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Abstract. An anharmonic oscillator with a perturbed quadratic potential which is coupled with an 

exponential term is being investigated in this paper by isolating an anharmonic oscillator interaction potential 

from the actual interaction experienced by the quantum system studied, and using standard perturbative 

techniques. The anharmonic potential considered is of interest because of its usefulness in the study of non-

centrosymmetric materials which have applications in piezoelectricity. The ground state energy eigenvalue 

and its associated eigenstates were calculated for the quantum system using an analytical approach. Results 

obtained are compared to those of quantised harmonic oscillator to show the effect of the perturbation. 
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1. Introduction 

The Schrӧdinger equation is solvable for a limited number of systems and among them is the 

quantum harmonic oscillator, however, in nature, where only real systems exist, this equation 

does not have a solution except for that of the hydrogen atom. [1, 2, 3]. In previous studies, 

anharmonic oscillators with cubic, sextic and decatic potentials have been solved using different 

numerical methods [3, 4, 5, 6, 7]. The perturbation theory is one of the methods to find solutions 

to the Schrӧdinger equation of an anharmonic oscillator [1, 9]. An alternative approach to this 

method was developed in [8] and was used to solve a system with quadratic perturbations. This 

method was compared to the Rayleigh-Schrӧdinger theory and was reported to contain results of 

the time independent case and the time dependent parameters served to time evolutions of the 

correctness [8].Other methods like the Dirac operator technique and Fourth order Runge-Kutta 

method within the Numerov approach were also used to study quartic anharmonic oscillators due 

to their simplicity and robust nature. Furthermore, it was stated that the asymptotic iteration 

method is a more efficient but rigorous approach for obtaining wave functions of anharmonic 

systems especially those without exact solutions [4]. 
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In this study, an analytical approach has been used to find ground state wave function and 

eigenvalue of an anharmonic oscillatorwith quadratic-exponential form perturbation term and 

bounded at infinity.This was achieved by employing the first order perturbation theory and also 

standard integral definitions [10]. This kind of anharmonic potential can be used to study non-

centrosymmetric materials which have applications in piezoelectricity [11, 12]. 

2. Perturbation Theory 

The one-dimensional time-independent Schrӧdinger equation is a basic and essential step 

towards the calculation of the eigenvalues (energies) of an anharmonic oscillator [3]. Thus, in 

general, the one-dimensional time-independent Schrӧdinger equation is given as: 

− ℏ�
�� ����(�)��� + 	(�)��(�) = 
���(�) (1)  

where ��(�) is wave function,	(�) is the potential energy and 
� is the corresponding energy 

eigenvalue. 

For an ideal system, equation (1) can be rewritten as  

����� = 
�����  (2) 

Now suppose that equation (2) is solved, a complete set of orthonormal eigenfunctions, ���(where the superscript 0 represents an unperturbed quantity) are obtained, that is, 

〈���|��� 〉 = ��� (3) 

with their corresponding energy eigenvalues, 
��and ���is the kronecker delta. However, when 

the system is slightly perturbed, there is a new equation, 

��� = 
��� (4) 

such that  

� =  �� + ��′  (5) 

where �′  is the perturbation and � < � < 1. The first-order correction to the nth eigenvalue, 
��  

also known as the expectation value of the perturbation is given as 


�� = 〈���|�′ |���〉 (6) 

Likewise, the first-order correction to the wave function is given as 

��� = ∑ 〈��� |�′ |���〉(
��−
�� )��≠� �|��� � (7) 



4th International Conference on Science and Sustainable Development (ICSSD 2020)
IOP Conf. Series: Earth and Environmental Science 655 (2021) 012047

IOP Publishing
doi:10.1088/1755-1315/655/1/012047

3

 

 

  
 
 

 

Thus, the perturbed wave function corrected to the first order is given as 

�� = ��� + ���  (8) 

while the corresponding perturbed eigenvalue value corrected to the first order is given as 


� = 
�� + 〈���|�′ |���〉 (9) 

3. Problem Formulation 

Consider an ideal harmonic oscillator,  

	(�) = �� ��� (10) 

but for the purpose of this paper, we introduce a perturbation to give rise to the anharmonic 

potential, 

	(�) = �� ��� + ��� (� + ��)��� (11) 

and � = ���, k > 0 and r > 0 are constants, m is the mass of the particle and ω is the angular 

frequency. Figure (1) shows the plot for both the harmonic and anharmonic potentials. From the 

graph, it can be seen that close to the equilibrium point the plots coincide despite the presence of 

perturbation, however, at larger distances, the effect of perturbation is more pronounced. From 

equation (11), the perturbation term is 

�′ = ��� (� + ��)��� (12) 

and it can be seen that it consists of both a quadratic term coupled with an exponential factor. 

