SYNTHESIS AND EVALUATION OF ORGANIC FUNCTIONALISED MESOPOROUS (MCM-41) MATERIALS AS NANO-CARRIERS FOR ANTITUBERCULAR HYDRAZONE DRUG DERIVATIVES

OYEKAN, JOSEPHINE OLUWAGBEMISOLA (17PCC01650)

MAY, 2024.

SYNTHESIS AND EVALUATION OF ORGANIC FUNCTIONALISED MESOPOROUS (MCM-41) MATERIALS AS NANO-CARRIERS FOR ANTITUBERCULAR HYDRAZONE DRUG DERIVATIVES

BY

OYEKAN, JOSEPHINE OLUWAGBEMISOLA (17PCC01650) B.Tech Pure & Applied Chemistry, Ladoke Akintola University of Technology, Ogbomosho. M.Sc Biochemical Engineering, University of Birmingham, Birmingham

A THESIS SUBMITTED TO THE SCHOOL OF POSTGRADUATE STUDIES IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE AWARD OF THE DEGREE OF DOCTOR OF PHILOSOPHY (Ph.D) IN INDUSTRIAL CHEMISTRY IN THE DEPARTMENT OF CHEMISTRY, COLLEGE OF SCIENCE AND TECHNOLOGY, COVENANT UNIVERSITY, OTA, OGUN STATE, NIGERIA.

ACCEPTANCE

This is to attest that this thesis is accepted in partial fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Ph.D) in Industrial Chemistry, in the Department of Chemistry, College of Science and Technology, Covenant University, Ota, Nigeria.

Miss Adefunke F. Oyinloye (Secretary, School of Postgraduate Studies)

Signature and Date

Prof. Akan B. Williams (Dean, School of Postgraduate Studies)

Signature and Date

DECLARATION

I, OYEKAN, JOSEPHINE OLUWAGBEMISOLA (17PCC01650), declare that this research was carried out by me under the supervision of Prof. Kolawole O. Ajanaku and Dr. Joseph A. Adekoya of the Department of Chemistry, College of Science and Technology, Covenant University, Ota, Nigeria. I attest that this thesis has not been presented either wholly or partially for the award of any degree anywhere else. All the sources of data and scholarly information used in this thesis are duly acknowledged.

OYEKAN, JOSEPHINE OLUWAGBEMISOLA

Signature and Date

CERTIFICATION

We certify that this thesis titled **SYNTHESIS AND EVALUATION OF ORGANIC FUNCTIONALISED MESOPOROUS (MCM-41) MATERIALS AS NANO-CARRIERS FOR ANTITUBERCULAR HYDRAZONE DRUG DERIVATIVES** is an original Research Work carried out by **OYEKAN, JOSEPHINE OLUWAGBEMISOLA** (**17PCC01650**) in the Department of Chemistry, Covenant University, Ota, Ogun State, Nigeria under the supervision of Prof. Kolawole O. Ajanaku and Dr. Joseph A. Adekoya. We have examined and found the research work acceptable as part of the requirements for the award of the degree of Doctor of Philosophy in Industrial Chemistry.

Prof. Kolawole O. Ajanaku (Supervisor)

Dr. Joseph A. Adekoya (Co-Supervisor)

Dr. Cyril O. Ehi-Eromosele (Head of Department)

Prof. Semire Banjo (External Examiner)

Prof. Akan B. Williams (Dean, School of Postgraduate Studies) **Signature and Date**

DEDICATION

This thesis is dedicated to Almighty God, who led me from the beginning to the end of the program.

ACKNOWLEDGEMENTS

My profound gratitude goes to God Almighty for the strength, provisions, and divine guidance towards the success of this work. I ascribe all the glory to Him alone and would be eternally grateful to Him. I sincerely appreciate the Chancellor of Covenant University, Dr. David O. Oyedepo, for spearheading the mission of raising an army of a new generation of leaders that will restore the dignity of Africa. This mission gave birth to a world-class university, Covenant University, which served as a platform for this research's successful kick-off and completion. I acknowledge the Vice-Chancellor of Covenant University, Prof. Abiodun H. Adebayo, the Deputy Vice-Chancellor, Prof. Olujide A. Adekeye and the management team for their leadership and administrative roles that made the completion of this research work possible. My sincere gratitude goes to the acting Registrar, Mrs Regina A. Tobi-David, the Dean of the School of Postgraduate Studies; Prof. Akan B. Williams, the Sub-Dean School of Postgraduate Studies; Dr Hezekiah O. Falola, the Dean of the College of Science and Technology, Prof. Timothy A. Anake, for his much-valued support. I appreciate the Head of the Department, Prof. Joseph A. Olugbuyiro, for his valuable contribution and drive for the possible research conclusion. God bless you, Sir.

