
Machine learning approach for identifying suspicious uniform resource locators (URLs) on
Reddit social network

Nureni Ayofe Azeez1, Ahmed Oladapo Lawal1, Sanjay Misra 2* and Jonathan Oluranti3

1Department of Computer Sciences, Faculty of Science, University of Lagos, Lagos, Nigeria
2Department of Computer Science and Communication, Ostfold University College, Halden, Norway
3Center of ICT/ICE Research, CUCRID, Covenant University, Ota, Ogun, Nigeria
*Corresponding author email: ssopam@gmail.com

The applications and advantages of the Internet for real-time information sharing can never be over-emphasized. These
great benefits are too numerous to mention but they are being seriously hampered and made vulnerable due to phishing
that is ravaging cyberspace. This development is, undoubtedly, frustrating the efforts of the Global Cyber Alliance – an
agency with a singular purpose of reducing cyber risk. Consequently, various researchers have attempted to proffer
solutions to phishing. These solutions are considered inefficient and unreliable as evident in the conflicting claims by
the authors. Against this backdrop, this work has attempted to find the best approach to solving the challenge of
identifying suspicious uniform resource locators (URLs) on Reddit social networks. In an effort to handle this
challenge, attempts have been made to address two major problems. The first is how can the suspicious URLs be
identified on Reddit social networks with machine learning techniques? And the second is how can internet users be
safeguarded from unreliable and fake URLs on the Reddit social network? This work adopted six machine learning
algorithms – AdaBoost, Gradient Boost, Random Forest, Linear SVM, Decision Tree, and Naïve Bayes Classifier – for
training using features obtained from Reddit social network and for additional processing. A total sum of 532,403 posts
were analyzed. At the end of the analysis, only 87,083 posts were considered suitable for training the models. After the
experimentation, the best performing algorithm was AdaBoost with an accuracy level of 95.5% and a precision of 97.57%.

Keywords: Internet, machine learning algorithms, phishing, Reddit, uniform resource locators

Introduction
Phishing remains a threat to the cyber world to date. It is
referred to as a dishonest way employed to obtain vital,
classified, and sensitive information from a system,
usually by pretending to be an authentic entity in a given
system (Ramzan 2010; Abdelhamid, Thabtah, and Abdel-
jaber 2017). The information of interest to the phisher
may include login details, credit card details, etc. A
common method of performing such activity is by posting
the URLs of such malicious websites on social networking
platforms (Basnet and Sung 2011; Clement 2019a). Reddit,
pronounced /ˈrɛdɪt/ is one of those online social networks; it
is home to thousands of communities, millions of threads,
and endless conversations (Clement 2019b). These
threads’ topics can vary from breaking news, TV fan the-
ories, or sports. According to Arielle (2018), as of the end
of the year 2018, Reddit had an online population of
about 330 million monthly active users, making it a good
platform for targeting people for phishing attacks. Accord-
ing toMediakix (2017), it is the 5thmost famous website in
the United States of America. Among the industries
affected, social network accounts for 3.1% and some of
the industries can be traced to the information cybercrim-
inals obtain from social network attacks.

According to Mediakix (2017), over 168 billion pages
are explored on Reddit each year, coupledwith the fact that
over 50% of Reddit posts contains URLs, an avenue for
phishing attacks has been created for cybercriminals as it
will be hard for a user to be able to differentiate between
legitimate and phishing URLs on such a website.

Research carried by Sheng et al. (2010) suggests that
females are more vulnerable to phishing attacks than
males, with ages ranging between 18 and 25. Given that
the percentage of women on Reddit in the United States
is 8%, that is approximately 26.4million users, and the per-
centage of users within the age group of 18–29 is 22% for
both males and females, that is approximately 72.6 million
users. And that is the data that we were able to obtain from
the Internet. The figures above indicate a large number of
potential victims of phishing attacks.

Phishing attacks generally leverage on the vulnerabil-
ities of human users, so for this reason, some additional
support systems are needed to protect the systems and
users. To this end, two main groups of protection mechan-
isms exist, namely, the user awareness approach and soft-
ware detection (Sahingoz et al. 2019). The software-based
protection or detection method is preferred since an
attacker can target even professional users using new
techniques. The software-based system can also serve as
a decision support system for the user. Machine learning
is a popular software-based technique used to detect mal-
icious websites (Silaa, Jazri, and Muyingi 2021).

