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ABSTRACT 
 
The Compact Finite Difference Schemes for the solution of one, two and three dimensional Poisson 

equation is considered in this paper. The discretization using the truncation errors of the Taylor’s series method 
are of    64 hoandho . In the one and two dimension cases, the stencils are of 9-point. In the three dimension 

case, the  4ho  scheme is 19-point stencil and the  6ho  scheme is 27-point. Two numerical experiments were 
conducted and the results confirm that Compact Finite Difference Schemes are accurate and efficient methods. 

 
Key words: Poisson equation, compact difference scheme, Taylor’s series method, LU decomposition. 
 
 
1. INTRODUCTION 
 
The efforts to compute more accurate solution using limited grid sizes have directed researchers’ attention 

to developing high-order compact finite difference schemes. Compact difference schemes are high-order implicit 
methods which feature higher-order accuracy and spectral like resolution with smaller stencils. In the past two 
decades several strategies have been devised for the construction of compact difference schemes. The schemes 
include: the Taylor series method, Pade approximation methods and Birkhoff interpolation methods. The original 
Pade methods go back to the 1950s. The Taylor’s series methods were popularised in the 1990s and the 
interpolation methods were recently presented in a paper on the derivation of high-order compact schemes for 
non-uniform grids [1]. The methods of compact difference have been used widely in the large area of 
computational problems, for example, the convergence and solution for the compact difference method on 
parabolic equations were discussed in [1, 2, 3, 4, and 5]. There were also some works on applying the compact 
difference scheme for steady convection-diffusion problem [6, 7], the Helmholtz equations [8, 9, and 10] and the 
hyperbolic equation [11, 12]. 

In this paper, we present the 9-point compact schemes of  4ho  and  6ho  for 1D and 2D Poisson 

equations. A high-order compact scheme for 3 dimensional Poisson equation of  4ho  and 






 6ho  is also 

presented. They are of 19-point and 27-point respectively [13].The schemes lead to a large system of linear 
equations bAx  , where A  is sparse. A MATLAB direct solver using LU decomposition is implemented for the 
computation of the numerical examples. 

 
2. FORMULATION OF HIGH-ORDER COMPACT SCHEMES 
  
The archetypal elliptic equation in spatial dimensions is represented by the Poisson equation. Here, we 

develop schemes for Poisson equation for one, two and three dimensional uniform grids on a structured grid of 
uniform mesh size hzyx  . First, let us introduce the following notations: [see 14   ]. 

 





 



 x

ii
ix

ii
i h

uuuand
h
uuu  11    

denote the standard forward finite difference and backward finite difference schemes for first derivative. 
 Also, 

  
h
uuuuu ii

iii 22
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0





                                                             (1) 

is the first-order central finite difference with respect to x where  .ii xuu   The standard second –order 

central finite difference is denoted as iX u
2 and is defined as  
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Difference operators zandyzy oo
22,,   are defined similarly. By using the Taylor’s series 

expansion, a fourth and sixth order accurate finite difference for the first and second derivatives can be 
approximated as follows: 
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We may rewrite equation (3) for u0 as 
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Also, 
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2.1 One – dimensional case 
 
For an illustration purpose, we first consider the one – dimensional problem which can be represented as 
     1,0,.  IIxxfxu                                                                                                      (6) 

From equation (5a), the fourth order accurate finite difference estimate for  xu  is 
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The idea behind the higher order compact scheme is to approximate )(iv
iu  in equation (7) to second order 

accuracy to achieve an overall truncation accuracy of fourth order. To this end, we simply double differentiate 
equation (6) to get  

).()()( xfxu iv
i           (8) 

Also, applying the central difference scheme to )(xf  , we have  

           22)( hofxf ix      (9) 
Hence, from equation (7), we get 
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hohofhuu ixiix         

 or 

      42
2

2
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hofhuu ixixi     (10) 

Using this estimate and considering the discrete solution of equation (6) which satisfies the approximation, 
we get 
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 4
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hofhfu iiix         (11) 

where iU  is the discrete approximation to iu  satisfying the discrete formulation of equation (6), which 

implies  .4hoUu ii   Using equation (2), equation (11) can be expressed in the form 
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2   iiiiii fffhUUU            (12) 

For the sixth – order accurate finite difference estimate of equation (6), we have from equation (5b): 
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iiix                             (13) 

Both    42 hoandho   are included in equation (13). We approximate both of them to construct an 

 6ho  scheme. Applying  iv
ix uto2 , we get 

).( 2)(2)( houu iv
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vi
i                                                                                       (14) 

Substituting equation (14) into equation (13) yields 
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To get the compact  6ho  approximation, we again apply equation (9) that is 
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Inserting this equation into equation (15) results in 
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Or from equation (6), 
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where iU is the discrete approximation to iu satisfying the discrete formulation of equation (6) which 

implies   .6hoUu ii   The )( 6ho approximation of equation (6) can be given as  
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2.2 Two – Dimensional Case 
 
Consider the two – dimensional Poisson equation 
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The central difference scheme for equation (19) in two – dimensions can be written as 

ijijijyijx fuu   22         (20) 

where    jiijjiij yxffandyxuu ,,   
and 
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We need a compact  2ho  approximation of the first square bracket in equation (21). This can be done by 
taking the following approximate derivative of equation (19), to get 
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Substituting equation (22) into equation (21), we obtain the alternative form for the exact truncation error at 
node ij : 
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In our derivation of the  4ho  scheme, we use equation (22) and the expressions of the first square 
bracket in equation (23) that is: 
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The scheme may be written explicitly as 
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This is the well known  4ho  accurate nine-point compact scheme. 

