EFFECT OF BISPHENOL-A ON HORMONE AND LIPID LEVELS AMONG FIBROID PATIENTS IN LAGOS STATE, NIGERIA

SALAMI, ESTHER ABISOLA 16CP021237

EFFECT OF BISPHENOL-A ON HORMONE AND LIPID LEVELS AMONG FIBROID PATIENTS IN LAGOS STATE, NIGERIA

 \mathbf{BY}

SALAMI, ESTHER ABISOLA 16CP021237

B.Sc. Biochemistry, Covenant University, Canaanland, Ota, Ogun State

A DISSERTATION SUBMITTED TO THE SCHOOL OF POSTGRADUATE STUDIES IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE AWARD OF MASTER OF SCIENCE, (M.Sc.) IN BIOCHEMISTRY IN THE DEPARTMENT OF BIOCHEMISTRY, COLLEGE OF SCIENCE AND TECHNOLOGY, COVENANT UNIVERSITY, OTA, NIGERIA

ACCEPTANCE

This is to attest that this dissertation is accepted in partial fulfillment of the requirements for the award of a Master of Science (M.Sc.) in Biochemistry in the Department of Biochemistry, College of Science and Technology, Covenant University, Ota, Nigeria.	
Min Alderska E Orinkan	
Miss Adefunke F. Oyinloye (Secretary, School of Postgraduate Studies)	Signature and Date

Signature and Date

Prof. Akan B. Williams

(Dean, School of Postgraduate Studies)

DECLARATION

I, **SALAMI, ESTHER ABISOLA**, hereby declare that this research work was carried out by me under the supervision of Dr. Oluwakemi A. Rotimi of the Department of Biochemistry, College of Science and Technology, Covenant University, Ota, Ogun State. I attest that the dissertation has not been presented either wholly or partially for the award of any degree elsewhere. All sources of data and scholarly information used in this dissertation were duly acknowledged.

SALAMI, ESTHER ABISOLA

Signature and Date

CERTIFICATION

We hereby, certify that this dissertation titled "EFFECT OF BISPHENOL-A ON HORMONE AND LIPID LEVELS AMONG FIBROID PATIENTS IN LAGOS STATE, NIGERIA" is an original research work carried out by SALAMI, ESTHER ABISOLA with matriculation number (16CP021237) from the Department of Biochemistry, College of Science and Technology, Covenant University, Ota, Ogun State, Nigeria, under the supervision of Dr. OLUWAKEMI A. ROTIMI. We reviewed the work and determined that it meets the requirements for the award of the degree of Master of Science (M.Sc.) in Biochemistry.

Dr. Oluwakemi A. Rotimi (Supervisor)

Signature and Date

Prof. Solomon O. Rotimi (Head of Department)

Signature and Date

Prof. Oluwatosin B. Adu (External Examiner)

Signature and Date

Prof. Akan B. Williams (Dean, School of Postgraduate Studies)

Signature and Date

DEDICATION

This dissertation is dedicated to God Almighty from whom all good and perfect gift comes. God, the Master Orchestrator, ensures everything falls into place, and through His divine orchestration, this project was successfully completed.

ACKNOWLEDGMENT

My profound gratitude goes to my Heavenly Father for holding my hands through the course of attaining this degree.

I wish to express my profound gratitude to Dr. David O. Oyedepo, Covenant University's Chancellor, whose inspiring words have been a constant reminder that achieving the seemingly impossible is within reach. Sir, thank you sincerely, and may your legacy endure for generations.

I am also grateful to Prof. Abiodun H. Adebayo, the Vice Chancellor, Prof. Akan B. Williams, the Dean of the School of Postgraduate Studies, and Prof. S.O. Rotimi, the Head of the Department of Biochemistry, for your unwavering dedication to the betterment of Covenant University and its students. May God Almighty elevate you in all your endeavors.

I also want to sincerely thank my supervisor Dr. Oluwakemi A. Rotimi for her invaluable and immense contribution to the completion of this research. I am truly grateful that you went over and beyond for me in this period. Your patience and guidance is one I will forever be grateful for. May God continually bless you.

Furthermore, I want to thank my colleagues and friends for never ceasing to cheer me on in the process of getting this degree.

This acknowledgment will not be complete if I fail to recognize the love of my parents Pst. and Dcns. Salami, and my siblings Wonder and Victor Salami for their encouragement, prayer, provisions, care, and support toward the success of this work, thank you so much.