Other methods include Heuristics, Blacklist/Whitelist,
Visual Reality/ content evaluation, and hybrid approaches
(Islam and Chowdhury 2016; Jain and Gupta 2018a; Sahin-
goz et al. 2019).This idea is that detectionof aphishingattack
can be viewed as a simple classification problem.A learning-
based detection system requires training data that contain
many features related to phishing and non-phishing classes
(Kamal and Manna 2018; Preethi and Velmayil 2016).

African Journal of Science, Technology, Innovation and Development is co-published by NISC Pty (Ltd) and Informa Limited (trading as Taylor & Francis Group)

This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/
licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not
altered, transformed, or built upon in any way.

African Journal of Science, Technology, Innovation and Development, 2022
Vol. 14, No. 6, 1618–1626, https://doi.org/10.1080/20421338.2021.1977087
© 2021 The Authors

mailto: ssopam@gmail.com
http://orcid.org/0000-0002-3556-9331
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.tandfonline.com
http://crossmark.crossref.org/dialog/?doi=10.1080/20421338.2021.1977087&domain=pdf&date_stamp=2022-10-19

This work attempts to adopt a machine learning
approach for identifying suspicious URLs on Reddit
social networks. To carry out this work, six machine
learning algorithms were considered. The algorithms con-
sidered are: AdaBoost, Gradient Boost, Random Forest,
Linear SVM, Decision Tree, and Naïve Bayes Classifier.

The rest of the paper is arranged as follows. Related
works about phishing are discussed in the next section,
while the section thereafter focuses on the methodology
for detecting phishing attacks based on URLs in which
the techniques employed as well as the performance
evaluation metrics are described. The section that
follows presents the results obtained from the numerous
experiments carried out in the study, while the last
section concludes the study with some recommendations
on the future direction the work may be extended
(Katuri and Gorantla 2021). The paper is structured as
per guidelines provided by Misra (2020).

Related works
Several studies exist in the literature that have employed
machine learning approaches for the phishing detection
system. Some of the studies include the work done by
Jeeva and Rajsingh 2016, Babagoli, Aghababa, and
Solouk 2018, Buber, Diri, and Sahingoz 2017, Feng
et al. 2018, Smadi, Aslam, and Zhang 2018, Jain and
Gupta 2018b, and Peng, Harris, and Sawa 2018. Moham-
mad, Thabtah, and McCluskey (2012) carried out a study
based on seventeen (17) strategies for recognizing phish-
ing attacks. None of the adopted machine learning algor-
ithms have never been adopted concurrently on the Reddit
social network.

Jeeva and Rajsingh (2016) applied apriori and predic-
tive apriori algorithms to generate rules from some of the
URL features they defined. The method achieved fast
detection with rules. However, the dataset used was
limited to 200 legitimate URLs and 1200 phishing
URLs. Babagoli, Aghababa, and Solouk (2018) also con-
structed a meta-heuristic-based nonlinear regression
algorithm. Two feature selection methods were employed,
namely decision and wrapper. The approach involved
third-party services with about 20 features and a limited
dataset of 11,055 total data of both phishing and legiti-
mate webpages (Chiew et al. 2020).

Buber, Diri, and Sahingoz (2017) used natural
language processing (NLP) to create some features
which were then used along with three machine learning
algorithms to classify some URLs. The approach achieved
an improvement in the performance of about 7% over the
previous study. Their study had a limited dataset of about
3717 malicious URLs and 3640 legitimate URLs.

Feng et al. (2018) also constructed a classification
system based on Neural Network and Monte Carlo algor-
ithms. The system did not depend on third-party services
and was based on real-time detection. The approach also
achieved an improvement in the accuracy and stability
of detection. However, the approach required the down-
load of the entire page as well as the use of third-party
services.

Smadi, Aslam, and Zhang (2018) merged Reinforce-
ment learning and Neural Network to develop a

classification system for phishing email detection. The
approach employed was able to detect phishing emails
before the users found out. Also, the approach did not
depend on third-party services and was based on real-
time detection. However, the approach had a limited
dataset for which 50% of the 9118 data were phishing.

Jain and Gupta (2018b) applied machine learning
techniques to achieve client-side detection of phishing
webpages. The approach did not depend on third-party
services, but the entire URL page had to be downloaded
to access the source code. Also, only a total of 19 features
were available to classify the URLs.

