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A B S T R A C T   

This study adopts first principle calculations to probe the electronic, elastic, vibrational, and transport properties of FeNbSb Alloys. The elastic and phonon properties 
were deduced to explain the stability and dynamical nature of FeNbSb alloy. Voigt-Reuss-Hill approximation was used for the mechanical properties, Poisson’s ratio 
for brittleness, while Pugh’s rule was used to estimate the alloy ductility. Besides, the absence of negative frequency revealed the dynamical stability of FeNbSb. Also, 
the thermal conductivity, electrical conductivity, power factor, and Seebeck coefficient were estimated in terms of energy relative to the Fermi level at 300 K ≤ T ≤

800 K. The study achieved a power factor of 15 × 1011 μW/cmK2s and a maximum zT of 0.52 at 800 K for FeNbSb. In conclusion, the result of this study suggests that 
FeNbSb p-type is a suitable material for thermoelectricity.   

1. Introduction 

Thermoelectric devices, which are sustainable, cost-effective, and 
eco-friendly, as depicted in Fig. 1, are fast-growing alternative energy 
technology in addressing the world’s energy crisis [1–3]. It comprised 
heavily doped n- and p-type semiconductors coupled thermally in par
allel and electrically in series. These immaculate energy conversions of 
waste heat to electricity are the favourite of scholars in the energy field 
due to their noiseless nature, absence of mechanically moving parts, and 
durability [4,5]. Despite the promising nature of the thermoelectric 
device, its conversion efficiency (η) is limited due to the high Carnot 
efficiency (ηc), and the low figure of merit zT [6]. The formal limitation 
requires material devices that can withstand higher temperatures 
greater than 1000 K while the latter solves with a high power factor 
(S2σ) and low lattice thermal conductivity (kl). Though researchers have 
enhanced the S2σ of the thermoelectric device through the tuning of its 
electrical transport properties and band convergence [7,8], quantum 
confinement [9], and deep state doping [10,11]. Also, structural modi
fications through porosity layout [12], grain purification [13,14], and 
the presence of residues [15] have been used to achieve low kl. However, 
in addressing these concerns, researchers have been studying 
half-Heusler alloys (ternary semiconducting/metallic materials having 
either 1:1:1 or 2:1:1) [16,17] as suitable materials for achieving both 
high ηc and zT (a higher energy conversion efficiency) due to their 
narrow bandgaps [18], substantial mechanical properties, sizeable 

electrical conductivity, robust thermal stability, and higher power factor 
[16,19–28]. 

The primary aim of this work is to investigate the electronic, me
chanical, dynamical, and thermoelectric properties of Bulk FeNbSb. It is 
essential to provide a template to improve the thermoelectric properties 
of FeNbSb HH alloy. Other sections in this work are organized as follows: 
Section 2 has the Theoretical Background and Computational procedure, 
while our Findings are discussed in section 3. Finally, we provided our 
principal conclusions in section 4. 

2. Theoretical Background and Computational procedure 

Thermoelectric technology is dependent on its figure of merit (zT) 
[29] as stated in Equation (1) 

zT =

(
S2σ

ke + kl

)

T (1)  

where S (VK− 1) typifies the Seebeck coefficient, σ (Sm− 1) is the electrical 
conductivity, k (Wm− 1K− 1) represents thermal conductivity, T (K) de
notes the absolute working temperature, ke refers to the electronic 
thermal conductivity and kl is known as the lattice thermal conductivity 
[30,31]. 

Interestingly, its maximum efficiency (ηmax), maximum output power 
(Pmax), and the power factor (PF) can be computed from Equations (2)– 
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(4) as 

ηmax =

(
Th − Tc

Th

)

⎛
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⎝
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⎞

⎟
⎟
⎠ (2)  

Pmax =
S2ΔT2

4R
(3)  

PF = S2σ (4)  

where Th is the hot-side temperature and Tc represents the cold-side 
temperature, R depicts the total resistance and T connotes the average 
temperature of Th and Tc of the device engine. 