The anharmonic potential (12) does not satisfy the equation, V(x) = V(-x) which makes it 

promising for the study of non-centrosymmetric materials [11]. Non-centrosymmetric materials 

do not have points of inversion symmetry throughout their volume and are important in the study 

of piezoelectric materials [12]. 

Also, the non-zero ground state energy of the harmonic oscillator is 


� = �� ℏ� (13) 

while the ground state wave function of the harmonic oscillator is given as  

���(�) = ��!"�# �− ����  (14) 

where � = ��!$/ℏ, ℏ is the Planck’s constant, m is the mass and$ is the frequency. 
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Figure 1: Graph of potential against displacement for the harmonic and the anharmonic oscillator 

 

4.Calculations and Results 

(a) Perturbed Eigenvalue Calculation 

Substituting equation (6) into equations (13) and (14) and writing in integral form, hence, the 

following calculations: 


�� = ∫ ��(�)�′��(�)∗��∞−∞  (15) 


�� = ∫ ��!"�# �− ���� �′ ��!"�# �− ���� ��∞−∞  (16) 


�� = ��!"�� ∫ �− ���� � ��� (� + ��)���" �− ���� ��∞−∞  (17) 
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�� = ��� ��!"�� ∫ �− ���(� + ��)�����∞−∞  (18) 


�� = ��� ��!"�� ∫ ��−*,�+��-�",∞−∞ + ���−*,�+��-�",�� (19) 

Using the standard integrals [10], 

∫ ��−.,�+�0,∞−∞ �� =  23 4!3 �2�3  (20) 

And 

∫ ���−5,�+�6,∞−∞ �� = ��7 4!7 �� + �8�
7 " �$�7  (21) 

Thus, equation (19) becomes 


��  =  ��� 9� �:* ��� #:* + ��* ( � +  �� �:*  ) ��� #:* ; (22) 

Since � = ��!$/ℏ, then equation (22) becomes 


�� = �ħ�#�!8 � ħ��?�!8 + ħ�#�!8 (#�!8+ ħ��
#�!8 )� ħ��?�!8 (23) 


�� = ħ�#�!8 @� + � + ħ��
#�!8A � ħ��?�!8 (24) 

Hence, using the fact that the eigenvalue of an ideal harmonic oscillator is given as�/�ℏ�, 

thus, 


� = �� ℏ� + ħ�#�!8 @� + � + ħ��
#�!8A � ħ��?�!8 (25) 

Using the first order perturbation theory for the correction of the energy we have equation (25). 

(b) Perturbed Wave Function Calculation 

The first four wave functions of the simple harmonic oscillators [1] are given by  

�� = ��!"�/# �−���/� (26) 

�� = ��!"�/# √����−���/� (27) 
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�� = ��!"�/# �√� (���� − �)�−���/� (28) 

�C = ��!"�/# �√C D��C/��C − C��/��E�−���/� (29) 

and the energy eigenvalues are 


� = �� + ��" ℏ�    , � = �, �, �, C, … (30) 

In this section, another standard integral [10]was employed: 

∫ ���−.,�+�0,∞−∞ �� =  �! �−2�/34!� �23"� ∑ �(�−��)!�! � 3#2�"�[�/�]�=�  (31) 

To calculate the first order correction to the wave function, equation (7), the following terms are 

first computed which will then be substituted back into equation (7): 

〈���|�′ |���〉
�−
� = �ℏ� ∫ ��!"�/# �−���/� � ��� (� + ��)���"∞−∞ ��!"�/# √����−���/��� (32) 

= ���ℏ� (��)�/� ��!"�/� ∫ (�� + �C)∞−∞ �−�������� (33) 

= ���ℏ� (��)�/� ��!"�/� ∫ D���−���+�(�/�) + �C�−���+�(�/�)E∞−∞ �� (34) 

= ���ℏ� (��)�/� ��!"�/� H�� 4!� �� + ��
��" �−��/#� + C! �−��/#�4!� ��C

?�" ∑ �(C−��)!�! � ���"���=� I (35) 

