ADOPTION OF CIRCULAR DESIGN STRATEGIES BY BUILDING DESIGN FIRMS IN LAGOS, NIGERIA

SULEMAN, TAOFEEK ADEDOTUN (20PCA02244) B.Sc. Architecture, Olabisi Onabanjo University, Ago-Iwoye M.E.D. Architecture, University of Lagos, Akoka

MARCH, 2024

ADOPTION OF CIRCULAR DESIGN STRATEGIES BY BUILDING DESIGN FIRMS IN LAGOS, NIGERIA

BY

SULEMAN, TAOFEEK ADEDOTUN (20PCA02244) B.Sc. Architecture, Olabisi Onabanjo University, Ago-Iwoye M.E.D. Architecture, University of Lagos, Akoka

A THESIS SUBMITTED TO THE SCHOOL OF POSTGRADUATE STUDIES IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE AWARD OF THE DEGREE OF DOCTOR OF PHILOSOPHY (Ph.D) IN ARCHITECTURE IN THE DEPARTMENT OF ARCHITECTURE, COLLEGE OF SCIENCE AND TECHNOLOGY, COVENANT UNIVERSITY, OTA, OGUN STATE, NIGERIA.

ACCEPTANCE

The thesis titled "ADOPTION OF CIRCULAR DESIGN STRATEGIES BY BUILDING DESIGN FIRMS IN LAGOS, NIGERIA" carried out by SULEMAN, TAOFEEK ADEDOTUN, in partial fulfilment of the requirements for the award of a Doctor of Philosophy (Ph.D) degree in Architecture in the College of Science and Technology, Covenant University, Ota, Ogun State, Nigeria is accepted for literary presentation.

Miss Adefunke F. Oyinloye (Secretary, School of Postgraduate Studies)

Signature and Date

Prof. Akan B. Williams (Dean, School of Postgraduate Studies)

Signature and Date

DECLARATION

I, **SULEMAN TAOFEEK ADEDOTUN (20PCA02244)**, declare that I carried out this research under the supervision of Dr. Isidore C. Ezema and Prof. Peter A. Aderonmu of the Department of Architecture, College of Science and Technology, Covenant University, Ota, Ogun State, Nigeria. I attest that this thesis has not been presented, either wholly or partially for the award of any degree elsewhere. All sources of data and scholarly information used in this thesis are duly acknowledged.

SULEMAN, TAOFEEK ADEDOTUN

Signature and Date

CERTIFICATION

We certify that this thesis titled "ADOPTION OF CIRCULAR DESIGN STRATEGIES BY BUILDING DESIGN FIRMS IN LAGOS, NIGERIA" is an original research work carried out by SULEMAN, TAOFEEK ADEDOTUN (20PCA02244) in the Department of Architecture, College of Science and Technology, Covenant University, Ota, Ogun State, Nigeria under the supervision of Dr. Isidore C. Ezema and Prof. Peter A. Aderonmu. We have examined and found this work acceptable as part of the requirements for the award of Doctor of Philosophy (Ph.D) degree in Architecture.

Dr. Isidore C. Ezema (Supervisor)

Prof. Peter A. Aderonmu (Co-Supervisor)

Prof. Adedapo A. Oluwatayo (Head of Department)

Prof. Micheal A. Adebamowo (External Examiner)

Prof. Akan B. Williams (Dean, School of Postgraduate Studies) **Signature and Date**

Signature and Date

Signature and Date

Signature and Date

Signature and Date

DEDICATION

I dedicate this work to Almighty God for the respite of life and source of strength throughout this programme and to my parents, siblings, wife, and children for their intellectual and moral support, motivation, and encouragement.

ACKNOWLEDGEMENTS

I give my purest appreciation to Almighty God, the Lord of the universe, for His bestowment and unending mercies, blessing, and guidance thus far, He is praiseworthy.

My profound gratitude goes to the founding father of the University, Dr. David O. Oyedepo for his commitment to excellence as well as to the Board of Regents. Also, I am thankful to the Vice-Chancellor, Prof. Abiodun H. Adebayo, Deputy Vice-Chancellor, Prof. Olujide A. Adekeye, Acting Registrar, Mrs Regina A. Tobi-David, the Dean of the School of Postgraduate Studies, Prof. Akan B. Williams, Sub-Dean of the School of Postgraduate Studies, Dr. Hezekial O. Falola, and the Dean of the College of Science and Technology, Prof. Timothy A. Anake for their dedication and relentlessness towards ensuring that the university continues to triumph in global standards, and for providing the enabling environment to complete the study.