This study adopts the first principle calculations and the semi- 
classical Boltzmann transport theory to examine the electronic struc
ture, transport phenomena, and TE properties of FeNbSb materials that 
would thereafter serve as a theoretical benchmark for upgrading the 
power factor of the FeNbSb device. 

The study performed the first principle calculations via the Quantum 
Espresso package [32]. Also, the study used PBEsol 
exchange-correlation functional within the generalized gradient 
approximation (GGA) [33] that produced the lattice constant of FeNbSb 
as 5.89 Ȧ. In addition, a plane-wave basis set was adopted with a kinetic 
energy cutoff of 50 Ry and charge density of 500 Ry. These values are 
higher enough to get converged results. The k-mesh applied in the first 
irreducible Brillouin zone was 12× 12× 12, which was generated with 
the MonkhorstePack scheme [34]. The study implemented the Voigt 
[35], Reuss [36], and Hill [37] average methods for the calculation of 
the system elastic constants (bulk modulus, shear modulus, and Poisson 
ratio). The thermoelectric properties alongside the relaxation time were 
calculated with the BoltzTraP code [38]. These values are the average of 
the values obtained by the methods given by Voigt and Reuss [67,68]. 

3. Results and discussion 

3.1. Mechanical properties of FeNbSb 

This study applies the elastic constants got from Quantum Espresso 
to accurately predict the mechanical stability FeNbSb ternary alloy. 
From a material point of view, elastic constants are seen as suitable tools 
to model the mechanical behaviour of the material systems [39–43]. In 
addition, their mechanical properties have been examined through 
Quantum Espresso, and as such their elastic properties are depicted in 
Table 1. For elastic constants of cubic systems to predict the mechanical 
stability of materials, certain conditions [40] must be observed: c11 =

c22 = c33,c12 = c23 = c13,and c44 = c55 = c66. Other conditions [44,45] 
are: c11 > 0, c44 > 0, c11 − c12 > 0, and c11 + 2c22 > 0, where the shear 
constant (c′

= c11 − c12) tells the nature of the system, in that if c′ is 
negative then there is a presence of tetragonal distortion that causes the 
cubic phase unstable. But if c′ is positive, then the cubic system is stable 
against the tetragonal phase. However, the positive value of c′ of FeNbSb 
alloy in Table 1 is a sign that the system is free of tetragonal distortion. 
Also, the system shows high ductility because of its Cauchy pressure 
(cp = c11 − c12) is positive [41]. Interestingly the material of the study is 
not only ductile but malleable because its ratio of shear to bulk modulus 
in Table 1 is less than 0.571 [41–43,46]. Other indicators that scientif
ically testify that the material is ductile [47,48] and malleable are 
Pugh’s ratio 

( B
G
)〉

1.75 [49–51] and Poisson ratio (n) > 0.26 [52–54]. 
Since the literature validates that, this material is malleable and ductile, 
then its Debye temperature (θD) measures the lattice vibrational en
ergies [46,55] to generate the highest normal modes of vibration in the 
material is significantly increased, as shown in Fig. 1. This is a signature 
of the presence of cohesive bonds (material’s stiffness) among the atoms, 
which require the elevated temperature to cause an upward transition of 
phonon modes. In all, from the engineering point of view, FeNbSb is 
mechanically suitable for thermoelectricity. 

3.2. Dynamical stability 

Phonon dispersion spectra are known to comprise acoustic modes 
and optical modes. Both the formal and latter can be subdivided into 
transverse and longitudinal modes. These acoustic modes are differen
tiated from longitudinal modes by using n atoms in a unit cell, which 
means there are 3 acoustic modes while the 3n − 3 degree of freedom 
relation corresponds to 6 optical modes. For a proper understanding of 
the dynamical stability of a crystal system, it is germane to critically 
examine its phonon dispersion spectra. Because phonon modes/spectra 
provide germane information about the stability of materials at T > 0 K. 
However, the material becomes stable if the phonon modes (both optical 
and acoustic modes) are positive phonon frequencies otherwise the 
material becomes unstable (presence of negative phonon frequencies) 
[56]. For this study (as shown in Fig. 2), a finite displacement method 
has been carried out via a PHONOPY package [57] along with Quantum 
Espresso. From 2 we notice a small acoustic-optical gap between Γ and Κ 
points which may result in a weak interaction. Interestingly, a lower 
lattice thermal conductivity can be suggested at L a point because there 
exists a strong acoustic-optical interaction. Since literature has it that a 
low lattice thermal conductivity is a signature to an increase zT [58,59] 
then the FeNbSb system is suspected to have a higher figure of merit 
value. 