I sincerely appreciate my supervisor, Prof. Kolawole. O. Ajanaku and Co-Supervisor, Dr. Joseph. A. Adekoya, for their mentorship and the relentless effort and time they have devoted to this research project's success. Thank you very much, sirs, for believing in me and allowing me to work and learn under you. May your committed labour be rewarded with God's favour and all-round blessings.

I also acknowledge and thank The World Academy of Science (TWAS) for allowing me to do my bench work at the CSIR-Indian Institute of Chemical Technology, Hyderabad, India, under the supervision of Prof. Rajkumar Banerjee and Prof. Chittan Ranjan Patra via the CSIR-TWAS Sandwich Postgraduate Fellowship for eleven months.

The entire faculty and staff of the Department of Chemistry, Covenant University, are also appreciated for their guidance throughout my academic journey at Covenant University. Special appreciation goes to the senior lecturers of the department: Prof. Akan B. Williams, Prof. Nsikak U. Benson, Prof. Olayinka O. Ajani, Dr. Tolutope O. Siyanbola, Dr. Cyril Ehi-Eromosele, Dr. Moses M. Solomon, Dr. Winifred U. Anake, Dr. Anuoluwapo A. Akinsiku, and other excellent faculty. My heartfelt appreciation goes to my family, especially my wonderful husband, Engr. Oluwamuyiwa Joseph Tella for his love, support, commitment and sacrifices, especially financially. I appreciate your understanding through the years, especially when I was away for my bench work. You stood by me prayerfully, financially, and emotionally. God bless you and reward you with all your heart desires. To our son and daughter, Oluwabukunmi Joshua Tella and Oluwafikunmi Joanna Tella, thank you for your understanding and support throughout the program. To my wonderful parents, Engr. & Mrs L. N Oyekan and Mr & Mrs V. O Tella, thank you for your love, prayers, and support throughout this program. I also appreciate my lovely siblings, Mrs Joy Olanipekun, Dr. John Oyekan and Engr. Joseph Oyekan for all their encouragement and support. God bless you all.

TABLE OF CONTENTS

PAGES **CONTENTS COVER PAGE TITLE PAGE** ACCEPTANCE iii **DECLARATION** iv **CERTIFICATION** v **DEDICATION** vi **ACKNOWLEDGEMENTS** vii **TABLE OF CONTENTS** ix **LIST OF TABLES** XV **LIST OF FIGURES** xvi LIST OF SCHEMES XX LIST OF ACRONYMS AND ABBREVIATIONS xxi ABSTRACT xxii

CHAPTER ONE: INTRODUCTION

1.1 Background to the Study	1
1.2 Statement of the Research Problem	7
1.3 Research Questions	9
1.4 Aim and Objectives of the Study	9
1.4.1 Aim of the Study	9
1.4.2 Objectives of the Study	9
1.5 Justification of the Study	10
1.6 Scope of the Study	10

CHAPTER TWO: LITERATURE REVIEW

2.1 Mesoporous Materials	11
2.1.1 Mesoporous silica nanoparticles	12
2.2 Synthesis of Nanoparticles	14
2.2.1 Top-down approach	14
2.2.2 Bottom-up approach	15
2.3 Synthesis of Mesoporous Silica Nanoparticles	15
2.3.1 Microwave-assisted technique	16
2.3.2 Template-assisted technique	16
2.3.3 Sol-gel synthesis	16
2.4 Nucleation and Growth Mechanism of Nanoparticles	18
2.4.1 Formation of silica nanoparticles	18
2.5 Surface Functionalization of Mesoporous Silicates	19

2.5.1 Layer-by-layer self-assembly	19
2.5.1.1 Electrostatic layer-by-layer self-assembly	20
2.5.2 Chemical surface functionalization	20
2.6 Types of Nanomedicines	22
2.6.1 Inert Materials as Carriers	23
2.6.1.1 Inorganic porous materials as carriers	23
2.6.1.2 Metal-organic frameworks (MOFs) as carriers	26
2.6.1.3 Protein nanoparticles	27
2.7 Drug loading content and drug loading efficiency of nanomedicines	27
2.7.1 Loading and releasing of drugs in mesoporous silica nanoparticles	28
2.8 Mesoporous Silica Nano-Carriers for Anti-tubercular Drug Delivery	30
2.9 Knowledge Gaps and Fillings	33
2.10 Brief Description of Characterisation Techniques	34
2.10.1 X-ray Powder Diffraction (XRD) Analysis	34
2.10.2 Brunauer Emmett Teller (BET) Analysis	34
2.10.3 Fourier Transform Infra-Red (FTIR) Spectroscopy	35
2.10.4 Thermogravimetric Analysis	35

