MICROPLASTIC POLLUTION: OCCURRENCE, BIOLOGICAL IMPACTS AND GENE EXPRESSION PROFILING OF SELECTED FISH SPECIES IN THE LAGOS LAGOON, NIGERIA

AKINHANMI, FADEKEMI OLABISI (20PCO02218)

JUNE, 2024

MICROPLASTIC POLLUTION: OCCURRENCE, BIOLOGICAL IMPACTS AND GENE EXPRESSION PROFILING OF SELECTED FISH SPECIES IN THE LAGOS LAGOON, NIGERIA

BY

AKINHANMI, FADEKEMI OLABISI (20PCO02218) B.Sc. Plant Science, Olabisi Onabanjo University, Ago-Iwoye M.Sc. Environmental Toxicology and Pollution Management, University of Lagos, Akoka

A THESIS SUBMITTED TO THE SCHOOL OF POSTGRADUATE STUDIES IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE AWARD OF THE DEGREE OF DOCTOR OF PHILOSOPHY (Ph.D.) IN BIOLOGY IN THE DEPARTMENT OF BIOLOGICAL SCIENCES, COLLEGE OF SCIENCE AND TECHNOLOGY, COVENANT UNIVERSITY, OTA, OGUN STATE, NIGERIA

ACCEPTANCE

This is to attest that this thesis has been accepted in partial fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Ph.D.) in Biology in the Department of Biological Sciences, College of Science and Technology, Covenant University, Ota, Nigeria

Miss Adefunke F. Oyinloye (Secretary, School of Postgraduate Studies)

Signature and Date

Prof. Akan B. Williams (Dean, School of Postgraduate Studies)

Signature and Date

DECLARATION

I, **AKINHANMI, FADEKEMI OLABISI (20PCO02218)** declare that this research was carried out by me under the supervision of Prof. Gabriel A. Dedeke of the Department of Pure and Applied Zoology, College of Natural Sciences, Federal University of Agriculture, Abeokuta and Dr. Isaac O. Ayanda of the Department of Biological Sciences, College of Science and Technology, Covenant University, Ota, Nigeria. I attest that this thesis has not been presented either wholly or partially for the award of any degree elsewhere. All the sources of data and scholarly information used in the thesis are duly acknowledged.

AKINHANMI, FADEKEMI OLABISI

Signature and Date

v

Prof. Akan B. Williams (Dean, School of Postgraduate Studies)

We certify that this thesis titled "MICROPLASTIC POLLUTION: OCCURRENCE, **BIOLOGICAL IMPACTS AND GENE EXPRESSION PROFILING OF SELECTED FISH** SPECIES IN THE LAGOS LAGOON, NIGERIA" is an original work carried out by AKINHANMI, FADEKEMI OLABISI (20PCO02218), in the Department of Biological Sciences, Covenant University, Ota, Ogun State, Nigeria, under the supervision of Prof. Gabriel A. Dedeke and Dr. Opeyemi I. Ayanda. We have examined and found the work acceptable as part of the requirement for the award of Doctor of Philosophy (Ph.D.) in Biology.

Prof. Gabriel A. Dedeke (Supervisor)

Dr. Opeyemi I. Ayanda (Co-Supervisor)

Dr. Opeyemi I. Ayanda (Head of Department)

Prof. Solomon O. Adewoye (External Examiner)

Signature and Date

Signature and Date

Signature and Date

Signature and Date

CERTIFICATION

Signature and Date

DEDICATION

This work is dedicated to my late mother, Mrs. Mofolorunsho Omowunmi Margret Akinhanmi.

ACKNOWLEDGMENTS

All glory to God Almighty, the giver of life and grace, for the privilege to begin, progress, and complete this doctoral program. Thank you, Lord, for making this dream a reality.

I acknowledge the Chancellor of Covenant University, Dr. David O. Oyedepo, for the inspiration and obedience to establish this royal citadel of learning.

