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ABSTRACT

The Compact Finite Difference Schemes for the solution of one, two and three dimensional Poisson
equation is considered in this paper. The discretization using the truncation errors of the Taylor’s series method

are of 0 h4 and o h(’ . In the one and two dimension cases, the stencils are of 9-point. In the three dimension

case, the 0(h4) scheme is 19-point stencil and the 0(]’16) scheme is 27-point. Two numerical experiments were
conducted and the results confirm that Compact Finite Difference Schemes are accurate and efficient methods.
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1. INTRODUCTION

The efforts to compute more accurate solution using limited grid sizes have directed researchers’ attention
to developing high-order compact finite difference schemes. Compact difference schemes are high-order implicit
methods which feature higher-order accuracy and spectral like resolution with smaller stencils. In the past two
decades several strategies have been devised for the construction of compact difference schemes. The schemes
include: the Taylor series method, Pade approximation methods and Birkhoff interpolation methods. The original
Pade methods go back to the 1950s. The Taylor's series methods were popularised in the 1990s and the
interpolation methods were recently presented in a paper on the derivation of high-order compact schemes for
non-uniform grids [1]. The methods of compact difference have been used widely in the large area of
computational problems, for example, the convergence and solution for the compact difference method on
parabolic equations were discussed in [1, 2, 3, 4, and 5]. There were also some works on applying the compact
difference scheme for steady convection-diffusion problem [6, 7], the Helmholtz equations [8, 9, and 10] and the
hyperbolic equation [11, 12].

In this paper, we present the 9-point compact schemes of 0(h4) and 0(]’16) for 1D and 2D Poisson

equations. A high-order compact scheme for 3 dimensional Poisson equation of 0(h4) and o(h(’J is also

presented. They are of 19-point and 27-point respectively [13].The schemes lead to a large system of linear
equations Ax = b, where A is sparse. A MATLAB direct solver using LU decomposition is implemented for the
computation of the numerical examples.

2. FORMULATION OF HIGH-ORDER COMPACT SCHEMES

The archetypal elliptic equation in spatial dimensions is represented by the Poisson equation. Here, we
develop schemes for Poisson equation for one, two and three dimensional uniform grids on a structured grid of

uniform mesh size  Ax = Ay = Az = h . First, let us introduce the following notations: [see 14 ].

Su =2 5 apd sy =t s
h h

pan X_

denote the standard forward finite difference and backward finite difference schemes for first derivative.
Also,
1 U, —u,
Sy, =—(5+ui +é‘_ul.)=M (1)
2 2h
is the first-order central finite difference with respect to x where u; = u(xl. ) The standard second —order

central finite difference is denoted as 5,2(u1. and is defined as
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5.5 u, - 2Li+u] o0,-0
h h

)

Difference operators 0,,0,2,0 2 yand o 27 are defined similarly. By using the Taylor's series

expansion, a fourth and sixth order accurate finite difference for the first and second derivatives can be
approximated as follows:

2 3 2 2
S,u :@+h—d f: 1+h d” du _ 1+h—<‘52 @+0(h4)
dx 3! dx 6 dx’ dx 6 d

X
2 3 4 2 4
:@+h—d ?+h du _ 1+h—52+h—54 @+0(h6) 3)
dx 3! dx 5! dx’ 6 120 dx
We may rewrite equation (3) for O, u as
) -1
T "5 ] suon)
dx 6
AN
1+—52 —6* | Su+olh® 4
( 5 190 ] oU 0( ) (4)
Also,
2 2 2 2 2
5fu:d zl h d’ “_ 1+h— d2 d zl = h—5 52u+0(h4) (5a)
dx 12 dx* 12 dx” ) dx 12
2 2 4 4 6 2 4
_du WA b du [y R s T s s o) (5b)
dx” 12 dx” 360 dx 12 360

2.1 One - dimensional case

For an illustration purpose, we first consider the one — dimensional problem which can be represented as

u'(x)=f(x).xel, I1=[0,]

(6)
From equation (5a), the fourth order accurate finite difference estimate for u"(x) is
h o h?
87u, =ul+—u™ =| 1+2-5 |5%u+ olh*) @)
12 12

The idea behind the higher order compact scheme is to approximate u(lv) in equation (7) to second order

accuracy to achieve an overall truncation accuracy of fourth order. To this end, we simply double differentiate
equation (6) to get

u™ (x) = f"(x).

