaction between
the shock wave and the boundary layer is very complex, causing the

0.9
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0.7 ]

Shock location (x/D)
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T T T

0.3 0.4 0.5 0.6 0.7
Pr
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Fig. 7. Shock location vs. pressure loss ratio.
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separation of the boundary layer. When the shockwave is strong
enough to separate the boundary layer, the shock wave is bifur-
cated, and more shockwaves form downstream of the conductive
shock wave. The occurrence of asymmetric shockwave systems
depend on the area ratio (nozzle outlet and nozzle throat cross-
sectional areas). The shockwave asymmetry decreases as the
straight nozzle length increases (Matsuo et al., 2012). Table 4 shows
a summary of shock wave location prediction using various ma-
chine learning algorithms.

The results from Table 4 shows the prediction error margines for
different machine learning algorithms compared with 1-D iterative
model from literature. We compare the learning capabilities of
these algorithms and optimize the model to reduce the error.
Niknam et al. (2016) developed a 1-D inviscid theory model for
comparison with predicted experimental data, and this 1-D model
was also adoptedin this study for prediction of data. Among the
four algorithms used for scaled and unscaled data (Table 4), the 1-D
model prediction shows some differences between trends obtained
and the results of experimental-based models. This different can be
attributed to the simple assumptions made in developing the 1-D
model, such as neglecting of swirling effect inside the nozzle. This
is because the axial is the only type of flow direction available in
this model, while the main velocity elements in the actual process
of supersonic nozzles are tangential and axial. As a result, applying
high pressure to the same shape improves the equivalent role of
axial velocity, which helps to quickly reach the Mach limit required
for shockwaves. the accuracy and validity was investigated using
two statistical metrics, which are mean square error (MSE) and
mean absolute error (MAE).

The length of the nozzle plays an important role in the place-
ment of the shockwaves. A shorter nozzle length can lead to the
shockwaves getting too close upstream the nozzle throat, where
they can be normalized, thus giving rise to normal waves. On the
other hand, the longer the nozzle-length, the farther the shockwave
location downstream the nozzle throat (Fig. 8). A longer nozzle
length allows for efficient separation of the phases since the
shockwave has more space to move within the diffuser without
coming too close to the nozzle throat. The larger the nozzle length,
the greater the pressure loss ratio and the greater the position of
the shockwave from the nozzle throat. Therefore, the larger the
position of the shockwave away from the nozzle throat, the higher
the pressure loss ratio.

Nozzle length affects the supersonic separation process, and it
was observed that a more extended nozzle diffusion section would
allow for more axial movement of the shockwave upstream to-
wards the nozzle throat without moving too close to the position
where the shockwave would become normalized or oblique, thus
causing a re-evaporation of the liquid, leading to poor separation
performance of the separator. Since the shockwave location is
where the two-phase supersonic flow where M > 1 but <5) is
converted to single-phase subsonic flow (i.e. M < 1) having tran-
sitted through the sonic regime (where M = 1). However, a better
dehydration is achieved when the shockwave occurs closer to the
nozzle exit (diffuser section) than at the throat/converging section.
This creates more room for condensation.