CHAPTER THREE: MATERIALS AND METHODS

3.1 Materials	36
3.2 Apparatus	36
3.3 Equipment	36
3.4 Characterisation of Nano-carriers	36
3.4.1 X-ray Diffraction Analysis	36
3.4.2 Fourier Transform Infra-red (FTIR) Spectra Analysis	37
3.4.3 Morphological Characterisation	37
3.4.4 Zeta Potential Analysis	37
3.4.5 Brunauer–Emmett–Teller (BET) Surface Area Analysis	37
3.4.6 Thermogravimetric Analysis	37
3.4.7 Elemental Analysis (Carbon, Hydrogen and Nitrogen)	37
3.5 Synthesis and Functionalisation of Mesoporous Silica Nano-carriers	37
3.5.1 Synthesis of Mesoporous Nanoparticles using Tetraethyl Ortho-silicate (TE	OS) as
Silica Source	35
3.5.2 Surfactant Removal Methods	36
3.5.3 Synthesis and Functionalisation of Silica Surfaces using 3-Amino propyl trie	ethoxy
silane (APTES) via Co-condensation Method	39

3.5.4 Synthesis of Mesoporous Nanoparticles using Sodium Silicate as Silica Source	39
3.5.5 Synthesis and Functionalisation of Silica Surfaces using 3-Amino propyl trietho	оху
silane (APTES) via Co-condensation Synthesis	40
3.5.6 Functionalisation of Silica Surfaces using 3-Aminopropyltriethoxysilane (APTE	ES)
via Post Grafting Synthesis	40
3.6 Synthesis of Metal Complexes of Isoniazid	40
3.7 Encapsulation of INH and its Metal Complexes (Cu-INH) and (Fe-INH) in Synthesi	sed
Nano-carriers	41
3.7.1 Determination of Entrapment Efficiency and Drug Loading Content of Nano-	
carriers	42
3.7.2 Determination of In-vitro Drug Release Rate	43

CHAPTER FOUR: RESULTS

4.1 Characterisation of Synthesised Nano-carriers	44
4.1.1 X-ray Diffraction Analysis of the Synthesised Nano-carriers	44
4.1.2 Physical properties of synthesized nano-carriers	45
4.1.3 Zeta Potential Distributions of the Synthesised Nano-carriers	45
4.1.4 BET Analysis of the Synthesised Nano-carriers	46
4.1.5 FTIR Spectra of MCM-41 Materials using TEOS and sodium silicate as Silica	
Source	49
4.1.6 Thermogravimetric Analysis (TGA) of Non-functionalised and Amino	
Functionalised MCM-41 using TEOS as Silica Source	50
4.1.7 Thermogravimetric Analysis (TGA) of Non-functionalised and Amino	
Functionalised MCM-41 using TEOS as Silica Source	51
4.1.8 Elemental analysis of non-functionalised and amino-functionalised MCM-41 nat	no-
carriers using TEOS and sodium silicate as silica source	52
4.1.9 Morphology of Nano-carriers synthesised using TEOS as Silica Source	53
4.1.10 Morphology of nano-carriers synthesised using sodium silicate as silica source	53
4.1.11 Morphology of Post grafted Amino Functionalised Nano-carriers	54
4.2 Synthesis and Characterisation of Copper (II) and Iron (III) Metal Complexes of	
Isoniazid	55
4.2.1 X-ray Diffraction Analysis of Copper (II) and Iron (III) Metal Complexes of	
Isoniazid	55
4.2.2 Morphological Studies of INH and its Cu (II) and Fe (III) Metal Complexes	55
4.2.3 Infrared Spectra of INH and its Cu (II) and Fe (III) Metal Complexes	56