My appreciation goes to the leadership of the Department of Architecture under the Head of the Department, Prof. Adedapo A. Oluwatayo, for her support, tutelage, and guidance, throughout the programme. Thank you so much, Ma! I give my inestimable and immense appreciation to my supervisors – Dr. Isidore C. Ezema and Prof. Peter A. Aderonmu, for their tireless efforts, hard work, and doggedness toward ensuring that this project achieves excellence, I could not have wished for better supervisors. I am also grateful to the supportive and motivating past and present faculty members of the Department of Architecture - Prof. Eziyi O. Ibem, Prof. Akunnaya. P. Opoko, Prof. Oluwole A. Alagbe, Dr. Anthony B. Sholanke, and others, for every comment, clarity, direction, and assistance you all have offered on this project.

I am thankful to all the examiners and assessors for their observations, constructive criticisms, and contributions toward the successful completion of this project. My appreciation goes to the entire staff of TSAR Architects Limited, other field assistants, all those whose resources were used, and study participants who responded to the study.

I also give thanks to my parents, Mr Lateef O. and Mrs Sherifat O. Suleman, and my siblings, Hakeem and Tairat for their support and encouragement. And to my jewel of inestimable value, my wife, Shukurat, and my lovely children, Mutmain, Mahboobat, Mahmiyat, and Mahmoodat for their love, affection, strength, patience, and for holding the home front in my absence throughout the programme. I love you all so much!

You all have made the journey, thus far, worthwhile. Thank you all and God bless!

TABLE OF CONTENTS

COVED DACE	
COVER PAGE TITLE PAGE ACCEPTANCE	iii
DECLARATION	iv
CERTIFICATION	v
DEDICATION ACKNOWLEDGEMENTS	vi vii
TABLE OF CONTENTS	viii
LIST OF FIGURES LIST OF TABLES	xiii xvi
LIST OF TABLES LIST OF ABBREVIATIONS AND ACRONYMS	xvi xxi
ABSTRACT	xxiii
CHAPTER ONE: INTRODUCTION	1
1.0 Preamble	1
1.1 Background to the Study	1
1.2 Statement of the Research Problem	4
1.3 Aim and Objectives of the Study	7
1.3.1 Aim	7
1.3.2 Objectives	7
1.4 Justification for the Study	7
1.5 Scope of the Study	9
1.6 Key Definitions and Concepts	11
1.7 Chapter Summary	11
CHAPTER TWO: LITERATURE REVIEW	12
2.0 Preamble	12
2.1 Concept of Sustainability	12
2.1.1 Sustainable Development	12
2.1.2 Sustainable Construction	14
2.1.3 Sustainable Buildings	15
2.2 Resource Optimisation in Buildings	16
2.3 Circular Economy	19
2.3.1 Transition to Circular Economy	22
2.3.2 Opportunities in the Circular Economy	22
2.4 Theoretical Foundations of CE	24
2.4.1 Biomimicry	24

2	2.4.2	Cradle-to-Cradle	24
2	2.4.3	Performance and Looped Economy	25
2	2.4.4	Industrial Ecology	26
2	2.4.5	Blue Economy	26
2.5		Nexus between Sustainable Development and Circular Economy	27
2.6		Core Principles of Circular Economy in the Building Sector	29
2	2.6.1	Narrowing-Resource Loop	31
2	2.6.2	Slowing-Resource Loop	31
2	2.6.3	Closing Resource Loop	31
2	2.6.4	Collaboration as a Supporting Strategy	32
2.7		Action Plans, Policies, and Regulations in CE Across the Globe	32
2.8		Circular Economy in the Nigerian Built Environment	36
2.9		Circular Design Strategies in the Built Environment	39
2	2.9.1	Design for High Performance (DfHP)	40
2	2.9.2	Design for Adaptation and Flexibility (DfA/F)	40
2	2.9.3	Design for Reuse (DfR)	43
2	2.9.4	Design for Prefabrication (DfP)	43
2	2.9.5	Design for Standardization and Dimensional Coordination (DfSt/DC)	44
2	2.9.6	Design for Excellence (DfX)	45
2	2.9.7	Design for Regeneration (DfReg)	45
2	2.9.8	Design for Disassembly/Deconstruction (DfD)	46
2	2.9.9	Design for Modularity (DfM)	47
2	2.9.1	0 Design for Long Life / Maintainability	48
2	2.9.1	1 Whole Systems Design (WSD)	48
2	2.9.1	2 Design for Sustainability (DfS)	48
2	2.9.1	3 Design in layers	50
2	2.9.1	4 Specification of Circular Materials (SCM)	51
2	2.9.1	5 Designing Out Waste	52
2	2.9.1	6 Design for Resilience (DfRes)	53
2.10	0	Sustainability and Circularity in Buildings	55
2.1	1	Industry 4.0 and Circular Built Environment	57
2.12	2	Circular Design Strategies and the Building Sector in Lagos	59
2.13	3	Building Design Firms in the Circular Economy	62
2.14	4	Empirical Review of Area of Study	64
2	2.14.	1 Building Design Firms' and the Adoption of Circular Design Strategies	68