Also, applying the central difference scheme to /"(x), we have

1) =821, +0(n?)

(8)

9)
Hence, from equation (7), we get
Slu, =u! +h—(5 f+0( ))+0(h4)
or
2
!’=5fui—il—25ffi +oln*) (10)

Using this estimate and considering the discrete solution of equation (6) which satisfies the approximation,
we get

131



© Journal of Mathematics and Technology, ISSN: 2078-0257, No.3, August, 2010

2

h
Slu, = f, +— l.”+o(h4) (11)
12
where U ; is the discrete approximation to u; satisfying the discrete formulation of equation (6), which

implies u, = Ul. + 0(h4) Using equation (2), equation (11) can be expressed in the form

h2
Ui =20+ Uy = (£ #1014 £14) (12)
For the sixth — order accurate finite difference estimate of equation (6), we have from equation (5b):
h okt
Slu, =u!+—u™ +—u! ”+o(h") (13)
12 360
Both O(h2 ) and 0(h4) are included in equation (13). We approximate both of them to construct an
o|h®) scheme. Applying 55 to ul.(iv) , we get
u® =52u™ +o(h?). (14)
Substituting equation (14) into equation (13) yields
h h :
Slu, =u!+—u™ +—(5ful.(”)+0(h2))+0(h6) (15)

O 1270360
To get the compact 0(]’16) approximation, we again apply equation (9) that is
u®™ (x)= f"(x),where f, = f(x,)and f =f"(x,).

Inserting this equation into equation (15) results in
2

noont
Siu, =u+| —+——562 |fx,)+olh®
fu = (12 - x]ﬁ(m olp*)

2 4
u;’:é)’fui—(h—+h—5§]f"(xi) (16)

Or from equation (6),
SU. =f + —2+£<‘52 f"(x.) (17)
U120 360 ¢ !

where U ; is the discrete approximation to u, satisfying the discrete formulation of equation (6) which

implies u, =U, + o(hé) The o(h®) approximation of equation (6) can be given as

h? n* o,
U —2U,+U,, = E(fm +10f, + f1 )+ 360 (f;:’—] + 1 )_ 180 fi (18)
2.2 Two — Dimensional Case
Consider the two — dimensional Poisson equation
0’u 0%u
st = f(x,y) forx,yeQ., Q= [O,I]X [0,1]. (19)
ox~ Oy
The central difference scheme for equation (19) in two — dimensions can be written as
2 2
O u; +0,u, +7,=f; (20)
where u,; = u(xl.,yj) and f; = f(xl.,yj)
and
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h*| 0*u 0'u h* | 0°%u 0°u 6
P AL, L2 Lonf) (21)
/ 12 ox" oy |, 360 x" Oy |,

We need a compact O(hz) approximation of the first square bracket in equation (21). This can be done by
taking the following approximate derivative of equation (19), to get

0'u B o' f 0'u 0*u B o' f o0’u
axt o axt axtoy’’ vt ot axloy’

Substituting equation (22) into equation (21), we obtain the alternative form for the exact truncation error at
nodeij :

4 2 4 4 6 6
— {af O'u_ f 0 } _h {8u+8u} +oli)

(22)

ox*  ox’oy’ oyt axoy’ 360| ox®  oy°

2 2 4 4 6 6
L2 N AT U UL (23)
12 776 | ox*oy ; 360 gy Oy i

In our derivation of the 0(h4) scheme, we use equation (22) and the expressions of the first square
bracket in equation (23) that is:

2 2 4
82uy +82u, —h—vzﬁﬁh—{a—“} = f, +o(n*)
ij

12 6 | ox*oy’
or
Viu, +—[5 ]u +—V +o(n) (24)
The scheme may be wrltten epr|C|tIy as
( J+2 —
g ui+],j+] +ui+],j | TU; —1,j+1 tu,_ 1,j-1 + 3 1+1] tu, +ui,j+] +ui,j—] _?uij
e (25)
:_(fm,j +fi-1,j + i,j+1 + i,j-1 +8fij)
12
This is the well known 0(h4) accurate nine-point compact scheme.
4
For the 0(]’16) scheme, we need a fourth-order approximation of T in equation (23). This can be
x 0y
written as
0*u h*| 0°u o0°u
—— | =% yu, ——| 5+ 5 +o(n*) (26)
ox~ 0oy i 12| ox"oy° ox“0y 1y

Substituting equation (26) into equation (23), gives

E Ik R % | wt % du
7, = 12( v fy)+?{6 x0%u, — (—] - { + } +o(n’)
ij ij

12 ox*op* 360| ox®  oy°
or
2 4 6 6 6 6
T = h(Vf+26x6yu) h 6”6‘+5 ou_,s 82“4+af +o(n®) (27)
Y12 360| ox Ox "0y ox“oy" 0Oy

A compact expressions of the 0(]’16) approximation is required and this can be done by further
differentiating equation (19), that is

66u_64f_ o°u 66u_64f_ o0°u
ot axt'ey’ ot ot afoy!

and

(28)

133



© Journal of Mathematics and Technology, ISSN: 2078-0257, No.3, August, 2010

0! o’ 0°
2f2: 4f2+ 2“4 (29)
ox“oy° ox' oy Ox“0Oy

Substituting equations (28) and (29) into equation (27) gives

hz(Vf+2662 ) 6f 6f 66u+66u L5 66u+66u
AT Y 360| ox* 6y4 ox‘ey*  ox’oy’ ox*oy’  axoyt )|

J

h2
=V, v 2070 uy)——[v £, +4020% f, |+ olh°) (30)
The compact sixth order approximation of the two dimensional Poisson equation can the be obtained as
h? h?
Viu, +—020u, = st =V f+—=V —6 8 h° 31
e UMY 12f”360f1 () G

where V7 is the Laplacian operator and V* is the biharmonic operator. In equation (33), we assume the
derivative of f can be determined analytically. In the case where f is not known analytically, we need only a

fourth — order accurate approximation of % f.] and a second-order accurate approximation of

4
4 o'f N
\Y% fl.j and [ Af 2 ayz} [9]. A fourth-order accurate approximation of V fl.] can be obtained using

h2
2 2
(1—58 ]8 fU to get

1
TTE [—fiw —fl._w +16fi+%, +fl,_%, —60fU +16f1-,j+% +16f1-,j_% —fl.,ﬁ] —fl.,j_l}

A second-order accurate approximation of v* f.] can also be obtained as

Vi = 64f _ 5% _L fiZ],jﬂ +fz+1] S 4 +fi”1j 1 1
fij = 2~ 2 | Y yfij - _2( ) 4 (32)
axay f;+]j+l]j+lj+]+lj]+f;j

h4
A nine-point o(h(’) scheme for 2D Poisson may be expressed as

1 1 7 1 1 2
1 2 10 —F—G+—f,+—L—M+—f' 1 1
—C+ZD-—U,=h’|9 144 12f’-’ 90 45 4577 @h{—N——f,}V} (33)
6 3 360 90"
C= Ui i+l Ui+],j—] +Ui—],j—]’ D=U,, J +U, +U1 i+l +Ui,j—]
E:fi+1j+ iy T i T i G:fi+2j+ i2; T ij+2+fij-2-
f;+]] 1]]+1]+]+1]] f;+]] 1]]+1]+]+1]]

2.3 Three-Dimension Case

In this section, we perform a similar derivation of the high-order difference scheme for Poisson equation in
3spatial dimensions which is given as:

0’u 0'u 0O'u
—2+—2+—2=f(x,y,z) for x,y,zeQ (34)
ox” oy- oz
Here, 2 is taken as a cubic solid, [O,l]x [O,l]x [0,11 The central difference scheme for equation (34) can be
written as:
Biuuk +82uljk +8§uuk + Ty ka (35)
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where

ul.jkzu(xl.,yj,zk), i :f(xi’yj’zk )

and

g2 A4 4 4 4 6 6 6
=l P D) I 0u T Sl o) 56
: 12 [ox" oy° oz |, 360[ox" oy° oz |,

We take O(hz) approximation of the first square bracket in equation (36). This is done by taking
appropriate derivative of equation (34) which is,

0'u 3 o’f  o'u 0'u
ot o’ oy*ox’ e
0'u 3 o’f  o'u 0'u
oy* - oy’ - ox*oy’ - 0z° 0y’
o'u 3 o’f  o'u o'u
ozt 0 oz’ oylor

(37

Equation (37), when substituted into equation (36), gives the alternative form for the exact truncation error
at modeijk . That is

-n’ o*u 0'u o*u h* | 0% 0% o°u
Ti/k: 12 2‘](;/1(_282 2+a 262—'_8 282 _360 86+ 6+86 +0(h6) (38)
X~ 0y X0z yoz” |, x° Oy Z" |
2 n’ 242 2 n’
2 242 _ 2 4
Vi, +?[axay +0%02 4020 Jy = + oV +o(n*) (39)
The order four 3D scheme of the Poisson equation may be written explicitly as
Uiy e T Wiy joge YU e TUL g
| Uit gt T Uiy YUy e T g
Ui sorgert T joem YU e TU i
Vi Uiy e YU TU g T U e T U 4
+§ — uijk
hZ
= E [fi+1,j,k + fi—l,j,k + fi,j+1,k + fi,jfl,k + fi,j,k+1 + fi,j,k—l + 6fijk ] (40)

For the 0(]’16) scheme of the 3D problem we need a fourth order approximation of the following:

4 ] 2 6 6

% :aiaiui'k _h_ 641/‘ >t azu 2 +0(h4)

Lox“oy” |, P12 ox*oyt oxoy i

o' | 2l o ou

——— | =0°0*u, —— + +olh* 41

Loxtez ], T 12]axter’ axzaz“L ) b
o'u | o R o o'u

o | M T ater | avar

Loy oz” |, | Oy 0z V 0z |

We substitute equation (41) into equation (38), to get:
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[~V +ofore v 0202 020
= h_ 2 6 6 6 6 6
Ty =+ _h{@u o%u ou ou Gu}
ij

— + + + +
12| ax*oy?  ax*oyt ax'oz®  oytezt  oyiort

h* |0°u 0% O°u p
360| ox° 0oy° Oz ”

hZ
=ty 2o+ 2020 40202 + 0207 )
ou ou o°u ou o°u 86
—+5 o St <t
h4 ox®  ox'oy ox“ oy oy oxozt 82 s
S o) (42)
+5

+5
oy'ez* oyler’
Getting a compact sixth — order approximation requires compact expressions for the nine derivatives of order six
in equation (42), which can be done by further differentiating equation (34), that is

o'f 3 0%u 0%u N 0%u
ox*oy?  ox‘oy®  oxPoyt  oxoy’oz’
o'f 0%u 0%u 0u
= + + 43
ox*0z®  oz'ox®  oz’oxt  oxPoyloz’ 43)
o'f 3 ou N o°u N 0u
oy*oz®  oy'ezr’ oylort  ax’oy’or’
Also,
@_84f_ ou B ou
ox®  ox* oy*oxt  ozoxt
6 4 6 6
a_Z:a{_ (’32”4_ 82”4 (44)
oy oy" ox°0y" 0z°0y
@_84f_ ou B 0u
oz* ozt ox’ezt oylez’
Substitute equations (43) and (44) into equation (42), gives
h2
Ty = 12{ VS, +020 40207 + 020 Juy, |
4 4 6
- L v4fi'k+4 azf zf azfz —12 % +0(h6) (45)
360 ’ ox’oy? 8x oz* 8y oz | ox*oy*oz’ |
ijk ijk

after simplification of the expressions in the second square bracket, using equation(34) and equation (45),
the compact sixth-order approximation of the three-dimensional Poisson equation can thus be obtained as