= ���ℏ� (��)�/� ��!"�/� J�� 4!� �� + ��
��" �−��/#� + ��−��/#�4!� ��C

?�" ��C + ���"K (36) 

〈���|�′ |���〉
�−
� = ��ℏ� ∫ ��!"�/# �−���/� � ��� (� + ��)���"∞−∞ ��!"�/# �√� (���� − �)�−���/��� (37) 

= �C�ℏ� ��!"�/� ∫ (���C − � + ���# + ��)∞−∞ �−���+�(�/�)�� (38) 

=
�C�ℏ� ��!"�/� L����−��/#�4!� ��C

?�" @�C + ���A − � ���" 4!� �−��#� +
���#!�−��/#�!��C?��=���#−��!�!����−���!��+��# (39) 
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=
�C�ℏ� ��!"�/� L����−��/#�4!� ��C

?�" @�C + ���A − � ���" 4!� �−��#� − ��� 4!� �� + ��
# " +

##?��−��/#��#���#!���#+�����+������ (40) 

〈���|�′ |�C�〉
C−
� = �Cℏ� ∫ ��!"�/# �−���/� � ��� (� + ��)���"∞−∞ ��!"�/# �√C (��C��C − C����)�−���/���
 (41) 

= �#?ℏ� �√C ��!"�/� ∫ ���C��# − C����� + ��C��M − C����C"∞−∞ �−���+�(�/�) (42) 

= �#?ℏ� �√C ��!"�/� L��C� J#?��−��/#� � �#
���#" 4!� N ��# + �� � ���" + �� � ���"�OK − C��� J ��� 4!� �� +

��#�−��#�− C�����−��#�!��C?��C+���+��C�#!�−��/#�!��MC��M�=���M−��!�!���� (43) 

= �#?ℏ� �√C ��!"�/� L��C� J#?��−��/#� � �#
���#" 4!� N ��# + �� � ���" + �� � ���"�OK − C��� J ��� 4!� �� +

��#�−��#�−C�����−��#�!��C?��C+���+�#��C��−��#�!��MC��M����+�����+������ (44) 

Hence, substituting equations [36], [40] and [44] into equation (7)and then computing to get 

��� = ���ℏ� PL√�� � ��� �� + ��
# " + � ��C

?�" ��C + ���" (� + �√�)" − �#√�� + �#� � �#
���#" N ��# +

�����+��������+#CC�C�−�+��#�#��+����C�−���CM�M#�M����+�����+������+…�−��#��!�/#�−���/� (45) 

Thus, the ground state wave function of the anharmonic oscillator using the first-order 

correction is given by equation (46) 

�� = ��!"�/# �−���/� + ���ℏ� ��!"�/# �−���/� PL√�� @ ��� �� + ��
# " + � ��C

?�" ��C + ���" (� + �)A −
�#� − ��C + ���" Q �#� + �����R − ��� J�M�M

#�M" N ���� + �� � ���" + �� � ���"�OK + ⋯ T �−��#�; (46) 
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For this calculation, we have only used the first four terms of the simple harmonic oscillator, 

hence the reason for the ellipsis. Since � and r are basically constants, we can rewrite equation 

(46) as 

�� = ��!"�/# �−���/� + U��ℏ� �−��#� ��!"�/# �−���/� (47) 

�� = ��!"�/# Q� + U��ℏ� �−��#�R �−���/� (48) 

This means that in comparison with the unperturbed wave function, the perturbed wave function 

differs by a factor of (� + U/ℏ�)which represents the terms in the largest parentheses in 

equation (46). The plot of equations (26) and (48) is shown in figure (2), for simplicity, the 

values of the arbitrary constants have been set to one. In general, the perturbed wave function 

Figure 2: Graph of wave function against displacement for the harmonic and the anharmonic 

oscillator 
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has a similar trend to the unperturbed wave function although the former has a higher 

amplitude. 

 

5. Conclusion 

In quantum mechanics, it is imperative to find solutions to the Schrӧdinger equation of the 

system considered. However, in nature most systems differ from the ideal, a method like the 

perturbation theory comes in handy in finding solutions to the perturbed systems. In this study, 

the first order energy correction and the ground state wave function of an anharmonic oscillator 

has been obtained analytically using definite integrals. The integral definition makes it easy to 

solve the problems and hence is a powerful tool for this kind of problems, provided the integral 

definition already exist in literature. This calculation can be extended to calculate the second 

order energy correction and also other excited states wave functions which is still an ongoing 

research.  
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