Peng, Harris, and Sawa (2018) developed a phishing
email detection system by combining NLP techniques
and machine learning. NLP was used to detect the accu-
racy and suitability of each sentence. The approach was
limited by the fact that the text of the emails had to be ana-
lyzed first. The dataset used was also limited, comprising
of 5009 phishing emails and 5000 legitimate emails.

Rao and Pais (2018) employed (PCA) principal com-
ponent analysis and Random Forest Classifier using
image analysis and new heuristic features. The approach
had language independence and high detection accuracy.
However, only a limited dataset comprising 2119 phishing
data and 1407 legitimate data was used.

Niakanlahiji, Chu, and Al-Shaer (2018) used Phish-
Mon, a feature-rich machine learning model in detecting
phishing URLs. The PhishMon makes use of a set of 15
features that are efficiently generated without the involve-
ment of any third-party application like WHOIS servers
or search engines. The advantage of this framework lies
in its ability to capture various features of legitimate web-
sites and their supporting web infrastructures. The simu-
lation of these features requires a significant amount of
time and effort. The dataset used contained 17,500 distinct
benign webpages and 4800 distinct phishing. It obtained
an accuracy of 95.4% with a false positive rate of 1.3%.

Muppavarapu, Rajendran, and Vasudevan (2018) used
a combination of two approaches namely Resource
Description Framework (RDF) models and ensemble
learning methods for the purpose of classifying websites.
A total of 20 different features were used with a dataset
comprising of 1256 phishing webpages and 800 legiti-
mate sites. It achieved a true positive rate of 98.8%,
with a false positive rate of 1.5%. The accuracy obtained
was 98.68%. The strength of the model lies in the fact that
it has almost zero false negatives.

Vanhoenshoven et al. (2016) used binary classification
for the detection of fraudulent URLs. The performance
comparison of a number of classifiers such as Random
Forest, Decision Trees, K-Nearest Neighbors, Multi-
Layer Perceptron, Naïve Bayes, and Support Vector
Machines, was carried out. The study employed a public
dataset containing 2.4 million URLs and about 3.2
million features. The results from numerical simulations
indicate a number of classification methods achieved an
acceptable level of prediction even when feature selection
had not been applied. In all, Random Forest and Multi-
Layer Perceptron had the highest accuracy values.

Al-Janabi (2018) used multiple supervised machine
learning classification models for the detection of

African Journal of Science, Technology, Innovation and Development 1619

suspicious URLs on online social networks. The social
network used was Twitter. The machine learning algor-
ithms used include Gradient Boosting Trees, Random
Forest, XGBoost, and Extra Trees. A set of features
were applied to detect Twitter posts that contain suspi-
cious URLs. Some of the features applied included
webpage content, Twitter metadata, domain WHOIS
record, and URL lexical and redirection data. It was dis-
covered in order to avoid over-fitting while optimizing
the performance of the model, it was necessary to
control the complexity parameters of the Random Forest
cCassifier. This idea was discovered after the analysis of
the hyper-parameters of tree-based models and the signifi-
cance of parameters used such as the depth of trees, the
minimum size of leaf nodes on classification performance,
and a number of trees were examined. Their major shared
advantage was in the fact that they both were statistically
better than the highest singular model. An online suspi-
cious URL detection system ‘SuspectRate’ was built
based on the research.

Sananse and Sarode (2015) demonstrated the use of
two machine learning algorithms namely: Random
Forest and Content-based algorithm in tackling the
problem of phishing URL detection. They collated their
phishing URL dataset from PhishTank (A community-
based phish confirmation system on the Internet). Non-
phishing URLs were collected from various credible
sources. They grouped them into training and testing cat-
egories for training the models. For feature extraction,
they extracted 24 lexical features, 48 WHOIS features,
Alexa Rank, PhishTank-based, and PageRank features
were extracted. The model was trained using 500 URLs
and tested using 100 URLs. They applied web mining
heuristics on the Random Forest algorithm which
yielded a precision of more than 90% with False Negative
Result and False Positive Result rates of less than 1%. The
Precision obtained in the case of a Content-based algor-
ithm was less than 65%. They concluded that for future
works, there was still a need to work on a selection of
more efficient features for the Content-based algorithm
to increase the Precision and decrease the with False
Negative Result and False Positive Result rates. The
webpage content-based features can be integrated to
make the system more robust.

