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ABSTRACT 

This thesis studied differential equation models in mathematical biology with finite discrete 

delays for the stability of the linearised systems. It investigated the dynamical behaviour of the 

more general single species delay independent and delay dependent models with linear 

harvesting functions of delayed estimate of the true population. The study equally investigated 

the dynamical behaviour of susceptible (S), infectious (I) and recovered (R) (SIR) disease 

epidemic model with intra cellular delay. The study employed the characteristics and 

bifurcation techniques for the analysis of the linearised system for determining conditions for 

stability and instability of the systems. The normal form theory and the center manifold 

theorem (CMT) were employed for stability analysis where linearisation method does not 

apply. The popular reproduction number R0 for the disease free equilibrium (DFE) was further 

used to determine conditions under which the center manifold can be applied while using the 

threshold theorem of epidemiology to determine conditions for stability analysis. The results 

of the single species delay population models showed that a sequence of Hopf bifurcations 

occurred when the bifurcation parameters crossed some critical values. The critical positive 

delay periodic solutions guaranteed the existence of the critical value, 𝜏̅ from which the 

threshold theorem of epidemiology can be determined. If 𝜏 ∈ [0, 𝜏̅), the positive equilibrium 

of the models keeps a steady state. As the delay 𝜏̅ varies, some 𝜏̅ = τk, k = 1,2,··· of the positive 

equilibrium become unstable and Hopf bifurcations occur. The conditions of Hopf bifurcations 

were sufficient and chaotic phenomenon appeared when model maturation delays are large. 

However, conditions for local stability of equilibria were found in the disease epidemic 

equation models using the reproduction number, 𝑅0. It was observed that the positive 

equilibrium 𝐸∗ is locally stable when 𝑅0 < 1, which indicates that the infection is no longer 

present in the population. It is also noted that 𝐸∗ is unstable when 𝑅0 > 1 and this indicates 

that the infection exists in the system. Using the CMT, it was observed that when 𝑅0 = 1 the 

decoupled disease epidemic system undergoes forward bifurcation. In particular, the results of 

the disease epidemic models showed that the conditions for bifurcations obtained from the 

behavior of the dynamical systems are sufficient but not necessary as the models were unable 

to stabilise the unstable interior non hyperbolic equilibrium due to Hopf bifurcations. 

Specifically, the direction of Hopf bifurcations, stability and the period of the bifurcating 

periodic solutions of the non hyperbolic disease reduced model were explicitly determined by 

applying the normal form concept and the center manifold reduction theorem to the perturbed 

operator differential equation (OPDE) where the linearised equation has at least one 

characteristic root with zero real part while every other eigenvalue has negative real part. To 

ensure model relevance, the study is recommended to ecologists, biologists and public health 

workers. Finally, numerical simulations to verify the analytically findings in support of 

stability for both population and disease epidemic models were performed using MATLAB 

software and Pic Wish Version 1.5.6. 
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