My appreciation also goes to the Vice–Chancellor, Prof. Abiodun H. Adebayo, Deputy Vice-Chancellor, Prof. Olujide A. Adekeye, and the Registrar, Mrs. Regina A. Tobi-David, for their dedication and commitment towards training young and upcoming academics. My gratitude also goes to the Dean of Postgraduate School, Prof. Akan B. Williams; the Sub-dean of Postgraduate School, Dr. Hezekiah O. Falola; the Dean of College of Science and Technology, Prof. Timothy A. Anake and the Dean of Student Affairs, Covenant University, Mrs. Olushola E. Coker for all your efforts and readiness to guide towards a successful academic achievement.

I would like to express my profound gratitude to the Head of the Department of Biological Sciences, Dr. Opeyemi I. Ayanda, and the immediate past Head of the Department of Biological Sciences, Prof. Solomon U. Oranusi for their moral supports throughout the period of this programme. My special appreciation goes to my supervisors, Prof. Gabriel A. Dedeke and Dr. Opeyemi I. Ayanda, for the intellectual expertise and contributions made toward the success of this research. Thank you both for being more than academic advisors and mentors. You became fathers who wanted the best out of a child. Thank you for your guidance and laboratory visits sirs.

I am also grateful to members of the Departmental Postgraduate Committee; Dr. Eze F. Ahuekwe and Dr. Rotimi S. Aworunse and the erstwhile Departmental Postgraduate Coordinator, Dr. Olayemi O. Akinnola for their constructive criticisms and mentoring styles.

My gratitude also goes to my father, Surv. Oyebanji Iyanda Akinhanmi, for the financial, moral, and spiritual support till the end of this programme. Thank God you are alive and well to witness this feat that you saw many years ago. Thank you very much, sir.

To my late mother, Mofolorunsho Omowunmi Margret Akinhanmi, you saw it coming too but not here to witness it. I am grateful to you; your words of encouragement lived through and geared me on.

vii

My profound gratitude goes to my siblings; Mr. Akinfolarin Akinhanmi, Mrs. Mojisola Egbeyemi, and Mrs. Temilola Obademi, and to my ever-supportive brother-in-law; Mr. Olakunle Egbeyemi, my "Thank you" is finally here. Thank you all for your spiritual, moral, and financial support. To my husband, Mr. Akintayo Beckley, may God honor you and reward your selflessness; thank you. I am grateful for the gift of my son, Oluwafunmishe TiOluwanimi Beckley, thank you for giving me peace and cooperation during the programme. I also appreciate Mr. and Dr. Mrs. Olawande, for their financial and moral supports. My gratitude also goes to my dear Aunty; Faith Ayeotan. Thank you for the moral and financial supports. God bless you all.

I thank all members of the faculty and staff of the Department of Biological Sciences, for rendering assistance when needed; particularly, Mr. Gbenga Taiwo, Dr. Adetutu Bello, Dr. Rotimi Aworunse, Mrs. Ibukun Ajiboye, Mrs. Bose Adekeye, Mr. Oba Micheal, and Dr. Margaret Oniha. May God bless you all. My gratitude also goes to Mr. Adeyemi and Miss Bose of the Department of Biochemistry. Thank you very much for your availability, technical assistance, and insightful contributions. My appreciation also goes to Prof. Nsikak U. Benson and Dr. Omowunmi Fred-Ahmadu, my informal mentors; your insightful advice and availability were of great value. Lastly, my appreciation goes to Mr. Joseph Anite, MD Etina Environmental Services, thank you for the technical, instrumental and human resource assistance. I am grateful.