	2.14	.2	Awareness of Building Design Firms of Circular Design Strategies	69
	2.14	.3	Factors Influencing the Adoption of Circular Design Strategies	71
	2.14	.4	Case Study Evaluation of the Adoption of Circular Design Strategies in Buildings	85
2	2.15	The	oretical Framework	88
	2.15	5.1	Diffusion of Innovation Theory	88
2	2.16	Con	ceptual Framework	93
2	2.17	Gap	s Identified in Literature	97
2	2.18	Cha	pter Summary	98
CH	IAPT	ER 1	THREE: METHODOLOGY	99
	3.0	Prea	amble	99
2	3.1	Res	earch Philosophy	99
	3.2	Res	earch Approach	100
	3.3	Res	earch Strategy	101
	3.4	Res	earch Design	101
	3.5	Stuc	dy Population	102
	3.6	San	pling Frame	103
	3.7	San	npling Method	104
	3.8	San	nple Size	104
	3.10	Data	a Collection Instruments	107
	3.11	Ope	erationalisation of Variables	107
	3.12		ailed Methods of Statistical Analysis, Data Collection, racteristics, and Analyses by Objectives	111
	3.12	2.1	Objective 1	112
	3.12	2.2	Objective 2	113
	3.12	2.3	Objective 3	113
	3.12	2.4	Objective 4	114
	3.12	2.5	Objective 5	115
	3.12	2.6	Objective 6	116
	3.13	Des	ign of Research Instruments	118
	3.13	8.1	Questionnaire Design	118
	3.13	8.2	Interview Guide Design	118
	3.13	8.3	Observation Schedule Development	118
	3.14	Pilo	t Study	119
	3.14	.1	Quantitative Pilot Test	119

3.14.2	2 Qualitative Pilot Test	119
3.15	Research Validity and Reliability	120
3.15.	1 Validity Test	120
3.15.	2 Reliability Test	120
3.16	Quantitative and Qualitative Data Merging	121
3.17	Fieldwork	121
3.18	Ethical Considerations	122
3.19	Chapter Summary	123
СНАРТЕ	R FOUR: RESULTS	125
4.0	Preamble	125
4.1	Preliminary Information	125
4.1.1	Survey Preliminary Information	125
4.1.2	Case Study Preliminary Information	133
4.2	Objective One	135
4.2.1	Results from Quantitative Data Analysis	135
4.2.2	Results from Qualitative Data Analysis	142
4.2.3	Joint Display of Merged Results	148
4.3	Objective Two	150
4.3.1	Results from Quantitative Data Analysis	150
4.3.2	Results from Qualitative Data Analysis	156
4.3.3	Joint Display of Merged Results	166
4.4	Objective Three	166
4.4.1	Results from Quantitative Data Analysis	166
4.4.2	Results from Qualitative Data Analysis	172
4.4.3	Joint Display of Merged Results	176
4.5	Objective Four	176
4.5.1	Results from Quantitative Data Analysis	176
4.5.2	Results from Qualitative Data Analysis	205
4.5.3	Joint Display of Merged Results	221

4.6 Objective Five 226 4.6.1 Results from Quantitative Data Analysis 227 4.6.2 Results from Qualitative Data Analysis 231 Joint Display of Merged Results 4.6.3 233 234