4.2.4 Thermo-gravimetric analysis of Cu (II) and Fe (III) metal complexes of Iso	oniazid,
CHN elemental analysis and Inductively Coupled Plasma Atomic Spectros	copy of
Cu (II) and Fe (III) metal complexes	57
4.3 Characterisation of Encapsulated Nano-carriers	58
4.3.1 X-ray Diffraction Analysis of Encapsulated Nano-carriers	58
4.3.2 Zeta Potential Measurements of Encapsulated Nano-carriers	59
4.3.3 BET Analysis of Encapsulated Nano-carriers	61
4.3.4 Infra-red Spectroscopy of Encapsulated Nano-carriers	64
4.3.5 Morphology and particle size diameter of Nano-carriers encapsulated in ca	lcined
nano-carrier (Cal-MCM-41t)	66
4.3.6 Morphology and particle size diameter of Nano-carriers encapsulated in po	ost-
grafted nano-carrier (Post-NH2-cal-MCM-41t)	68
4.3.7 Morphology and particle size diameter of Nano-carriers encapsulated in ca	lcined
nano-carrier (Cal-MCM-41s)	70
4.3.8 Morphology and particle size diameter of Nano-carriers encapsulated in ca	lcined
nano-carrier (Post-NH ₂ -Cal-MCM-41s)	70
4.3.9 Transmission Electron Microscopy of Encapsulated Nano-carriers synthesis	zed
from TEOS	71
4.3.10 Elemental Mapping of Encapsulated Nano-carriers synthesized from TEC)S and
sodium silicate	74
4.3.11 Transmission Electron Microscopy of Encapsulated Nano-carriers synthe	sized
from Sodium Silicate	74
4.4 Drug Loading Studies of INH, Fe-INH and Cu-INH from their Nano-carriers	77
4.4.1 Drug loading studies of encapsulated non-functionalised and amino function	onalised
MCM-41 nanocarriers synthesised from TEOS and sodium silicate using T	ĠA
Analysis	77
4.4.2 Drug loading studies of encapsulated non-functionalised and amino function	onalised
MCM-41 nanocarriers synthesised from TEOS and sodium silicate using U	JV-
spectroscopy analysis	78
4.4.3 In-vitro Drug Release Studies of Encapsulated Nano-Carriers	79

CHAPTER FIVE: DISCUSSION

5.1 Characterisation of Synthesised Nanocarriers	83
5.1.1 X-ray Diffraction analysis of the synthesised nanocarriers	83
5.1.2 Zeta Potential distributions of the synthesised nanocarriers	84
5.1.3 BET analysis of the synthesised nanocarriers	85
5.1.4 FTIR spectra of MCM-41 materials using TEOS as silica source	86
5.1.5 FTIR spectra of MCM-41 materials using sodium silicate as silica source	88
5.1.6 TGA analysis of non-functionalised and amino-functionalised MCM-41 using	
TEOS as silica source	89
5.1.7 TGA analysis of non-functionalised and amino functionalised MCM-41 using	
sodium silicate as silica source	90
5.1.8 Elemental analysis of non-functionalised and amino-functionalised MCM-41 na	no-
carriers using TEOS and sodium silicate as silica source	91
5.1.9 Morphology of nanocarriers synthesised using TEOS as silica source	91
5.1.10 Morphology of nano-carriers synthesised using sodium silicate as silica source	92
5.1.11 Morphology of post-grafted amino functionalised nanocarrier	92
5.2 Characterisation of Copper (II) and Iron (III) Metal Complexes of Isoniazid	93
5.2.1 X-ray Diffraction analysis of copper (II) and iron (III) metal complexes of	
Isoniazid	93
5.2.2 Morphological studies of INH and its Cu (II) and Fe (III) metal complexes	93
5.2.3 Infrared spectra of INH and its Cu (II) and Fe (III) metal complexes	93
5.2.4 Thermogravimetric analysis, elemental analysis, Inductively Coupled Plasma	
Atomic Spectroscopy and Mass Spectra of Cu (II) and Fe (III) metal complexes	94
5.3 Characterisation of Encapsulated Nanocarriers	95
5.3.1 X-ray Diffraction analysis of encapsulated nano-carriers	95
5.3.2 Zeta Potential measurements of encapsulated nanocarriers	95
5.3.3 BET analysis of encapsulated nanocarriers	96
5.3.4 IR Spectra of encapsulated nanocarriers using TEOS as silica source	97
5.3.5 IR spectra of encapsulated nanocarriers using sodium silicate as silica source	98
5.3.6 Morphology and particle size diameter of nanocarriers encapsulated in calcined	
nano-carrier (Calcined-MCM-41t)	99
5.3.7 Morphology and particle size diameter of nanocarriers encapsulated in post-graf	ted
nano-carrier (Post-NH ₂ -Calcined-MCM-41t)	99
5.3.8 Morphology and particle size diameter of nanocarriers encapsulated in calcined	
nano-carrier (Calcined-MCM-41s)	99

5.3.9 Morphology and particle size diameter of nanocarriers encapsulated in calcin	led
nanocarrier (Post-NH ₂ -Cal-MCM-41s)	100
5.3.10 Transmission Electron Microscopy of encapsulated nanocarriers synthesize	d from
TEOS	100
5.3.11 Elemental Mapping of encapsulated nanocarriers synthesized from TEOS	100
5.3.12 Transmission Electron Microscopy of encapsulated nanocarriers synthesize	d from
Sodium Silicate	101
5.4 Encapsulation of INH, Fe-INH, and Cu-INH from their Nano-carriers	101
5.4.1 Mechanism involved in the encapsulation of INH, Fe-INH and Cu-INH on	
Nanocarriers	101
5.4.2 Drug loading studies of INH, Fe-INH, and Cu-INH from their nanocarriers	101
5.4.3 In-vitro Drug Release Studies of Encapsulated Nanocarriers	104
5.4.4 Comparative studies on the Drug Loading Capacities, Entrapment Efficiencie	s and
Release Rates of Anti-tubercular Drugs encapsulated in different types of MCM-41	106