TABLE OF CONTENTS

CONTENTS	PAGES
COVER PAGE TITLE PAGE ACCEPTANCE DECLARATION CERTIFICATION DEDICATION ACKNOWLEDGEMENTS TABLE OF CONTENTS LIST OF TABLES LIST OF FLATES LIST OF FIGURES LIST OF FIGURES ABSTRACT	ii iii iv v vi vii ix xiii xiv xv xvi xvi
CHAPTER ONE	1
INTRODUCTION	1
1.1 Background to the Study	1
1.2 Statement of the Research Problem	7
1.3 Research Questions	8
1.4 Aim and Objectives	9
1.5 Justification for the Study	9
1.6 Scope of the Study	11
CHAPTER TWO	12
LITERATURE REVIEW	12
2.1 Overview of Microplastic Occurrence	12
2.2 Microplastic Sampling, Extraction, Identification, and Characterisation Technique	s 13
2.2.1 Sampling techniques	13
2.2.2 Extraction techniques	15
2.2.3 Microplastic identification and characterisation	17
2.3 Occurrence and Distribution of Microplastics in the Aquatic Environment	18
2.4 Sources and Transport of Microplastics in the Aquatic Environment	23
2.5 Factors Influencing the Abundance of Microplastics	24

2.6 Factors Influencing Microplastics' Dispersal	25
2.7 Factors Influencing Microplastic Availability and Uptake by Aquatic Organisms	26
2.8 Factors Influencing Microplastic Contamination of Aquatic Organisms	26
2.8.1 Habitat and feeding behavior	27
2.8.2 Food web dynamics and microplastic contamination	27
2.9 Microplastics Contamination of Aquatic Food Sources	28
2.10 Toxic Effects of Microplastics on Aquatic Organisms	29
2.10.1 Physical effects	29
2.10.2 Chemical effects	31
2.10.3 Biological effects	32
2.11 Potential Toxic Effects on Human Health	35
2.12 Toxicology and Risk Assessment	37
2.13 Research Gaps Identified in Literature	38
CHAPTER THREE	40
MATERIALS AND METHODS	40
3.1 Materials	40
3.1.1 Consumables and reagents used in this study	40
3.1.2 Environmental matrices sampled and employed in this study	40
3.1.3 Equipment used in this study	40
3.2 Methods	41
3.2.1 Ethical consideration	41
3.2.2 Geographic and socio-economic characteristics of the study area	41
3.2.3 Sample collection	44
3.3 Extraction and Characterisation Methods	46
3.3.1 Microplastic extraction from surface water	46
3.3.2 Microplastic extraction from sediment	46
3.3.3 Microplastic extraction from fish	47
3.3.4 Bioaccumulation factors	47
3.3.5 Polymer identification and characterisation	48
3.4 Biological Assays	48
3.4.1 Oxidative stress analysis	48

3.4.2 Histopathological analysis	53
3.4.3 Gene expression profiling analysis	53
3.5 Seasonal Variation in Microplastic Abundance and Effects	56
3.6 Quality Control	56
3.7 Methods of Statistical Analysis	56
CHAPTER FOUR	56
RESULTS	57
4.1 Procedural Blanks	57
4.2 Physicochemical Parameters of the Sampling Sites	57
4.3 Microplastic Abundance	57
4.3.1 Microplastic abundance in surface water	57
4.2.2 Microplastic abundance in sediment	61
4.2.3 Health indices of the sampled fish species	61
4.2.4 Microplastic abundance in fish species	67
4.2.5 Bioaccumulation of microplastics	67
4.3 Characteristics of Microplastics Observed in Environmental Media and Fish	71
4.3.1 Color	71
4.3.2 Morphology	71
4.3.3 Size	80
4.3.4 Identification of plastic polymers	80
4.4 Activities and Levels of Antioxidant Biomarkers	85
4.5 Histopathology of Fish Tissues	95
4.6 Profiling of Relative Gene Expression	106
4.7 Seasonal Variation in Microplastic Load and Effects	111
4.7.1 Variation in microplastic abundance between seasons	111
4.7.2 Variations in effects	111