Ali (2017) compared K-Nearest Neighbors (KNN),
Random Forest (RF), Naïve Bayes (NB), Support
Vector Machine (SVM), Back-Propagation Neural Net-
works (BPNN), Radial basis function network (RBFN),
and C4.5 algorithms for the detection of phishing URLs.
The dataset used comprised 4898 illegitimate/phishing
URLs and 6157 legitimate URLs used for the training
and testing of the machine learning models. The source
of the dataset used the UCI Machine Learning Repository.
Five-fold cross-validation in conjunction with wrapper-
based feature selection was used to evaluate the perform-
ances of the classifiers for the detecting of phishing URLs.
The performance of the machine learning algorithms was
carried after applying Information Gain and Principal
Component Analysis. The results indicate that KNN,
BPNN, and RF achieved the best Correct Classification
Rate (CCR) while NB and RBFN had the lowest CCR

for detecting phishing websites. Based on the statistical
analysis, it was evident that the improvement of the
CCRs of the machine learning classifiers was achieved
by applying the wrapper-based features selection with
KNN, C4.5, NB, and RF having the least CCR improve-
ment. The analysis also demonstrated that the wrapper-
based features selection method had a higher effect on
machine learning models than PCA and IG methods.

In the work of Zhao et al., in 2021, they considered the
prediction of cyberattacks as an essential approach for
achieving efficient and stable cyberspace security. Doing
this, they believed, will demystify any form of attack
and proactively handle oncoming cyber threats. To
achieve this, they proposed a framework named HinAp
to predict cyberattack preference using attributed hetero-
geneous attention networks and transductive learning.
They finally constructed an automated model for predict-
ing cyberattack preferences. Experimental results based
on real-world data prove that HinAp has an accuracy of
89.12%.

Table 1 provides a summary of all the reviewed
articles.

Having noticed some of the challenges in a couple of
the existing literature, the authors, therefore, deemed it
necessary to carry out this work with the sole aim of
addressing the research questions hereunder. To handle
this challenge, two main research questions were raised:
how can the suspicious URLs be identified on Reddit
social networks by using machine learning techniques?
And how can the internet users be safeguarded from unre-
liable URLs on Reddit social networks? This paper uses
the machine learning technique to identify fake and suspi-
cious URLs on Reddit social network.

Methodology
The methodology adopted comprises four phases, namely,
a collection of data, extraction of features, training of the
model, and evaluation of performance. These are
described in the sections that follow.

Data collection and labelling
This phase describes how the data was collected and
classified the posts into safe and malicious posts. The
data used in this project is obtained from a public real-
time stream of Reddit posts using a python library
called ‘praw’. Requests were made during a course of
two months at different time intervals to achieve some
level of randomization. Each result fetched was stored
in a csv file. A total of 532,403 posts were obtained
during the data collection.

Figure 1 presents the data collection process of the train-
ing dataset. The architecture is very simply to understand.

The machine learning models to be built for this project
required a supervised machine learning approach, which
means that the dataset used in training the models should
be classified into legitimate URLs and phishing URLs.

In order to achieve this, the URLs in the dataset had to
be tested for their validity on VirusTotal.com. Based on
the status of each URL, the posts are stored in two differ-
ent tables, one for posts with legitimate URLs and the
other for posts with malicious URLs. The Microsoft

1620 Azeez, Lawal, Misra and Oluranti

SQL Server database was used to store the datasets. For
further scrutiny, the URLs in the table containing legiti-
mate posts were checked to confirm their availability on

Reddit. These posts were then moved to the table contain-
ing malicious posts. This process was done multiple times
during the process of collecting data due to the fact that
the malicious posts are not always detected early. At the
end of the procedure, a total of 532,403 samples were
obtained for both classes. After classification, there
were 81,820 samples of legitimate posts and 5263
samples of malicious posts. To tackle the issue of
having imbalanced classes of data, a 4:1 ratio was used
for both classes as that was a universally agreed ratio
for class balancing. To achieve the 4:1 ratio, the dataset
of legitimate posts was under-sampled. A high-speed
4 g internet-enabled device and an Intel Core i5 8GB
RAM were used to collate the samples in the datasets.
The link to the code repository is inserted in Footnote 1.1

In order to provide a professional way of sharing code
repository and assist in reproducibility, GitHub was
adopted.