4.1.2. Support vector machines (SVM)

For the unscaled data, the SVM model gave a R? value of 0.13,
while a R? value of 0.42 was obtained for the scaled data. In lieu of
the improvement in the performance of the model when the scaled
data was used, the performance was somewhat abysmal, which
suggests that the SVM model may not be suitable for the available
dataset. This does not leave room for generalization as it may not be
the case in all situations but unique to this prediction i.e. the SVM
model may perform much better with the other prediction tasks.
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Table 4
Machine learning algorithms for predicting shock wave location.
Model Hyperparameters Data MSE MAE
Scaled?
Iterative 1-D model - - 1.01e-2 9.86e-2
Support Vector C =1, gamma = 'auto’, epsilon = 0.01, coef0 = 0.1, tol = 0.01, max_iter = -1, kernel = 'rbf' No Train: Train:
Regressor 9.0e-5 9.2e-3
Test: 2.1e- Test: 1.3e-
2 1
Support Vector C = 10000, gamma = 'auto’, epsilon = 0.01, coef0 = 0.001, tol = 0.00001, max_iter = -1, kernel = 'rbf' Yes Train: Train:
Regressor 9.4e-5 9.5e-3
Test: 4.9e- Test: 5.7e-
3 2
Random Forest max_depth = None, criterion = "mae", n_estimators = 1000, max_features = 'auto’, n_jobs = -1, No Train: Train:
Regressor ccp_alpha = 0.001 1.0e-3 2.6e-2
Test: 2.2e- Test: 4.1e-
3 2
Random Forest max_depth = None, random_state = 0, criterion = "mae", n_estimators = 1000, max_features = 'auto’, Yes Train: Train:
Regressor n_jobs = -1, ccp_alpha = 0.001 1.05e-3 2.6e-2
Test: Test: 3.8e-
1.99e-3 2
Gradient Boosting n_estimators = 1000, learning_rate = 0.1, max_depth = None, loss = 'ls’ No Train: Train:
Regressor 1.0e-7 2.5e-4
Test: 1.6e- Test: 3.6e-
3 2
Gradient Boosting n_estimators = 1000, learning_rate = 0.1, max_depth = None, random_state = 0, loss = 'Is’ Yes Train: Train:
Regressor 1.0e-7 2.5e-4
Test: 1.3e- Test: 3.2e-
3 2
Extra Trees Regressor n_estimators = 1000, ccp_alpha = 0.0 No Train: 0.0 Train: 0.0
Test: 1.0e- Test: 2.7e-
3 2
Extra Trees Regressor n_estimators = 1000, ccp_alpha = 0.0 Yes Train: 0.0 Train: 0.0
Test: 1.0e- Test: 2.7e-
3 2
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Fig. 8. Effect of Nozzle Length on Shock location.

4.2. Dew point depression

4.2.1. Decision tree

The decision tree produced a model with R? value of 0.97 for the
prediction of dewpoint depression. It slightly gave a lower degree of
model-data matching relative to the SVM model, and Fig. 9 shows
the feature importance plot. It is the only case where the SVM
model outperforms the decision tree model. Increasing the gas
pressure also increases the dew point temperature.

The model identifies the P; (Pressure loss ratio) variable as the
most informative feature in predicting dew point depression. If the
pressure increases, the mass of liquid vapour per volume unit of gas
must be reduced to maintain the same dew point. This is important
because changes in gas pressure lead to changes in its saturation
points. The pressure loss ratio has a feature importance score of
0.69, while the outlet and inlet pressure have scores of 0.22 and
0.08, respectively. All other parameters either have a score of zero
or are negligible. Fig. 9 shows that the effect of inlet and outlet
pressures on the dew point depression is much smaller than the
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extent of the pressure loss ratio, especially at constant pressure loss
ratio; which shows that the effect of the inlet pressure on the gas
dew point separation is small at a fixed pressure loss ratio. Cao and
Yang (2015) studied the effect of inlet and outlet pressures and
found that as the pressure loss ratio increased, the dew point
depression decreases with inlet pressure. In addition, the effect of
the outlet pressure on the dew point depression is minimal. Fig. 10
shows a graph of dew point depression against pressure loss ratio.
It can be seen that when the pressure loss ratio increases to 0.7, the
dew point depression increases to about 52.04 °C. This means that
for supersonic separation, the highest dew point depression is
achieved when operating at greater pressure loss ratio.