CHAPTER FIVE			
DISCUSSION			
5.1 Microplastic Abundance in Environmental Matrices			
5.1.1 Microplastics in surface water	119		
5.1.2 Microplastics in sediment	120		
5.1.3 Microplastics in fish	122		
5.1.4 Characteristics of microplastics	125		
5.1.5 Plastic polymer identification	128		
5.2 Antioxidant Enzymes and Lipid Peroxidation Product Levels	129		
5.3 Histopathology in Fish Tissues	131		
5.4 Gene Expression Profiling	134		
5.5 Seasonal Variation in Microplastic Load and Effects	136		
CHAPTER SIX	139		
CONCLUSION AND RECOMMENDATION	139		
6.1 Summary	139		
6.2 Conclusion	140		
6.3 Contributions to Knowledge	141		
6.4 Recommendations	141		
6.4.1 Limitations of the study	142		
REFERENCES	143		
APPENDICES	181		
I: Physicochemical parameters of the Lagos Lagoon in the dry season	181		
II: Physicochemical parameters of the Lagos Lagoon in the rainy season	183		
III: Analysis of variance of microplastic abundance in water in the dry season	185		
IV: Analysis of variance of microplastic abundance in water in the rainy season	186		
V: Analysis of variance of microplastic abundance in sediment in the dry season	187		
VI: Analysis of variance of microplastics abundance in sediment in the rainy season	188		
VII: Analysis of variance of microplastic load in fish in the dry season	189		
VIII: Analysis of variance of microplastic load in fish in the rainy season	190		
IX: Chlorosulphonated Polyethylene	191		

X: Polychloroprene	192
XI: Polyvinyl alcohol	194
XII: High-density polyethylene	195
XIII: Polystyrene	196
XIV: Co-Polyamide	197
XV: Polyethylene	198
XVI: Polyacrylamide	199
XVII: qPCR amplification plot for CYP1a gene in the dry season	200
XVIII: qPCR amplification plot for HSP70 gene in the dry season	201
XIX: qPCR amplification plot for β -actin gene in the dry season	202
XX: qPCR amplication plot for CYP1a gene in the rainy season	203
XXI: qPCR amplification plot for HSP70 and β -actin genes in the rainy season	204

LIST OF TABLES

TABLES	TITLE OF TABLES	PAGES
2.1: Microplastic	worldwide occurrence and abundance in the aquatic environment	20
2.2: Research gaps identified in literature		39
3.1: Coordinates of sample sites		43
3.2: Assay for G	ST activity	51
3.3: Real-time PO	CR conditions	55
4.1: Physicochen	nical parameters of the sampling sites in the dry season	58
4.2: Physicochen	nical parameters of the sampling sites in the rainy season	59
4.3: Mean abund	lance of microplastics in surface water in the dry season (particles/L)	60
4.4: Mean abund	lance of microplastics in surface water in the rainy season (particles/L)	62
4.5: Mean abund	ance of microplastics in sediment in the dry season (particles/kg)	63
4.6: Mean abund	ance of microplastics in sediment in the rainy season (particles/kg)	64
4.7: Health condi	ition factor of sampled fish species in the dry season	65
4.8: Health condi	ition factor of sampled fish species in the rainy season	66
4.9: Common na	mes of the selected fish species from the Lagos Lagoon	68
4.10: Mean abun	dance of microplastics in fish in the dry season (particles/fish)	69
4.11: Mean abun	dance of microplastics in fish in the rainy season (particles/fish)	70
4.12a: Bioconcer	4.12a: Bioconcentration factors of microplastics in fish tissue in the dry season	
4.12b: Biota-sedi	ment accumulation factors of microplastics in fish tissue in the dry season	73
4.13a: Bioconcer	ntration factors of microplastics in fish tissue in the rainy season	74
4.13b: Biota-sedi	4.13b: Biota-sediment accumulation factors of microplastics in fish tissue in the rainv season	
4.15: Plastic poly	4.15: Plastic polymer distribution across the sampled matrices in the dry season	
4.16: Plastic poly	mer distribution across the sampled matrices in the rainy season	84
4.17: Antioxidan	t enzyme activities in fish tissues in the dry season	86
4.18: Analysis of	variance of antioxidant enzymes activities among the fish species in the d	lry
season		88
4.19: Antioxidan	t enzyme activities in fish tissues in the rainy season	89
4.20: Analysis of	variance of antioxidant enzymes activities among the fish species in the r	ainy
season		91
4.21: Correlation	between microplastic load and antioxidant activity in the dry season	93
4.22: Correlation	between microplastic load and antioxidant activity in the rainy season	94
4.23: Microplasti	c presence and histopathological damage in fish tissue in the dry season	96
4.24: Microplasti	ic presence and histopathological damage in fish tissue in the rainy season	98
4.25: Comparison	n of the mean abundance of microplastics in the surface water	112
4.26: Comparison	4.26: Comparison of the mean abundance of microplastics in the sediment	
4.27: Seasonal va	ariation in the condition factor of the fish species	114
4.28: Comparison	n of the mean abundance of microplastics in fish	115
4.29: Comparison of bioaccumulation factors of microplastics in fish		116
4.30: Season variation in analysis of variance of antioxidant levels in the fish species		