Extraction of feature and engineering
In machine learning, features refer to the characteristics of
a particular entity that can be used to differentiate it from
another entity. Feature extraction in machine learning is
the process of obtaining those characteristics from the
entity. These features can be obtained from sources. For
the purpose of this project, the feature sources are from
the Reddit API stream and features that can be extracted
through extra processing processes. A total of 12 features

Table 1: Summary of the reviewed articles.

Author Year Approach Strength Weakness
Jeeva and
Rajsingh

2016 Applied apriori and predictive apriori generation
of algorithms

It detects Phishing and
legitimate webpages

20 features and a limited
dataset

Buber et al. 2017 Natural Language Processing (NLP) with three
machine learning algorithms

7% performance
improvement over the
previous study

limited dataset

Feng et al. 2018 Neural Network and Monte Carlo algorithms Improved accuracy and
stability

The use of third-party
services.

Smadi et al. 2018 Neural Network and Reinforcement learning Independent of third party
services

limited dataset

Jain and Gupta 2018 Machine-learning techniques The approach did not
depend on third-party
services

A few features were
considered

Peng et al. 2018 NLP techniques and machine learning Relatively effective for
detection

Limited amount of
dataset

Rao and Pais 2018 Principal component analysis (PCA) and
Random Forest Classifier

Language independence
and high detection
accuracy

Limited amount of
dataset

Niakanlahiji et al. 2018 PhishMon – a feature-rich machine learning
model

Ability to capture various
features of legitimate
websites

A few features were
considered

Muppavarapu
et al.

2018 Resource Description Framework (RDF) models
and ensemble learning

It has almost zero false
negatives

No real-life
experimentation

Vanhoenshoven
et al.

2016 Random Forest, Decision Trees, K-Nearest
Neighbors, Multi-Layer Perceptron, Naïve Bayes
and Support Vector Machines

It achieved an acceptable
level of prediction

Lack of provision of
public code repository
link

Al-Janabi 2018 Gradient boosting trees, random forest, XGBoost,
and extra trees

Statistically better than the
highest singular model

A few features were
considered

Sananse and
Sarode

2015 Random Forest and Content-based algorithm A precision of more than
90%

Limited and inefficient
features

Ali 2017 Random Forest (RF), Naïve Bayes (NB), Back-
Propagation Neural Networks (BPNN), Support
Vector Machine (SVM), K-Nearest Neighbors
(KNN), Radial basis function network (RBFN),
and C4.5 algorithms

A relatively better
performance

There is no novelty in the
work

Figure 1: Data collection process of the training dataset.

African Journal of Science, Technology, Innovation and Development 1621

are being used. The features obtained from Reddit require
no additional processing, unlike the features in Table 2.
The proposed feature sources are given in Table 3.

Model training/machine learning
The problem of phishing URL detection is a type of
classification problem and, therefore, the three machine
learning algorithms that are being used in building the
models are suitable for classification problems. A classifi-
cation problem deals with the task of differentiating one
entity from another. It always has its final result in the
form of a discrete value as opposed to a regression
problem. The algorithms used are AdaBoost, Gradient
Boost, Random Forest, Linear SVM, Decision Tree, and
Naïve Bayes Classifier.

Random Forest
This is a classification and regression machine learning
algorithm. When used for classification purposes, it oper-
ates by building multiple decision trees and selecting the
model class as a result. It is one of the most accurate
machine learning algorithms available as it can even func-
tion with high accuracy in situations where a large chunk
of data is missing. It performs with high efficiency on
large databases. The Random Forest algorithm is based
on the entropy values with respect to samples and
classes. The major drawback of the Random Forest is
its complex nature, which requires more computational
resources due to many decision trees compared to other
algorithms (Azeez and Vyver 2019).

Gradient Boost
This is a classification and regression machine learning
algorithm. The prediction models produced by this
method are in the form of an ensemble of decision trees.
The models are generated in a stage-wise manner before
they are generalized. The idea of gradient boosting is to
build an optimization algorithm that makes use of an
appropriate cost function.