4.7.	1 Results from Qualitative Data Analysis	234
4.8	Validated Conceptual Framework	244
СНАРТ	ER FIVE: DISCUSSION	246
5.0	Preamble	246
5.1	Firms' Demography	246
5.2	Objective One	248
5.2	Objective Two	251
5.3	Objective Three	256
5.4	Objective Four	260
5.4	1 Benefits of CDS Adoption by BDFs	260
5.4	2 Barriers to CDS Adoption by BDFs	263
5.4	3 Enablers of CDS Adoption by BDFs	267
5.4	4 Critical Success Factors of CDS Adoption by BDFs	269
5.4	5 Factors Influencing CDS Adoption by BDFs	271
5.5	Objective Five	274
5.6	Objective Six	277
5.7	Chapter Summary	280
СНАРТ	ER SIX: CONCLUSION AND RECOMMENDATIONS	281
6.0	Preamble	281
6.1	Summary of Findings	281
6.2	Conclusion	284
6.3	Contribution to Knowledge	286
6.4	Recommendations	288
6.4	1 Recommendations for Policy	289
6.4	2 Recommendations for Academia	290
6.4	3 Recommendations for Practice	292
6.5	Limitations of Research	293
6.6	Opportunities for Further Research	294
REFER APPEN		296 331

APPENDICES

LIST OF FIGURES

FIGURES LIST OF FIGURES

2.1	The triple bottom line of sustainability	13
2.2	Global gross domestic product growth	15
2.3	Projected waste generation, by region	17
2.4	Global population size and annual growth rate	18
2.5	The butterfly diagram of CE	21
2.6	Material extraction in a linear economy	21
2.7	Emission savings in the building sector through CE	23
2.8	The Durian Esplanade – Theatres on the Bay, Esplanade Dr., Singapore	25
2.9	CE flow of resource	29
2.10	The circular economy in the built environment	37
2.11	Olympic Arena in Rio De Janeiro, Brazil by LSFG Arquitetos	42
2.12	Quay Quarter Tower, Sydney, Australia by 3XN Architects	43
2.13	Dyson Student Housing in Wiltshire, England by WilkinsonEyre	44
2.14	Stadium 974 in Doha, Qatar by Fenwick Iribarren Architects	47
2.15	Solaris in One-north, Singapore by Hamzah and Yeang	49
2.16	Circular house in London, England by ARUP	50
2.17	Circl in Amsterdam, Netherlands by de Architekten Cie	52
2.18	The EDGE building in Amsterdam, The Netherlands by PLP Architecture	53
2.19	Interconnectedness between the CDS	54
2.20	Diffusion of innovation adopter categories	90
2.21	Diffusion of innovation model	91
2.22	The conceptual framework of the study	96
3.1	Concurrent Triangulation Strategy	102
3.2	Joint display for data integration	122

4.1	Distribution of firms by age	130
4.2	Distribution of firms by ownership type	131
4.3	Distribution of firms by the decision-making structure	132
4.4	Distribution of firms by management style	133
4.5	Perception on the disposition of BDFs to adopt CDS	139
4.6	Average disposition of BDFs towards the adoption of CDS	140
4.7	Scree plot – Characteristics of BDFs	141
4.8	Mean ranking of the level of awareness of CDS by BDFs	152
4.9	Scree plot – awareness of circular design strategies	154
4.10	Mean ranking of extent of adoption of CDS by BDFs	170
4.11	Scree plot – extent of adoption by building design firms	171
4.12	Mean ranking of benefits of CDS by BDFs	180
4.13	Scree plot – inherent benefits of CDS adoption	181
4.14	Mean ranking of barriers of CDS by BDFs	185
4.15	Scree plot – barriers to circular design adoption	186
4.16	Mean ranking of enablers of CDS by BDFs	190
4.17	Scree plot – enablers of circular design adoption	191
4.18	Mean ranking of the critical success factors of CDS by BDFs	194
4.19	Scree plot – critical success factors for circular design adoption	195
4.20	Heard about circular design strategies	227
4.21	Frequency of means through BDFs got to know about CDS	228
4.22	Mean ranking of effective means of diffusing the knowledge of CDS	230
4.23	Scree plot – communication channels for circular design knowledge	231
4.24	BM	235
4.25	BH	236
4.26	BA	237
4.27	ВО	238