2 h2 2 2 2
v ul_.,.k+?[a 0 +020% +0%0” ]u,,k+—a 020

x“y z
h? h

h
=t SV otV +%[a§a§ +0207 +020°]f,, (46)

3. NUMERICAL EXAMPLES

In this section, we performed two numerical experiments to solve a 2 dimensional Poisson equation (19)

on the unit square domain [O,l]x [0,11 In both examples, pure Dirichlet boundary conditions are prescribed on all
sides of the unit square.

136



© Journal of Mathematics and Technology, ISSN: 2078-0257, No.3, August, 2010

In order to compare the numerical solution U i to the exact solution u;,we used L2 — norm of the error

vector e, define as

1
=~

Problem 1.

2
F(x,y) = —2(%) sin %x sin %y,

and N is the number of nodes.

The exact solution is u(x, y) =Ssm Exsm E Y.

Problem 2.

F(x,y)=-2n" cos(rmx)sin(7y)

The exact solution is u(x,y) = Cos(mc)sin(ﬂy)

4. CONCLUSIONS

In this paper, we present a compact finite difference schemes for one, two and three dimensional Poisson

equation. The discretization are of 0(h4) and 0(]’16 )The one and two dimensional equations are of 9-point.
The three dimensional equation are 17-point stencil for
0(h4) and 27-point for o(h(’)
Our numerical experiments confirm that compact finite difference schemes are accurate and efficient
methods. This work is extendable to 9-point scheme for three dimensional Poisson equations.

Table 1. Computation result for test problem 1

Errors
Location(x , y) Exact Solution 0(]’14 ) Scheme 0(]’16 ) Scheme
(0.25,0.25) 0.1464 1.7931E-06 4.1833E-08
(0.50,0.25) 0.2706 6.6047E-06 1.3697E-08
(0.75,0.25) 0.3536 6.5863E-06 3.4281E-08
(0.25,0.50) 0.2706 2.0554E-06 7.0399E-08
(0.50,0.50) 0.5000 3.4787E-06 2.6034E-07
(0.75,0.50) 0.6533 1.0964E-05 3.6875E-07
(0.25,0.75) 0.3536 2.7446E-05 4.3768E-07
(0.50,0.75) 0.6533 3.5855E-05 8.1433E-08
(0.75,0.75) 0.8536 1.0773E-06 2.9210E-08

Table 2. Computational results for test problem 2

Errors
Location(x , y) Exact Solution 0(]’14 ) Scheme 0(]’16 ) Scheme
(0.20, 0.20) 0.4755 7.585E-07 3.321E-09
(0.40, 0.20) 0.1816 1.635E-07 8.763E-09
(0.60, 0.20) -0.1816 3.417E-07 4 .954E-09
(0.80, 0.20) -0.4755 2.926E-07 4.346E-09
(0.20, 0.40) 0.7694 5.359E-07 6.017E-09
(0.40, 0.40) 0.2939 3.843E-07 1.739E-09
(0.60, 0.40) -0.2939 4.967E-07 8.334E-09
(0.80, 0.40) -0.7694 3.052E-07 5.678E-09
(0.20, 0.60) 0.7694 1.874E-07 2.346E-09
(0.40, 0.60) 0.2939 4.967E-07 3.864E-09
(0.60, 0.60) -0.2939 2.397E-07 8.763E-09
(0.80, 0.60) -0.7694 3.052E-07 6.497E-09
(0.20, 0.80) 0.4755 1.335E-06 2.936E-09
(0.40, 0.80) 0.1816 6.763E-06 7.384E-08
(0.60, 0.80) -0.1816 5.243E-07 3.741E-08
(0.80, 0.80) -0.4755 3.438E-07 8.307E-09
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