Likewise, with other algorithms, gradient boosting
merges weak ‘learners’ with a single but strong learner
in an iterative manner. It is easiest to explain in the
least-squares regression setting, where the objective is
to ‘teach’ a model F to foresee values of the form
ŷ = F(x) by ensuring that the mean squared error is

reduced
1

n

∑
i

(ŷ i − yi)
2 where i indexes over some train-

ing set of n size of actual values of the output variable y:

. ŷ i = the predicted value F(x)

. yi = the observed value

. n = the number of samples in y

Assuming a gradient boosting algorithm has an M stage.
At each stage m (1 ≤ m ≤ M) of gradient boosting, if
some deficient model Fm (for low m, the model might
return ŷ i = �y, where RHS is the mean of y)
AdaBoost
This stands for adaptive boosting. This algorithm can
work in conjunction with other machine learning algor-
ithms for performance improvement. AdaBoost is said
to be adaptive since it allows learning algorithms that
are weak to be adjusted to favour those instances that
were previously misclassified. AdaBoost is also sensitive
to noise and outliers in data. It is less prone to overfitting
compared to other learning algorithms. A strong learner is
produced since the performance of the weak learning
algorithms will eventually converge. AdaBoost allows
the capture of many of the nonlinear relationships that
occur during training, translating into better prediction
accuracy on the problem of interest.

A boosted classifier is a classifier in the form:

FT (x) =
∑T
t=1

ft(x) (1)

where each ft is a weak learner that takes an object x as
input and returns a value indicating the class of the object.

Each weak learner produces an output hypothesis,-
f (xi), for each sample in the training set. At each iteration-
t a weak learner is selected and assigned a coefficient at

such that the sum training error Et of the resulting t-stage
boost classifier is minimized.

∑
Et =

∑
i

E[Ft−1 (xi)+ ai h(xi)] (2)

Here Ft−1 (x) is the boosted classifier that has been built
up to the previous stage of training, E (F) is some error
function and ft (x) = ath(x) is the weak learner that is
being considered for addition to the final classifier.

Decision Tree Classifier
This is a machine learning technique that is being used for
solving application-related challenges, specifically for
problem classification. It further provides a nonparametric
approach for carrying out partitioning of datasets.

This algorithm gets as input, say a table X and allows
the partition to be recursively performed on the table into
different tables. With partitioning, this algorithm

Table 2: Reddit feature source.

Feature Feature source
Signs of User name User’s Information
Length of User name User’s Information
Age of Account User’s Information
Digits of User name (number) User’s Information
Post Title Post Content

Table 3: Preprocessed feature source.

Feature Feature source
Age of Domain Domain WHOIS Info
Whether it is a secured https? User Info
Length of the Link Post Content
Link letters (number) URL Information
Number of dots in link URL Information
Number of link signs URL Information
Number of digits in link URL Information

1622 Azeez, Lawal, Misra and Oluranti

improves a clean score of the column that is labelled in
each of the partitions. The purity score is a technique
developed on the proportion of the classes of individual
where there is a variety of class labels. As the proportion
of one of the classes increases, the purer and more reliable
the collection is. It has the capability of converting very
large complex datasets into a comprehensive and graphi-
cal display information.

With this algorithm, the entropy value for the data
under consideration can be determined after which the
information gain for an attribute in a dataset can be calcu-
lated. In addition, an excellent performance on a very
large datasets is guaranteed (Azeez et al. 2021).

The entropy of a given information source x, H(x) is
defined as follows:

H(x) =
∑
xeX

p(x) log p (x) (3)

where p(x) is the probability of occurrence of x (Azeez
et al. 2021).

Linear Support Vector Classifier
The classifier assists in fitting the data as the best fit hyper-
plane that divides data into various categories. After
getting the hyperplane, the classifier is supplied with
some attributes to visualize the class that have already
been predicted (Azeez et al., 2019a).

Naïve Bayes Classifier
This classifier is mainly used to carry out prediction of the
possibility that a particular event will happen with the aid
of evidence that is available in the data. The adoption of a
multinomial Naïve Bayes algorithm classifier was
because of its suitability and efficiency for features that
explain discrete frequency counts which is comparable
to the various features of the data that are available in
the dataset obtained.