CHAPTER SIX: CONCLUSION AND RECOMMENDATION

6.1 Summary of Findings	108
6.2 Conclusion	110
6.3 Contributions to Knowledge	111
6.4 Recommendations	111

REFERENCES	112
APPENDIX	137

LIST OF TABLES

TABLES	LIST OF TABLES	PAGES
2.1	Gap analysis revealing the gap identifications, weaknesses, sources and gap	33
	fillings for the present study	
4.1	Physical Properties of MCM-41t using TEOS as Silica Source	45
4.2	Physical Properties of MCM-41t using Sodium Silicate as Silica Source	45
4.3	Assignment of IR peaks found in nano-carriers synthesised with TEOS	50
4.4	Assignment of IR peaks found in nano-carriers synthesised with sodium	50
	silicate	
4.5	TGA analysis of Synthesised Nano-carriers using TEOS as Silica Source	51
4.6	TGA analysis of synthesised nano-carriers using sodium silicate as silica	52
	source	
4.7	Elemental contents of non-functionalised and amino-functionalised MCM-41t	52
4.8	Elemental contents of non-functionalised and amino-functionalised MCM-41s	53
4.9	Assignment of IR peaks found in INH, Cu-INH and Fe-INH	57
4.10	Elemental analysis and Inductively Coupled Plasma atomic analysis of Cu (II)	58
	and Fe (III) metal complexes	
4.11	Physical properties of INH, Cu-INH and Fe-INH encapsulated in calcined-	59
	MCM-41t and Post-NH ₂ -MCM-41t.	
4.12	Physical properties of INH, Cu-INH and Fe-INH encapsulated in calcined-	59
	MCM-41s and Post-NH ₂ -MCM-41s	
4.13	Physical properties of INH, Cu-INH and Fe-INH encapsulated in calcined-	61
	MCM-41t and Post-NH ₂ -MCM-41t.	
4.14	Physical properties of INH, Cu-INH and Fe-INH encapsulated in calcined-	61
	MCM-41s and Post-NH ₂ -MCM-41s.	
4.15	Assignment of bands in encapsulated non-functionalised and amino	65
	functionalised MCM-41 nano-carriers synthesised from TEOS.	
4.16	Assignment of bands in encapsulated non-functionalised and amino	66
	functionalised MCM-41 nano-carriers synthesised from sodium silicate.	
4.17	TGA and UV-vis spectrometry analysis of encapsulated nano-carriers	79
	synthesised from TEOS	
4.18	TGA and UV-vis spectrometry analysis of encapsulated nano-carriers	79
	synthesised from Sodium silicate.	
4.19	Percentage of drug released from encapsulated nano-carriers after 14 days	82

LIST OF FIGURES

FIGURES	LIST OF FIGURES	PAGES
1.1	Anti-tubercular drugs and their structures	4
1.2	Some metal complexes of isoniazid.	6
2.1	Surfactant-directed formation of mesoporous materials using organic building	12
	blocks or inorganic hybrids	
2.2	Types of Mesoporous Silica Nanoparticles	14
2.3	Chemical surface functionalization methods	21
2.4	Fabrication strategies used for high drug-loading nanomedicines	
2.5	Methods of loading drugs in mesoporous silica nanoparticles	
3.1	(a) sol-gel synthesis of nano-carriers (b) vacuum filtration and drying of as-	38
	synthesised nano-carriers.	
3.2	(a) Calcined MCM-41 (b) Extracted MCM41	39
3.3	Predicted structures of the Cu (II) and Fe (III) metal complexes of Isoniazid	40
3.4	Nano-carriers with INH, Cu-INH and Fe-(INH) (a) after sonication (b) after	42
	12 hours of stirring (c) during rotary evaporation.	
4.1	X-ray diffraction patterns of non-functionalised and amino-functionalised	44
	MCM-41 nano-carriers synthesised using (a) tetra ethyl ortho-silicate and (b)	
	sodium silicate as silica source.	
4.2	Zeta potential distributions of non-functionalised and amino-functionalised	46
	MCM-41 nano-carriers synthesised using tetra ethyl ortho-silicate. (a)	
	Calcined-MCM-41t (b)Extracted-MCM-41t (c) Co-NH ₂ -MCM-41t (d) Post-	
	NH ₂ -Cal-MCM-41t (e) Post-NH ₂ -Extracted-MCM-41t	
4.3	Zeta potential distributions of non-functionalised and amino-functionalised	46
	MCM-41 nano-carriers synthesised using sodium silicate. (a) Calcined-	
	MCM-41s (b) Extracted-MCM-41s (c) Co-NH2-MCM-41s (d) Post-NH2-Cal-	
	MCM-41s (e) Post-NH ₂ -Extracted-MCM-41s	
4.4a	N_2 adsorption-desorption isotherms of (a) As-synthesised-MCM-41t (b)	47
	calcined -MCM-41t (c) Extracted-MCM-41t (d) Co-NH2-MCM-41t (e) Post-	
	NH ₂ -calcined-MCM-41t (f) Post-NH ₂ -extracted-MCM-41t.	
4.4b	N_2 adsorption-desorption isotherms of (a) As-synthesised-MCM-41s (b)	48
	Calcined-MCM-41s (c) Extracted-MCM-41s (d) Co-NH ₂ -MCM-41s (e) Post-	
	NH ₂ -calcined-MCM-41s (f) Post-NH ₂ -extracted-MCM-41s.	