TABLE OF CONTENTS

CONTENTS	PAGES
COVER PAGE	
TITLE PAGE	ii
ACCEPTANCE	iii
DECLARATION	iv
CERTIFICATION	v
DEDICATION	vi
ACKNOWLEDGMENT	vii
TABLE OF CONTENTS	viii
LIST OF FIGURES	xii
LIST OF ABBREVIATIONS	XV
ABSTRACT	xvii
CHAPTER ONE	1
INTRODUCTION	1
1.1 Background to the study	1
1.2 Statement of the research problem	2
1.3. Research Questions	3
1.4. Aim and Objectives	3
1.5. Justification for the Study	4
1.6 Scope of Study	4
CHAPTER TWO	5
LITERATURE REVIEW	5
2.1 Introduction	5
2.2 Some Major Uses of Bisphenol-A	7
2.2.2 Production of Epoxy and vinyl ester resins	8
2.2.3 Production of other types of plastics	9
2.2.4 Production of thermal paper	9
2.3 Routes of Exposure to Bisphenol-A	9

2.4 Sources of Bisphenol-A	11
2.4.1 Migration from polycarbonates	11
2.4.2 Migration of BPA from lacquers coatings for tins	11
2.5 Environmental Exposure of Bisphenol-A	12
2.5.1 Atmosphere	12
2.5.2 Water and effluents	12
2.5.3 Edible food and water	12
2.5.4 Dust	12
2.5.5 Dental materials	13
2.5.6 Thermal Paper	13
2.6 Production of Bisphenol-A	14
2.7 Physicochemical Properties of Bisphenol-A	15
2.8 Uterine fibroids	16
2.8.1 Prevalence/ epidemiology of fibroids	18
2.8.2 Causes of Uterine Fibroids	18
2.8.3 Risk factors of uterine fibroids	21
2.8.4 Uterine Fibroids Driver Mutations	26
2.8.5 Types and locations of fibroids	27
2.9 BPA and Lipids	30
2.10 BPA and Vitamin D	32
CHAPTER THREE	35
MATERIALS AND METHODS	35
3.1 Materials	35
3.2 Methods	35
3.2.1 Study site	35
3.3 Study procedure	37
3.3.1 Blood Preparation	37
3.3.2 Urine Collection and Preparation	37
3.3.3 HDL1&3 Extraction	37
3.3.4 Plasma Total Cholesterol Determination	37
3.3.5 Plasma total triglyceride determination	38

3.3.6 Plasma Vitamin D Determination	39
3.3.7 Plasma Estrogen Determination	40
3.3.8 Urinary BPA Determination	40
3.3.9 Data analysis	41
CHAPTER FOUR	42
RESULTS	42
CHAPTER FIVE	60
DISCUSSION	60
CHAPTER SIX	63
CONCLUSIONS AND CONTRIBUTIONS	63
6.1 Conclusion	63
6.2 Contribution to Knowledge	63
REFERENCES	64

LIST OF TABLES

TABLES	LIST OF TABLES	PAGES
Table 1	Total cholesterol determination	38
Table 2	Total triglyceride determination	39
Table 3	BPA Elisa Standard Dilution	41
Table 4	General characteristics of the study population	42
Table 5	The prevalence of specific characteristics within the population	42
Table 6	A table showing the descriptive analysis of the studied parameter	ers 43

LIST OF FIGURES

FIGURES	LIST OF FIGURES	PAGES
Figure 1	The chemical structure of Bisphenol A	6
Figure 2	A diagram depicting how polycarbonates are made from Bisphenol-A.	7
Figure 3	A diagram depicting how epoxy resins are produced using BPA.	8
Figure 4	A diagram showing how vinyl esters are produced.	9
Figure 5	Potential BPA sources and their targets	10
Figure 6	Some common sources of Bisphenol-A	14
Figure 7	A diagram showing how Bisphenol-A is produced.	14
Figure 8	The exposure to endocrine disrupting chemicals induces genetic	16
	and epigenetic abnormalities in myometrial stem cells leads to uterine	
	fibroid development.	
Figure 9	Risk factors for Uterine fibroids.	26
Figure 10	A diagram depicting a normal uterus without fibroids.	28
Figure 11	A uterus with multiple fibroid types.	29
Figure 12	A figure describing how vitamin D affects fibroid pathophysiology	33
	pathways.	
Figure 13	A box plot depicting the difference between the levels of total	44
	triglycerides in both groups.	
Figure 14	A scatter plot depicting the relationship between total triglycerides	44
	and BPA in the population.	