For a fixed outlet pressure, an increase in the inlet pressure in-
creases the pressure loss ratio, leading to an increase in dew point
depression. However, based on literature, high inlet pressures of
the flowing gas creates a supercritical fluid in the supersonic
separator, which causes serious problems in gas dehydration (Yang
et al., 2014). Also, a decrease in the outlet pressure increases the
pressure loss ratio for fixed inlet pressure. The lower the outlet
pressure compared to the inlet pressure, the higher the pressure
loss ratio, and the greater the dew point depression. Hence a
remarkably low outlet pressure will result in a higher dew point
depression, suitable for gas dehydration (Fig. 11).

4.2.2. Support vector machines (SVM)

Using the unscaled data, the SVM model gave a R? value of 0.97
while it gave a value of 0.99 for the scaled data. This shows a
moderate improvement in the model's performance, and it also
outperforms the decision tree model for the predicted relationships
of these test parameters. Of all the cases examined, this remains the
only case where the performance of the SVM model exceeds that of
the decision tree model.
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4.3. Separation efficiency

4.3.1. Decision tree

From Fig. 12 analysis, the decision tree produced a model with
R? value of 0.97 for the prediction of separation efficiency, hence it
outperformed the SVM model. The model identifies the Pr (Pres-
sure loss ratio) variable as the most informative feature in pre-
dicting the separation performance of the supersonic separator. The
pressure loss ratio has a feature importance score of 0.84, while
throat diameter has a score of 0.14. As the pressure loss ratio in-
creases with the swirling length, the supersonic separator provides
better dehydration performance. The higher the inlet pressure loss
ratio, the higher the separation efficiency and vice versa. Xingwei
et al. (2015) also concluded that pressure loss and the swirling
length ratios have proved to play significant roles in improving the
swirling separation effect. However, changing the inlet pressureat
the nozzle changes the hydrodynamics of the gas stream, which
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Fig. 11. Comparing the effect of Inlet and outlet pressure on dew point depression.
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reduces the separation efficiency.

The flow at the nozzle throat occurs at sonic velocity while
condensation and separation occur at a supersonic rate in the
diverging section of the nozzle, which is located after the nozzle
throat. Fig. 13 shows that a higher pressure loss ratio will give a
better separation efficiency, as a pressure loss ratio of 0.6 will give a
separation efficiency of about 80%. However, at still higher pressure
loss ratios, pressure losses become more pronounced, which may
be undesirable for field operations. A lower pressure loss ratio, on
the other hand, can still give suitable dehydration performance
while minimizing pressure losses. As stated earlier, a pressure loss
ratio of 0.6 ensures a balance between ensuring good separation
and minimizing pressure losses.

The condensation of liquids in the gas is made possible due to
the expansion of the gas as it moves downstream from the nozzle
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Table 5
Summary of the performance of each model.
R? Score
Decision tree SVM (unscaled) SVM (scaled)
Shock wave location 0.91 0.13 0.42
Dew point depression 0.97 0.97 0.99
Dehydration efficiency 0.97 0.87 0.93

Table 6
Effects and relationship of the parameters to separation process.

Parameters Shock wave location

Dew point suppression

Dehydration efficiency

P; Highly significant and directly related

Nozzle Length
Throat diameter

Significant and directly related
Insignificant

Highly significant and directly related

Insignificant
Insignificant

Very significant and directly related

Very significant and related
Significant and inversely related

throat. The sudden increase in the nozzle diameter after exiting the
nozzle throat is responsible for the condensation due to expansion.
A relatively smaller throat diameter than the diameter downstream
the nozzle throat will result in a greater condensation of liquids due
to rapid gas expansion (Fig. 13) which in turn gives higher sepa-
ration efficiencies. Fig. 14 shows that a nozzle length of 0.7 gives a
better separation performance than a nozzle length of 0.6. Wen
et al. (2011) used the discrete particle method and found that a
longer nozzle length gives better separation efficiency. A nozzle
length ten times the throat diameter's size was recommended in
that study.