3.3. Transport properties of FeNbSb 

This study uses BoltzTraP software to calculate the Seebeck coeffi
cient, electrical conductivity, and power factor. Fig. 3 shows how the 
transport properties depend on chemical potentials in the vicinity of −
1 eV to 1 eV at temperatures 300 K ≤ T ≤ 800 K. The capacity of a 
material to have a very high power factor is one of the factors for 

Fig. 1. Thermoelectric configuration of P and N-types [1].  
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evaluating its thermoelectric usefulness. The material is more suitable 
for thermoelectricity the larger the power factor of such material. This 
study demonstrates that the power factor of FeNbSb alloy increases with 
temperature. The maximum power factor, 15 × 1011 μW/cmK2s is found 
in Fig. 3a at 800 K. Also, Fig. 3 (b) shows that its electrical conductivity 
is minimum at ε − εF = 0, and increases as ε − εF increases. Also, the 
electrical conductivity of the p-type is greater than the n-type region, 

and as such an increase in temperature has no effect. The Seebeck co
efficient shows both P-type (positive trend) doping and N-type (negative 
trend) doping. The material with positive ε − εF typifies the N-doping 
type while material with negative ε − εF denotes P-type doping as shown 
in Fig. 3c. Whereas the possibility of using FeNbSb Heusler alloy for 
thermoelectricity was revealed from our results on the Seebeck coeffi
cient, as presented in Fig. 3c. Here, we noticed that the Seebeck has the 
maximum and minimum values at room temperature. This implies that 
FeNbSb is a good candidate for thermolectric application. Moreover, the 
Seebeck coefficient of Fig. 3c shows an inverse relationship in that, the 
higher the temperature, the lower the Seebeck coefficient. It implies that 
the study has its highest Seebeck coefficient 850 μVK− 1 for P-type and −
850 μVK− 1 for N-type at ε − εF = − 0.005, ε − εF = 0.005, and, T =

300 K. In addition, the figure of merit (zT) which determines the effi
ciency of thermoelectric material has its maximum value of 0.52 at 
800 K for P-type FeNbSb. However, the result of this study is comparable 
with p-type Sn doped FeNbSb which has a maximum zT value of 0.66 at 
923 K [60] and p-type FeNb0.95Ti0.05Sb with a maximum zT value of 0.70 
at 973 K [61] (see Fig. 4). 

4. Conclusion 

The structural, mechanical, vibrational and transport properties of 
FeNbSb have been examined via the first principle approach. The 
calculated elastic constants and phonon frequencies are signatures of the 
alloy is structurally stable and malleable as stated by Pugh’s rule (B /G)
and Poisson’s ratio. The study recorded a higher power factor (because 
of its higher electrical conductivity) of 15 × 1011 μW/cmK2s and a 
maximum zT of 0.52 at 800 K in the p-type half-Heusler FeNbSb. 
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Table 1 
Elastic properties of FeNbSb alloys.  

HH B (GPa) G (GPa) θD 

(K)
B
G  

G
B  

c1 cp vB 

(ms− 1)

c11 (GPa) c12 (GPa) c44 (GPa) vG 

(ms− 1)

vP 

(ms− 1)

n 

FeNbSb 185 90.2 413 2.05 0.487 235 31 4584 342 106 75 3202 5889 0.29004  

Fig. 2. Phonon dispersion curve of FeNbSb showing in (Hz).  

Fig. 3. Calculated values (a) Power factor (b) electronic thermal conductivity 
(c) Seebeck coefficient. 

Fig. 4. Temperature as a function of figure of merit (zT) for half-Heusler 
FeNbSb compound. 
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