Figure 15	A box plot depicting the difference between the levels of	46
	HDL1 triglycerides in both groups.	
Figure 16	A scatter plot depicting the association between BPA and	46
	HDL1 triglycerides.	
Figure 17	A box plot depicting the difference between the levels of	48
	HDL3 triglycerides in both groups.	
Figure 18	A scatter plot depicting the association between BPA and	48
	HDL3 triglycerides in the population.	
Figure 19	A box plot depicting the difference between the levels of	50
	total cholesterol in both groups.	
Figure 20	A scatter plot depicting the association between BPA and	50
	total cholesterol in the population.	
Figure 21	A box plot depicting the difference between the levels of	52
	HDL1 cholesterol in both groups.	
Figure 22	A scatter plot depicting the association between BPA and	52
	HDL1 cholesterol in the population.	
Figure 23	A box plot depicting the difference between the levels of	54
	HDL3 cholesterol in both groups.	
Figure 24	A scatter plot depicting the association between BPA and	54
	HDL3 cholesterol in the population.	
Figure 25	A box plot depicting the difference between the levels of	56
	vitamin D in both groups.	
Figure 26	A scatter plot depicting the association between BPA and	56

Figure 27	A box plot depicting the difference between the levels of	58
	estradiol in both groups.	
Figure 28	A scatter plot showing the association between BPA and	58
	estradiol concentrations in the population.	

vitamin D concentrations in the population.

LIST OF ABBREVIATIONS

ART: Assisted Reproductive Technology

BPA: Bisphenol-A

BPA-HRP: Bisphenol-A Horseradish Peroxidase

BMI: Body Mass Index

COMT: CatecholO-methyltransferase

CD68: Cluster of Differentiation 68

COL4A6: Collagen alpha-6 (IV) Chain

ECM: Extracellular Matrix

ELISA: Enzyme-linked immunosorbent assay

EE: Environmental estrogens

EDCs: Endocrine-disrupting Chemicals

FAS: Fatty Acid Synthase

FH: Fumarate Hydratase

FIGO: The International Federation of Gynaecology and Obstetrics

HAART: Highly Active Antiretroviral Therapy

HDL: High Density Lipoprotein

HMGA-2: High-Mobility Group AT-Hook 2

IRS4: Insulin Receptor Substrate-4

LASUTH: Lagos State University Teaching Hospital

MED12: Mediator Subunit 12

mTOR: Mechanistic Target of Rapamycin

PPARα: Peroxisome Proliferator-activated Receptors alpha signaling pathway

PCOS: Polycystic Ovarian Syndrome

SCD: Stearoyl-coenzyme A Desaturase

SCAP: SREBP Cleavage Activating Protein

SHGB: Sex Hormone Binding Globulin

SREBP1: Sterol Regulatory Element-Binding Protein 1

MMSC: Single Myometrial Stem Cell

TMB: 3, 3',5,5' Tetra Methyl Benzadine

TG: Triglycerides

TICs: Tumor-initiating Stem Cells

TGF-β3: Transforming Growth Factor Beta-3

UL: Uterine leiomyoma

VDBP: Vitamin D-binding protein

WNT: Wingless-related Integration Site

25(OH)D: 25-hydroxyvitamin D

1,25(OH)D: 1,25-dihydroxyvitamin D

ABSTRACT

Leiomyomas are benign smooth muscle tumors that develop on the myometrium of the uterus. Research has shown that over 70% of women will have fibroids by the time they reach the age of 50. In recent times, there has been a growing concern regarding pollution of the environment, with reports indicating that synthetic chemicals possess the potential to disrupt the reproductive system by their endocrine-disrupting properties. Bisphenol-A (BPA) is one of the most produced endocrine disrupting chemicals in the world and this is as a result of industrialization and the increasing demand for plastics. The growth and development of uterine fibroids is regulated, in part, by hormone levels in the body. BPA has close structural similarity with estrogen; therefore it can act as both an estrogen mimic as well as an agonist of estrogen receptors. This study aimed to determine the levels of Bisphenol-A, hormones, and lipids and their relationship among fibroid patients in Lagos, Nigeria. The study was a cross-sectional study and involved 69 fibroid patients from the Gynaecology clinic at Lagos State University Teaching Hospital (LASUTH). Urinary BPA levels and plasma levels of vitamin D and estrogen in the patients were measured using an enzyme-linked immunosorbent assay (ELISA) technique. The plasma levels of high-density lipoprotein, triglycerides and cholesterol were measured spectrophotometrically. The mean concentration of BPA in the patients was 696.65 ng/ml and the median concentration was 39.67 ng/ml. The mean concentration of HDL-Triglycerides and HDL-Cholesterol were 14.35 mg/dl and 10.35 mg/dl respectively. The range of BPA concentrations (0.10 -15357.39 ng/ml) indicates that there is an exposure to BPA among Nigerian fibroid patients. Results of our study showed that patients in the high BPA group had a significantly higher level of HDL-Triglycerides (HDL-T) compared to those in the low BPA group (P<0.05). A statistically significant inverse relationship $(\beta = -0.26; P < 0.05)$ between Bisphenol-A and HDL-Cholesterol (HDL-C) was also detected. This study is the first to investigate the association between BPA, hormones, and lipids levels in Nigerian fibroid patients. Overall, this study provides suggestive evidence that exposure to BPA may alter the levels of plasma HDL-C and HDL-T in Nigerian fibroid patients.

Keywords: Bisphenol-A, fibroids, lipids, estrogen, vitamin D