For the  6ho  scheme, we need a fourth-order approximation of 22
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 in equation (23). This can be 

written as 
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Substituting equation (26) into equation (23), gives 
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A compact expressions of the  6ho  approximation is required and this can be done by further 
differentiating equation (19), that is 
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and 
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Substituting equations (28) and (29) into equation (27) gives 
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The compact sixth order approximation of the two dimensional Poisson equation can the be obtained as 
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where 2  is the Laplacian operator and 4  is the biharmonic operator. In equation (33), we assume the 
derivative of f can be determined analytically. In the case where f  is not known analytically, we need only a 
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A second-order accurate approximation of ijf
4  can also be obtained as 
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A nine-point  6ho  scheme for 2D Poisson may be expressed as 
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2.3 Three-Dimension Case 
 
In this section, we perform a similar derivation of the high-order difference scheme for Poisson equation in 

3spatial dimensions which is given as: 
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Here,   is taken as a cubic solid,      .1,01,01,0  The central difference scheme for equation (34) can be 
written as: 
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where  
   kjiijkkjiijk zyxffzyxuu ,,,,,   

and  

  )36(
36012

6
6

6

6

6

6

64

4

4

4

4

4

42

ho
z
u

y
u

x
uh

z
u

y
u

x
uh

ijkijk
ijk 

































 
We take  2ho  approximation of the first square bracket in equation (36). This is done by taking 
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Equation (37), when substituted into equation (36), gives the alternative form for the exact truncation error 

at modeijk . That is 
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The order four 3D scheme of the Poisson equation may be written explicitly as 
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We substitute equation (41) into equation (38), to get: 
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Getting a compact sixth – order approximation requires compact expressions for the nine derivatives of order six 
in equation (42), which can be done by further differentiating equation (34), that is 
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Substitute equations (43) and (44) into equation (42), gives 
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after simplification of the expressions in the second square bracket, using equation(34) and equation (45), 

the compact sixth-order approximation of the three-dimensional Poisson equation can thus be obtained as 

 

  )46(
9036012

306
222222

4
4

4
2

2

222
4

222222
2

2

ijkzyzxyxijkijkijk

zyxijkzyzxyxijk

fhfhfhf

huhu





 
3. NUMERICAL EXAMPLES 
 
In this section, we performed two numerical experiments to solve a 2 dimensional Poisson equation (19) 

on the unit square domain    .1,01,0  In both examples, pure Dirichlet boundary conditions are prescribed on all 
sides of the unit square. 
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In order to compare the numerical solution ijU to the exact solution iju , we used normL 2 of the error 

vector ,e define as  
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where NandUue ijijij   is the number of nodes. 
Problem 1. 

  .1,0,
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sin
2
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2

2,
2







 yxyxyxF 

 

The exact solution is   .
2

sin
2

sin, yxyxu 
  

Problem 2. 
.1,0)sin()cos(2),( 2  yxyxyxF   

The exact solution is      yxyxu  sincos,   
 
4. CONCLUSIONS 
 
In this paper, we present a compact finite difference schemes for one, two and three dimensional Poisson 

equation. The discretization are of    .64 hoandho The one and two dimensional equations are of 9-point. 
The three dimensional equation are 17-point stencil for  

 4ho and 27-point for  .6ho  
Our numerical experiments confirm that compact finite difference schemes are accurate and efficient 

methods. This work is extendable to 9-point scheme for three dimensional Poisson equations. 
 

Table 1. Computation result for test problem 1 
 

   
Errors 

 
Location(x , y) 

 
Exact Solution 

 

 4ho  Scheme 

 

 6ho  Scheme 
(0.25,0.25) 0.1464 1.7931E-06 4.1833E-08 
(0.50,0.25) 0.2706 6.6047E-06 1.3697E-08 
(0.75,0.25) 0.3536 6.5863E-06 3.4281E-08 
(0.25,0.50) 0.2706 2.0554E-06 7.0399E-08 
(0.50,0.50) 0.5000 3.4787E-06 2.6034E-07 
(0.75,0.50) 0.6533 1.0964E-05 3.6875E-07 
(0.25,0.75) 0.3536 2.7446E-05 4.3768E-07 
(0.50,0.75) 0.6533 3.5855E-05 8.1433E-08 
(0.75,0.75) 0.8536 1.0773E-06 2.9210E-08 
 

Table 2. Computational results for test problem 2 
 
 Errors 

Location(x , y) Exact Solution  4ho  Scheme  6ho  Scheme 
(0.20, 0.20) 0.4755 7.585E-07 3.321E-09 
(0.40, 0.20) 0.1816 1.635E-07 8.763E-09 
(0.60, 0.20) -0.1816 3.417E-07 4.954E-09 
(0.80, 0.20) -0.4755 2.926E-07 4.346E-09 
(0.20, 0.40) 0.7694 5.359E-07 6.017E-09 
(0.40, 0.40) 0.2939 3.843E-07 1.739E-09 
(0.60, 0.40) -0.2939 4.967E-07 8.334E-09 
(0.80, 0.40) -0.7694 3.052E-07 5.678E-09 
(0.20, 0.60) 0.7694 1.874E-07 2.346E-09 
(0.40, 0.60) 0.2939 4.967E-07 3.864E-09 
(0.60, 0.60) -0.2939 2.397E-07 8.763E-09 
(0.80, 0.60) -0.7694 3.052E-07 6.497E-09 
(0.20, 0.80) 0.4755 1.335E-06 2.936E-09 
(0.40, 0.80) 0.1816 6.763E-06 7.384E-08 
(0.60, 0.80) -0.1816 5.243E-07 3.741E-08 
(0.80, 0.80) -0.4755 3.438E-07 8.307E-09 
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