4.28	BE	239
4.29	BS	240
4.30	BL	241
4.31	ВК	242
4.32	BG	243
4.33	Validated conceptual framework of the study	245

LIST OF TABLES

FIGURES LIST OF TABLES

PAGES

2.1	CE Definition Variants	19
2.2	Ellen MacArthur Foundation's ReSOLVE Framework	23
2.3	CE Principles, Approaches, and Strategies Matrix	30
2.4	Circular Design Strategies in the Built Environment	41
2.5	Parts of the Nigerian National Building Code	61
2.6	Summary of Empirical Studies on CDS Adoption in the Built Environment	65
2.7	Characteristics of BDFs' Disposition Towards CDS Adoption	69
2.8	Grouping of Factors Influencing CDS Adoption	72
2.9	Barriers to the CDS Adoption	74
2.10	Enablers of CDS Adoption by Building Design Firms	78
2.11	Benefits of CDS Adoption by Building Design Firms	80
2.12	Critical Success Factors of the Adoption of CDS by Building Design Firms	82
3.1	List of Registered Building Design Firms in Lagos State, Nigeria	103
3.2	List of Certified Sustainable Buildings in Lagos State, Nigeria	103
3.3	Summarised Sampling Frame for the Building Design Firms	104
3.4	Analysis of Quantitative sample size from the sampling frame	105
3.5	Analysis of Quantitative Sample Size and Responses	106
3.6	Operationalisation of Variables	108
3.7	Detailed Methods of Statistical Analysis, Data Collection, Data Characteristics Analysis by Objectives	117
3.8	Cronbach's Alpha Reliability Test	121
3.9	Summary of the Methodology	124
4.1	Quantitative Survey Response Rate	126

4.2	Terms Used to Describe Percentage Ranges	126
4.3	Respondents' Demographics by Professional Discipline, n = 216	127
4.4	Distribution of Firms by Type, $n = 216$	129
4.5	Distribution of Firms by Location, $n = 216$	130
4.6	Distribution of Firms by Staff Size, $n = 216$	131
4.7	Building Characteristics, $n = 14$	134
4.8	Distribution of the Building Design Firms Interviewed, $n = 10$	134
4.9	Demography of Firm's Representatives, n = 10	136
4.10	Characteristics of BDFs' Disposition Towards CDS Adoption, $n = 216$	137
4.11	KMO and Bartlett's Test on Characteristics of BDFs	140
4.12	Rotated Component Matrix for Characteristics of BDFs' Disposition	142
4.13	Characteristics of BDFs' Disposition Towards CDS Adoption, $n = 10$	143
4.14	Synthesis of Characteristics BDFs' and their Disposition Towards CDS Adoption	149
4.15	Level of Awareness of Circular Design Strategies by Building Design Firms, $n = 216$	151
4.16	Overall Level of Awareness of Building Design Firms of Circular Design Strategies. $n = 216$	153
4.17	KMO and Bartlett's Test on Level of Awareness of Circular Design Strategies, n =216	154
4.18	Rotated Component Matrix for Level of Awareness of CDS	155
4.19	Familiarity with Other Resource Optimisation Strategies	156
4.20	Other Suggested Resource Optimisation Strategies	157
4.21	Understanding of Building Design Firms of Circular Design Strategies, n = 10	158
4.22	Understanding of Building Design Firms of Circular Design Strategies, n = 10	160
4.23	Synthesis of BDFs' Level of Awareness of CDS	167
4.24	Extent of Adoption of Circular Design Strategies by Building Design Firms, $n = 216$	168