Given a class of variables or hypothesis (y) and a
dependent feature or evidence (x1, . . . , xn)

Therefore,

P(y|x1, x2, x3xn) = P(y)P(x1, x, x3, xn|y)
P(x1, x, x3,xn)

(4)

where: P(y) are labels P(x) and are comments
P(y|x1, x2, x3xn) is the likelihood of the hypoth-

esis (labels) given the observed evidence.
P(x1, x2, x3xn|y) is the likelihood of the evidence,

given that the hypothesis is true.
P(y) is the likelihood of the hypothesis before observ-

ing the evidence.
P(x1, x2, x3 xn) is the likelihood of the hypoth-

esis considering the new evidence under all possible
hypotheses.

Random Forest
Random Forest is a very dynamic, convenient to use
algorithm that produces a reliable, result without the

usage of hyper-parameter turning. Due to its diversity
and simplicity, it is considered as one of the widely
used algorithms. It can be applied for both regression
and classification tasks. The ‘forest’ it develops is con-
sidered an ensemble of the entire decision trees majorly
trained with the bagging approach. There is an increase
in the overall result with bagging approach because of
the combination of various learning models.

With this algorithm, over-fitting trees into the model is
not allowed, specifically when there more trees.

RFfii =
∑

j norm fiij∑
j[all features,k[all trees normfi jk

(5)

where RF fi sub (i) represents the importance of feature i
determined from all trees in the random forest model. Fi
sub (i,j) is the significance of feature where node of i
and j. i and j are the nodes (Azeez et al. 2019b).

Performance evaluation
The models used are evaluated using the following
properties:

True Positives (TP) – these are entities that are pre-
sumed to be positive and are indeed positive

False Positives (FP) – these are entities that are pre-
sumed to be positive and are actually negative

True Negative (TN) – these are entities that are pre-
sumed to be negative and are indeed negative

False Negative (FN) – these are entities that are pre-
sumed to be negative and are actually positive (Azeez
et al. 2021).

Accuracy:

(TP)+ (TN)

(TP)+ (FP)+ (TN)+ (FN)
(6)

Precision – This the fraction of correct positive or nega-
tive predictions out of the total predicted positive or nega-
tive instances. The denominator could be positive or
negative.

(TN)

(TN)+ (FN)
(7)

Recall – This is the fraction of positive predictions out of
the total actual positive entities. In the formula, (TP) +
(FN) is the actual sum of positive entities in the dataset.
It is also known as the True Positive Rate.

(TP)

(TP)+ (FN)
(8)

Specificity – This is the fraction of negative predictions
out of the total actual negative entities. It is the opposite
of Recall.

(TN)

(TN)+ (FP)
(9)

African Journal of Science, Technology, Innovation and Development 1623

False Positive Rate (FPR) – This is the fraction of all
negative predictions that still yield positive test outcomes.

(FP)

(TN)+ (FP)
(10)

To compute F-score, the following equation was used:

F − score = 2
Precision × Recall
Precision+ Recall

(11)

The Mathews Correlation Coefficient (MCC) is calcu-
lated as:

MCC = TP · TN − FP · FN��
(TP+ FP) (TP+ FN)(TN + FP) TN + FN)

√
(12)

Results
The proposed methodology is built upon a set of 12 fea-
tures obtained by processing the contents of the posts in
the dataset comprising of 81,820 ham posts and 5263
phish posts.

At the end of the implementation, the following expla-
nation summarizes the feedbacks obtained when Random
Forest was considered. A 90% accuracy was obtained.
This implies that Random Forest can identify suspicious
URLs on Reddit social network with 90% accuracy. This
result is further provided with a Precision of 0.95, Recall

of 0.93, F-Score of 0.94 and a False Positive Rate of
0.35. The corresponding values obtained for each of the
performance metrics used – True Positive (TP), False Posi-
tive (FP), True Negative (TN) and False Negative (FN) are
40,213, 2083, 3821 and 2809, respectively. The summary
of this result is provided in Table 4. The results obtained
on other algorithms are completely different.

There is a significant improvement in the result
obtained when the Gradient Boot Cassifier was considered.
The accuracy is 91% while Precision, Recall, F-Score, and
False Positive Rate are 0.97, 0.93, 095, and 0.33, respect-
ively. This classifier is better in terms of performance
when compared with a Random Forest Classifier. With
the dataset used, the corresponding values for each of the
performance metrics used are presented in Table 5.

AdaBoost is undoubtedly the best of all the six classi-
fiers used in this work. It provides an accuracy of 95%.
Table 6 provides Precision, Recall, F-Score, and False
Positive Rate of 0.98, 0.97, 0.97, and 0.17, respectively.
The corresponding values of the metrics are also pre-
sented in Table 6.