4.5	FTIR spectra of nano-carriers synthesised using (a) TEOS and (b) Sodium	49
	silicate as silica source.	
4.6	TGA Curves of Nano-carriers Synthesised using TEOS as Silica Source.	51
4.7	TGA Curves of nano-carriers synthesised using sodium silicate as silica	52
	source.	
4.8	FE-SEM images of MCM-41t nano-carriers (a) before calcination (b) after	53
	calcination (c) after solvent extraction (d) amino functionalised MCM-41	
	before solvent extraction (e) amino functionalised MCM-41 after solvent	
	extraction.	
4.9	FE-SEM images of MCM-41s nano-carriers (a) before calcination (b) after	54
	calcination (c) after solvent extraction (d) amino functionalised MCM-41	
	before solvent extraction (e) amino functionalised MCM-41 after solvent	
	extraction.	
4.10	FE-SEM images of post grafted MCM-41t and MCM-41s nano-carriers (a)	54
	Post-NH ₂ -cal-MCM-41t (b) Post-NH ₂ -extracted-MCM-41t (c) Post-NH ₂ -cal-	
	MCM-41s (d) Post-NH ₂ -Extracted-MCM-41s	
4.11	X-ray diffraction patterns of INH, Cu-INH and Fe-INH	55
4.12	FE-SEM images of (a) INH (b) Cu-INH (c) Fe-INH	56
4.13	FTIR spectra of INH, Cu-INH and Fe-INH	56
4.14	TGA Curves of (a) Cu-INH (b) Fe-INH	57
4.15	XRD patterns for INH and its metal complexes encapsulated in (a) calcined-	58
	MCM-4t (b) Post-NH ₂ -MCM-41t and (c) Cal-MCM-41s (d) Post-NH ₂ -MCM-	
	41s	
4.16	Zeta potential distributions of INH, Cu-INH and Fe-INH encapsulated in	60
	Calcined-MCM-41t and Post-NH ₂ -MCM-41t (a) Calcined-MCM-41t + INH	
	(b) Calcined-MCM-41t + Cu-INH (c) Calcined-MCM-41t + Fe-INH (d) Post-	
	NH ₂ -MCM-41t + INH (e) Post-NH ₂ -MCM-41t + Cu-INH (f) Post-NH ₂ -MCM-	
	41t + Fe-INH	
4.17	Zeta potential distributions of INH, Cu-INH and Fe-INH encapsulated in	60
	Calcined-MCM-41s and Post-NH2-MCM-41s (a) Calcined-MCM-41s + INH	
	(b) Calcined-MCM-41s + Cu-INH (c) Calcined-MCM-41s + Fe-INH (d) Post-	
	NH_2 -MCM-41s + INH (e) Post-NH ₂ -MCM-41s + Cu-INH (f) Post-NH ₂ -MCM-	
	41s + Fe-INH	