4.25	Overall Extent of Adoption of Circular Design Strategies by Building Design Firms, $n = 216$	169
4.26	KMO and Bartlett's Test on Extent of Adoption of Building Design Firms, n=216	171
4.27	Rotated Component Matrix for Extent of Adoption of CDS, n=216	173
4.28	Extent of Adoption of Circular Design Strategies by Building Design Firms, $n = 10$	172
4.29	Synthesis of BDFs' Extent of Adoption of CDS	177
4.30	Benefits of CDS Adoption by Building Design Firms, n=216	179
4.31	KMO and Bartlett's Test on Inherent Benefits of Circular Design Adoption	181
4.32	Rotated Component Matrix on the Inherent Benefits of Circular Design Adoption	182
4.33	KMO and Bartlett's Test on Barriers to Circular Design Adoption	184
4.34	Barriers to CDS Adoption by Building Design Firms	183
4.35	Rotated Component Matrix of the Barriers to Circular Design Adoption	187
4.36	KMO and Bartlett's Test on Enablers of CDS by BDFs	191
4.37	Enablers of Circular Design Adoption by Building Design Firms	189
4.38	KMO and Bartlett's Test on Critical Success Factors of CDS Adoption	195
4.39	Critical Success Factors for Circular Design Adoption by Building Design Firms	193
4.40	Model Summary for Factors Influencing Slowing-Resource Loop Strategies Adoption	196
4.41	ANOVA for Factors Influencing Slowing-Resource Loop Strategies Adoption	197
4.42	Coefficients of Analysis for Factors Influencing the Adoption of Slowing-Resource Loop Strategies, n =216	197
4.43	Model Summary for Factors Influencing Narrowing- Resource Loop Strategies Adoption	198
4.44	ANOVA for Factors Influencing Narrowing-Resource Loop Strategies Adoption	199

4.45	Coefficients of Analysis for Factors Influencing the Adoption of Narrowing-Resource Loop Strategies, n =216	200
4.46	Model Summary for Factors Influencing Closing-Resource Loop Strategies Adoption	200
4.47	ANOVA for Factors Influencing Closing-Resource Loop Strategies Adoption	201
4.48	Coefficients of Analysis for Factors Influencing the Adoption of Closing-Resource Loop Strategies, n =216	201
4.49	Model Summary for Factors Influencing the Overall Extent of Adoption of Circular Design Strategies	202
4.50	ANOVA for Factors Influencing the Overall Extent of Adoption of Circular Design Strategies	202
4.51	Coefficients of Analysis for Factors Influencing the Overall Extent of Adoption of Circular Design Strategies, n =216	204
4.52	Summary of Factors Influencing the Adoption of Circular Design Strategies by Building Design Firms, n = 216	205
4.53	Benefits of Circular Design Strategies, n = 10	207
4.54	Barriers of Circular Design Strategies Adoption by Building Design Firms, n = 10	210
4.55	Enablers of Circular Design Strategies Adoption by Building Design Firms, $n = 10$	214
4.56	Factors Influencing Building Design Firms' Adoption of Circular Design Strategies, $n = 10$	217
4.57	Synthesis of Benefits of CDS Adoption	222
4.58	Synthesis of Barriers to CDS Adoption	223
4.59	Synthesis of Enablers of CDS Adoption	224
4.60	Synthesis of CSFs of CDS Adoption	225
4.61	Synthesis of Factors Influencing CDS Adoption by BDFs	226
4.62	Communication Channels of CDS Knowledge Diffusion	228
4.63	Communication Channels for the Diffusion of Circular Design Knowledge	229
4.64	KMO and Bartlett's Test on Communication Channels	230
4.65	Rotated Component Matrix of Communication Channels, n = 216	232
4.66	Synthesis of Means of Diffusion of CDS Knowledge	233

4.67	Certified Sustainable Buildings involved in the Study, n = 9	234
4.68	Extent of Adoption of Circular Design Strategies in BM	235
4.69	Extent of Adoption of Circular Design Strategies in BH	236
4.70	Extent of Adoption of Circular Design Strategies in BA	237
4.71	Extent of Adoption of Circular Design Strategies in BO	238
4.72	Extent of Adoption of Circular Design Strategies in BE	239
4.73	Extent of Adoption of Circular Design Strategies in BS	240
4.74	Extent of Adoption of Circular Design Strategies in BL	241
4.75	Extent of Adoption of Circular Design Strategies in BK	242
4.76	Extent of Adoption of Circular Design Strategies in BG	243
4.77	Overall Extent of Adoption of CDS in Certified Sustainable Buildings, n = 10	244
6.1	Contribution of Study Findings to the SDGs	