LIST OF PLATES

PLA	TES TITLE OF PLATES	PAGES
2.1:	Plastic pollution in the Lagos Lagoon	21
3.1:	Selected commercial fish species	44
4.1:	Micrographs of extracted microplastics	75
4.2:	Visually identified microplastics	76
4.3:	Histopathological images of fish gills	99
4.4:	Histopathological images of fish gills	100
4.5:	Histopathological images of fish stomach	101
4.6:	Histopathological images of fish liver	102
4.7:	Histopathological images of fish liver	103

LIST OF FIGURES

FIGURES	S TITLE OF FIGURES	PAGES
2.1:	Overview of toxic effects microplastics may induce on different human-derived	cells 35
3.1:	Map showing all the sampled stations	41
4.1:	Color chart of observed microplastics	73
4.2:	Morphotypes of microplastics in the sampled surface water, sediment, and fish	74
4.3:	Relative gene expression of CYP 1A gene in fish liver in the dry season	107
4.4:	Relative gene expression of CYP 1A gene in fish liver in the rainy season	108
4.5:	Relative gene expression of HSP 70 gene in fish liver in the dry season	109
4.6:	Relative gene expression of HSP 70 gene in fish liver in the rainy season	110

LIST OF ABBREVIATIONS

- AChE Acetylcholinesterase
- A549 cell Adenocarcinoma human alveolar basal epithelial cell
- AST Aspartate aminotransferase
- ALT Alanine aminotransferase
- BCF Bioconcentration factor
- BD Badagry
- BSAF Biota-sediment accumulation factor
- °C Degree Celsius
- CG Clarias gariepinus
- CN Chrysichthys nigrodigitatus
- CYP 1A Cytochrome P450 gene
- EP Epe
- FTIR Fourier Transform Infrared Spectroscopy
- GN Gymnarchus niloticus
- h hours
- HCl-Hydrochloric acid
- HDPE High-density polyethylene
- HNO₃ Nitric acid
- H₂O₂ Hydrogen peroxide
- HSP 70 Heat shock protein gene
- KOH Potassium hydroxide
- LDPE Low-density polyethylene
- MK Makoko
- mg/L Milligram per litre
- min Minutes
- M cell Microfold cell
- MP(s) Microplastic(s)
- MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide

- NADH Nicotineamide adenine dinucleotide
- NaOH Sodium hydroxide
- ng/g Nanogram per gram
- nm Nanometre
- ON Oreochromis niloticus
- PA Polyamide
- PAHs Polycyclic Aromatic Hydrocarbons
- PCR Polymerase Chain Reaction
- PE-Polyethylene
- PET Polyethylene terephthalate
- POPs Persistent Organic Pollutants
- PP Polypropylene
- PVC Polyvinyl chloride
- PVA Polyvinyl alcohol
- PS-Polystyrene
- Py-GC-MS Pyrolysis gas chromatography-mass spectroscopy
- ROS Reactive oxygen species
- rpm Revolutions per minute
- SEM Scanning electron microscope
- STM Scanning tunneling microscope
- SK SagboKoji
- TDS-GC-MS Thermal desorption gas chromatography mass spectroscopy
- TEM Transmission electron microscope
- s Seconds

ABSTRACT

Microplastics (MPs) are ubiquitous in the environment and have been a source of scientific concern. The detection of microplastics in edible aquatic species and the studies that highlight subsequent potential toxic effects under field conditions are few. Hence, this study determined the occurrence of microplastics and assessed their biological effect on selected commercial fish species in the Lagos Lagoon. Composite sampling technique was employed in retrieving surface water and benthic sediment samples from four locations; Badagry, Makoko, SagboKoji, and Epe, while selected fish species were procured directly from local fishermen and assessed for microplastic contamination. Thirty-two samples each of Chrysichthys nigrodigitatus, Oreochromis niloticus, Gymnarchus niloticus and Clarias gariepinus were analysed for microplastic contamination, oxidative stress, histopathology, and relative gene expression profile. Microplastics were observed and counted using a stereo microscope and plastic polymers were identified with Fourier-transform infrared spectroscopy. The gills, stomach, and liver were assessed for histopathological damage and oxidative stress using antioxidant enzyme biomarker; superoxide dismutase, glutathione, glutathione-S-transferase, and lipid peroxidation product, malondialdehyde. The relative gene expression profile of the fish liver was determined by the Real-time PCR analysis, with cytochrome 1a and heat shock protein 70 as the target genes, and β -actin as the reference gene. The seasonal variations in microplastic load and effects were determined in the sampling locations for inference. Statistical significance was established at $p \le 0.05$ between the abundance of microplastics across all the sampled locations. In the dry season, microplastic abundance was significantly high in Badagry at 71.4 \pm 6.2 particles/L, and 3241.5 \pm 1069.5 particles/kg in the surface water and sediment respectively, whereas the fish species from Epe recorded the maximum microplastic presence at 34.7±9.4 particles/fish. In the rainy season, the microplastic load was predominant in the surface water and sediment from Badagry at 130.9 \pm 7.0 particles/L and 5946.3 \pm 543.7 particles/kg respectively, while high microplastic load (98.9 ± 35.8 particles/fish) was recorded in the fishes from Epe. Oreochromis niloticus accumulated the highest number of microplastics (38.2 particles/fish) in the dry season while Gymnarchus niloticus accumulated more (101.8 particles/fish) in the rainy season. Fibre was the predominant microplastic shape at 83% in surface water, 54% in sediment, and 61% in fish, with polyethylene, polychloroprene, and polyvinyl alcohol being the pre-eminent plastic polymer found. SOD activity and MDA levels were significantly higher in MP-laden fish tissues than in MP-free samples across both seasons ($p \le 0.05$). Stunted gill lamellae and degenerated necrotic hepatocytes were observed in the gill and liver of microplastic-contaminated fishes, respectively, while the stomach tissues showed no visible lesion. Cytochrome P450 gene was upregulated as against the housekeeping β -actin gene in the contaminated fish liver. The microplastic load was significantly ($p \le 0.05$) higher in the rainy season than in the dry season. Biomarker responses in the fish species were also statistically higher in the rainy season than in the dry season. This study establishes an association between microplastic load in fish tissues and toxicological effects, calling for urgent measures to check microplastic contamination. However, further investigation is necessary to elucidate the risks and impact of chronic microplastic exposure on public health via the consumption of microplastic-contaminated fishes.

Keywords: Clarias gariepinus, gene expression, Lagos lagoon, microplastics, Oreochromis niloticus, oxidative stress