4.18	N_2 adsorption-desorption isotherms of (a) Calcined-MCM-41t+INH (b)	62
	Calcined-MCM-41t+Cu-INH (c) Calcined-MCM-41t + Fe-INH (d) Post-NH ₂ -	
	MCM-41t+INH (e) Post-NH ₂ -MCM-41t +Cu-INH (f) Post-NH ₂ -MCM-	
	41t+Fe-INH	_
4.19	N_2 adsorption-desorption isotherms of (a) Calcined-MCM-41s+INH (b)	63
	Calcined-MCM-41s+Cu-INH (c) Calcined-MCM-41s+Fe-INH (d) Post-NH ₂ -	
	MCM-41s+ INH (e) Post-NH ₂ -MCM-41s + Cu-INH (f) Post-NH ₂ -MCM-41s	
	+ Fe-INH	
4.20	FTIR Spectra for isoniazid metal complexes encapsulated in (a) Calcined-	64
	MCM-41t and (b) Post-NH ₂ -MCM-41t	
4.21	FTIR Spectra for isoniazid metal complexes encapsulated in (a) Calcined-	65
	MCM-41s and (b) Post-NH ₂ -MCM-41s	
4.22	FE-SEM images and particle size distribution histograms of (a) Calcined-	67
	MCM-41t (b) Cal-MCM-41t+INH (c) Cal-MCM-41t+Cu-INH and (d) Cal-	
	MCM-41t+Fe-INH.	
4.23	FE-SEM images and particle size distribution histograms of (a) Post-NH ₂ -	69
	calcined-MCM-41t (b) Post-NH ₂ -Cal-MCM-41t+INH (c) Post-NH ₂ -Cal-	
	MCM-41t+Cu-INH and (d) Post-NH2-Cal-MCM-41t+Fe-INH.	
4.24	FE-SEM images and particle size distribution histograms of (a) Calcined-	70
	MCM-41s (b) Cal-MCM-41s+INH (c) Cal-MCM-41s+Cu-INH and (d) Cal-	
	MCM-41s+Fe-INH	
4.25	FE-SEM images of (a) Post-NH2-calcined-MCM-41s (b) Post-NH2-Cal-MCM-	71
	41s+INH (c) Post-NH2-Cal-MCM-41t+Cu-INH and (d) Post-NH2-Cal-MCM-	
	41s+Fe-INH.	
4.26	TEM images of (a) Cal-MCM-41t (b) Cal-MCM-41t+Cu-INH (c) Cal-MCM-	72
	41t + Fe-INH.	
4.27	TEM images of (a) Post-NH2-Cal-MCM-41t (b) Post-NH2-Cal-MCM-41t+Cu-	73
	INH (c) Post-NH ₂ -Cal-MCM-41t + Fe-INH	
4.28	Elemental Mapping of (a) Cal-MCM-41t+INH (b) Cal-MCM-41t+Cu-INH (c)	74
	Cal-MCM-41t+Fe-INH.	
4.29	TEM images of (a) Cal-MCM-41s (b) Cal-MCM-41s+Cu-INH (c) Cal-MCM-	75
	41s + Fe-INH	
4.30	TEM images of (a) Post-NH ₂ -Cal-MCM-41s (b) Post-NH ₂ -Cal-MCM-41s+Cu-	76
	INH (c) Post-NH ₂ -Cal-MCM-41s + Fe-INH	

4.31 TGA curves of (a) Cal-MCM-41t + INH, Cal-MCM-41t + Cu-INH and Cal-77 MCM-41t + Fe-INH (b) Post-NH₂-MCM-41t + INH, Post-NH₂-MCM-41t + Cu-INH and Post-NH₂-MCM-41t + Fe-INH (c) Cal-MCM-41s + INH, Cal-MCM-41s + Cu-INH and Cal-MCM-41s + Fe-INH (d) Post-NH₂-MCM-41s + INH, Post-NH₂-MCM-41s + Cu-INH and Post-NH₂-MCM-41s + Fe-INH Standard calibration curves of (a) INH (b) Cu-INH and (c) Fe-INH 4.32 78 4.33 Standard Calibration Curves of (a) INH at pH=7.4 (b) INH at pH=5.4 (c) Cu-80 INH at pH=7.4 (d) Cu-INH at pH=5.4 (e) Fe-INH at pH=7.4 (f) Fe-INH at pH=5.4 4.34 In-vitro release of INH, Cu-INH and Fe-INH from (a) Cal-MCM-41t + INH, Cal-81 MCM-41t + Cu-INH and Cal-MCM-41t+Fe-INH pH 7.4 and 5.4 (b) Post-NH₂-Cal-MCM-41t+INH, Post-NH₂-Cal-MCM-41t+Cu-INH and Post-NH₂-Cal-MCM-41t+Fe-INH pH 7.4 and 5.4 (c) Cal-MCM-41s + INH, Cal-MCM-41s + Cu-INH and Cal-MCM-41s+Fe-INH pH 7.4 and 5.4 (d) Post-NH₂-Cal-MCM-41s+INH, Post-NH₂-Cal-MCM-41s+Cu-INH and Post-NH2-Cal-MCM-41s+Fe-INH pH 7.4 and 5.4

LIST OF SCHEMES

SCHEME	LIST OF SCHEME	PAGE
Scheme 1	General Rection Scheme for Sol Gel Synthesis	17