4.3.2. Support vector machines (SVM)

For the unscaled data, using the SYM model, a R? value of 0.87
was obtained, while it gave a R? value of 0.93, when used to treat
the scaled data (Table 5). Hence, there is a moderate improvement
in the efficiency of the model when the scaled dataset is used.
Despite this improvement, the model did not outperform the de-
cision tree model for the tested data. For the dew point depression
prediction using the scaled data, the SVM model performed better
than the decision tree model. The decision tree model out-
performed the SVM model for the other two target outputs
(shockwave location and separation efficiency), while taking into
cognizance, the inferior performance of the SVM model in pre-
dicting shockwave location (that is, R? scores of 0.13 and 0.42 for
the unscaled and scaled data, respectively). Given that the decision
tree model consistently showed good performance across all three
output predictions, it was adopted as the chosen model for this
study.

5. Summary of the findings

It is essential to understand the relationship between input
variables and target outputs. This understanding of how each input
variable affects the target output helps to determine how to design
an efficient nozzle and maintain optimal gas separation in the event
of unstable input parameters. The relationship between the
selected input variables and target outputs are shown in Table 6. In
this case, the effects of Poy and Pj, on the target outputs are

Table 7
Statistical error analysis.
MAPE MSE RMSE MAE
Decision tree model 5.98 2.30E-03 4.80E-02 4.31E-02
Iterative 1-D model 15.44 1.01E-02 1.00E-01 9.86E-02
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assumed to be captured by the pressure loss ratio Py.

The widespread use of numerical models suggests a broad
acceptance of their performance and reliability; thus, they can be
taken as a benchmark to assess the performance of any other
model. Table 7 shows the results of the evaluation obtained as a
statistical result. This clearly shows that the Decision tree model is
superior in this case study to the 1-D isentropic flow model
developed by LeMartelot et al. (2013). The one-dimensional anal-
ysis assumes that the shock is normal and that the flow through the
shock sticks to the wall. When the Mach number is less than 1 (that
is, M < 1), the subsonic flow after the shockwave extends isentro-
pically to the back pressure level at the nozzle outlet. However, the
flow separates from the wall and forms a separation zone; subse-
quently, the flow becomes unstable and heterogeneous
(Padmanathan and Vaidyanathan, 2012).

Based on the results presented in Table 7, the 1-D model
(Niknam et al., 2016) gives more unsatisfactory performances,
probably due to a simple assumption of neglecting the nozzle's
swirling effect. Important phenomena such as phase changes and
gas condensation are also ignored in the numerical modeling pro-
cedure, hence, the model's failure to handle two-phase conditions.
These are serious disadvantages, as multiphase compressible
swirling currents can cause phase changes under high-pressure
conditions and most numerical models do not cover all these as-
pects. Another disadvantage of numerical approaches is that it re-
quires precise system details, which may not appear in many real
applications. The machine learning models, such as the decision
tree used in this study are designed to overcome some of these
limiting requirements.

Unlike previous numerical models, the proposed model covers a
number of threshold conditions that reveal the stimulating effect of
pressure loss ratio. In addition, the previously neglected role of the
swirling effect is reported in the appropriate experimental dataset.
Furthermore, using the decision tree as a black-box model signifi-
cantly reduces its computational complexity.

6. Conclusions

The most significant parameters affecting the supersonic sepa-
ration device have been investigated and presented. This was
achieved using the decision tree machine learning model on su-
personic separation data published in literature. The machine
learning model-accuracy and reliability were validated by
comparing it with an existing 1-D iterative model alongside the
SVM. The conclusions are as follows:
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(1) The machine learning model was more accurate than the 1-D
Iterative model with a MAPE of 5.98 compared to 15.44.

(2) Shock wave location is mainly affected by pressure loss ratio
and nozzle length.

(3) The pressure loss ratio is the most significant parameter
affecting the dew point depression.

(4) The separation efficiency is mainly dependent on the pres-
sure loss ratio, nozzle throat diameter, and the nozzle length.

(5) The best pressure loss ratio of 0.6 was found to give a suitable
dehydration performance of 80% while minimizing pressure
losses.
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