LIST OF ABBREVIATIONS AND ACRONYMS

3R	Reduce, Reuse, and Recycle
AEC	Architecture, Engineering, Construction
ARCON	Architects Registration Council of Nigeria
BDF	Building Design Firm
BIM	Building Information Modelling
BSAT	Building Sustainability Assessment Tool
BTS	Bartlett's Test of Sphericity
CBD	Circular Building Design
СВМ	Circular Business Model
CDS	Circular Design Strategies
CDW	Construction and Demolition Waste
CE	Circular Economy
COREN	Council for the Regulation of Engineering in Nigeria
CPDP	Continuous Professional Development Programme
CSF	Critical Success Factors
CSR	Corporate Social Responsibility
C2C	Cradle-to-Cradle
C2G	Cradle-to-Grave
DOI	Diffusion of Innovation
DfD	Design for Disassembly
DT	Digital Technology
EC	European Commission
EDGE	Excellence in Greater Design Efficiencies
EMF	Ellen MacArthur Foundation
EoL	End-of-Life

EPR	Extended Producer Responsibility
EU	European Union
GBCN	Green Building Council of Nigeria
GBRS	Green Building Rating System
GDP	Gross Domestic Product
GHG	Greenhouse Gas
I4.0	Industrial Revolution 4.0
КМО	Kaiser-Meyer-Olkin
LEED	Leadership in Energy and Environmental Design
NBE	Nigerian Built Environment
NPV	Net Present Value
LCA	Life-Cycle Assessment
LE	Linear Economy
PCA	Principal Component Analysis
RFID	Radio Frequency Identification
RO	Resource Optimisation
ROI	Return on Investment
CSB	Certified Sustainable Building
SCB	Sustainable Circular Building
SDG	Sustainable Development Goal
SPSS	Statistical Product and Service Solutions
UK	United Kingdom
USA	United States of America

ABSTRACT

The global prominence of the circular economy model is a notable sustainability trend. Within this model, the design stage plays a critical role as the foundation. The adoption of circular design strategies (CDS) has been gaining appreciable traction in the architecture, engineering, and construction industry in Europe and Asia. However, limited adoption has greeted these strategies in Sub-Saharan Africa, specifically, in the Nigerian built environment. This is due to the dearth of empirical studies on CDS adoption and implementation, especially at the building design firms' level. Hence, this study evaluated the adoption of CDS by firms towards identifying pathways for their increased uptake in Nigeria. Providing empirical knowledge on the adoption of CDS can contribute towards reducing material extraction and consumption, and the global economy circularity index. Roger's Diffusion of Innovation theory was used deployed as the study's conceptual framework. A pragmatic philosophical paradigm was adopted for the study. Convergent parallel mixed research method was deployed and concurrent triangulation approach facilitated the integration of results. Quantitative data were collected through a questionnaire survey from 216 firms which were analysed by applying descriptive and inferential statistical methods using Statistical Product and Service Solutions version 21. An interview guide and observation protocol were employed in collecting qualitative data from ten firms involved in the design of certified sustainable buildings (CSBs) and nine CSBs, respectively. The qualitative data were manually analysed through a content analysis involving In-vivo coding and themes' identification. The findings indicated that the disposition of firms towards CDS adoption is dependent on improving value and expertise, effective stakeholder management, collaboration, policy, and the tendency for economic capacity. The firms exhibit a moderate level of CDS awareness. However, they have only adopted certain strategies related to slowing and narrowing resource loops to a high extent. The adoption of strategies related to closing-resource loop is very low. The study further revealed the factors that influence CDS adoption by firms to include awareness, benefits, firm's disposition, barriers, firm's profile, and communication channels. Internet-driven peer networking channels were found to be the most effective means of diffusing CDS knowledge. Finally, CSBs in the study area have adopted certain CDS associated with designing out waste and slowing-resource loops, while the CSBs are still deficient in adopting CDS associated with closing-resource loop. Firms need to look inwards into the alignment of their visions, culture, and process in ensuring they conform with new market demand and embrace changes where appropriate, especially, in environmental sustainability consciousness in their design processes. Additionally, the roles, responsibilities, and support of the government, academia, and the industry were identified in contributing towards achieving the set agenda. The findings indicated that the adoption of CDS in building developments directly contributes to the sustainable development goal 12 – responsible consumption and production. This study contributed to knowledge by identifying the key characteristics that dispose firms towards CDS adoption. Furthermore, the firms and CSBs have least adopted closingresource loop strategies in design. Similarly, recommendations to practice, academia, and policies were suggested to enhance resource optimisation in the NBE through the uptake of the strategies by firms. Further studies can investigate appropriate circular business models and circular project management approaches applicable in Nigeria.

Keywords: Circular Design Strategies; Circular Economy; Design Firms; Lagos-Nigeria; Resource Optimisation