LIST OF ACRONYMS AND ABBREVIATION

APTES:	3-aminopropyl triethoxysilane
BET:	Brunauer-Emmett-Teller
cryo-TEM:	cryo-Transmission Electron Microscopy
Cu-INH:	Copper (II) metal complex of isoniazid
CVD:	Chemical Vapour Deposition
FTIR:	Fourier Transform Infra-red Spectroscopy
Fe-INH:	Iron (III) metal complex of isoniazid
HIV:	Human Immunodeficiency Virus
INH:	Isoniazid
IUPAC:	International Union of Pure and Applied Chemistry
LTBI:	Latent Tuberculosis Infection
MABA:	Micro plate Alamar Blue Assay
MCM-41:	Mobile Crystalline Material-41
MCM-48:	Mobil Crystalline Material-48
MCM-50:	Mobil Crystalline Material-50
MDR:	Multi Drug Resistant
MDR-TB:	Multi-Drug Resistant Tuberculosis
MIC:	Minimum Inhibitory Concentration
MOFs:	Metal Organic Frameworks
MONs:	Mesoporous Organosilica Nanoparticles
MPTES:	3-mercaptopropyl trimethoxysilane
MSNs:	Mesoporous Silica Nanoparticles
MTB:	Mycobacterium Tuberculosis Bacterium
PBS:	Phosphate Buffered Saline
PMOs:	Periodic Mesoporous Organosilicas
PVD:	Physical Vapor Deposition
SAXS:	Small Angle X-ray Scattering

SBA-15:	Santa Barbara Amophorous-15
SBA-16:	Santa Barbara Amorphous-16
SDAs	Structure Directing Agents
SEM:	Scanning Electron Microscopy
TEM:	Transmission Electron Microscopy
TEOS:	Tetraethyl Orthosilicate
TMOS:	Tetramethylorthosilicate
TGA:	Thermogravimetric Analysis
TDR-TB:	Total Drug Resistant Tuberculosis
WHO:	World Health Organisation
XDR:	Extensively Drug Resistant
XDR -TB:	Extensively-Drug Resistant Tuberculosis
XRD:	X-ray Diffraction

ABSTRACT

The use of conventional drug delivery systems for the treatment and management of tuberculosis comes with setbacks that require the development of advanced drug delivery systems for the improved delivery of anti-tubercular agents. Mesoporous silica nanoparticles (MCM-41) have been of great interest as they possess distinctive properties that give them an edge over conventional drug delivery systems. This study focuses on the sol-gel synthesis and amino functionalisation of mesoporous silica nanoparticles via co-condensation and postgrafting methods to deliver anti-tubercular agents such as isoniazid and its metal complexes. Non-functionalised and amino functionalised MCM-41 nano-carriers were synthesised from two silica sources (tetra ethyl orthosilicate and sodium silicate) and characterized with X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) surface analysis, Fourier-transform infrared spectroscopy (FT-IR), CHNS analysis, Scanning electron microscopy (SEM), Transmission Electron Microscopy (TEM) and Thermo-gravimetric analysis (TGA). The physical and morphological properties of the drug loading and release studies of the nanocarriers synthesised from different silica sources were compared. Non-functionalised and amino functionalised nano-carriers synthesised with Tetra Ethyl Ortho Silicate were revealed to have better well-ordered pores than those synthesised using sodium silicate from their XRD analysis. The morphological characterisation of the nano-carriers using SEM showed that the surfactant removal methods (calcination and acid/ethanol extraction) affected their structural properties. Nano-carriers, Cal-MCM-41t&s + Cu-INH and Post-NH₂-Cal-MCM-41t&s + Cu-INH had high drug entrapment efficiencies of 87.65%, 76.23% and 92.82%, 90.2% with loading capacities of 17.53%, 15.25% and 18.66%, 18.05%. Amino-functionalised nanocarriers were shown to improve the drug loading and entrapment efficiency of the nanocarriers. The *in-vitro* release study revealed a steady release rate of anti-tubercular agents INH, Cu-INH, and Fe-INH. Cal-MCM-41t&s + Cu-INH and Post-NH₂-Cal-MCM-41t&s + Cu-INH released the highest amount of INH and its metal complexes. Cal-MCM-41t + Cu-INH, Post-NH2-Cal-MCM-41t + Cu-INH, Cal-MCM-41s + Cu-INH and Post-NH2-Cal-MCM-41s + Cu-INH released 30.97%, 36.43%, 41.98% and 50.82% at a pH of 7.4 while at a pH of 5.4, they released 39.54%, 47.26%, 52.82% and 66.74% respectively after 14 days. The findings showed that using non-functionalised and amino-functionalised mesoporous silica nano-carriers is a promising drug delivery system for delivering isoniazid and its metal complexes. However, other surface-functionalised MCM-41 nano-carriers should also be studied.

KEYWORDS: Tuberculosis, Mesoporous silica nano-carriers, Isoniazid, Metal complexes Drug delivery.