Table 7 provides a summary of the results obtained for
all six algorithms.

Figure 2 shows a graphical representation of a com-
parison of the six models with the metrics used.

Conclusion and future works
The act of phishing has been severely exploited by cyber-
criminals over the years since the advent of online social
network platforms. It has cost some users of social

Table 4: Results from Random Forest Classifier.

Random Forest Precision Recall F-Score False Positive Rate
Accuracy = 90 % 0.95 0.93 0.94 0.35

Performance Metric Value
True Positive (TP) 40,213
False Positive (FP) 2083
True Negative (TN) 3821
False Negative (FN) 2809

Table 5: Results from Gradient Boot Classifier.

Gradient Boost Precision Recall F-Score False Positive Rate
Accuracy = 91% 0.97 0.93 0.95 0.33

Performance Metric Value
True Positive (TP) 39,022
False Positive (FP) 1290
True Negative (TN) 2572
False Negative (FN) 2782

Table 6: Results from AdaBoost.

AdaBoost Precision Recall F-Score False Positive Rate
Accuracy = 95% 0.98 0.97 0.97 0.17

Performance Metric Value
True Positive (TP) 47,217
False Positive (FP) 1172
True Negative (TN) 5673
False Negative (FN) 1318

1624 Azeez, Lawal, Misra and Oluranti

networks a lot of money and resources. Individuals and
even organizations are no longer safe when on such plat-
forms. Reddit is a community-based social network plat-
form; it is composed of multiple threads and sub-threads
which have their own sub-threads and so on. It can be
complex to detect phishing activities without the help of
machines. That is where machine learning comes in – to
use machines to detect such malicious activities. Given
that supervised learning was the methodology used, the
models were tested with ham and phish URLs and their
performance metrics were taken and recorded. The fol-
lowing advanced work is currently being proposed for
future work: automatically detect phishing activities
from Reddit on a real-time basis. An attempt is being
made to use Deep Learning with the ensemble for the
detection of suspicious URLs on the Reddit social
network.

Limitations and constraints
While Reddit provides a good stream of live posts, it was
difficult to obtain this data in other languages aside from
Python. A better API for testing URL validity would also
come in handy in speeding up the validation process.

Disclosure statement
No potential conflict of interest was reported by the
authors.

Note
1. https://github.com/soldierlytomcat/RedditCrawler

ORCID iD
Sanjay Misra http://orcid.org/0000-0002-3556-9331

References
Abdelhamid, N., F. Thabtah, and H. Abdel-jaber. 2017.

“Phishing Detection: A Recent Intelligent Machine
Learning Comparison Based on Models Content and
Features.” 2017 IEEE International Conference on
Intelligence and Security Informatics (ISI), 2017: 72–77.
doi:10.1109/ISI.2017.8004877

Ali, W. 2017. “Phishing Website Detection Based on Supervised
Machine Learning with Wrapper Features Selection.”
(IJACSA) International Journal of Advanced Computer
Science and Applications 8 (9): 72–78.

Al-Janabi, M. F. 2018. Detection of Suspicious URLs in Online
Social Networks Using Supervised Machine Learning
Algorithms. Sydney: Keele University.

Arielle, P. 2018. “The Inside Story of Reddit’s Redesign.”Wired,
February 4. https://www.wired.com/story/reddit-redesign/.

Azeez, N. A., T. J. Ayemobola, S. Misra, R. Maskeliūnas, and R.
Damaševičius. 2019a. “Network Intrusion Detection with a
Hashing Based Apriori Algorithm Using Hadoop
MapReduce.” Computers 8 (4): 86.

Azeez, N. A., O. E. Odufuwa, S. Misra, J. Oluranti, and R.
Damaševičius. 2021. “Windows PE Malware Detection
Using Ensemble Learning.” Informatics 2021 (8): 10.
doi:10.3390/informatics8010010.

Table 7: Comparison of AdaBoost, Gradient Boost, Random Forest, Linear SVM, Decision Tree, and Naïve Bayes Classifier models.

False Positive Rate F-Score Precision Recall Accuracy Spec AUC MCC
AdaBoost 0.17122 0.974312 0.97578 0.972844 0.955038 0.988 0.989 0.977
Gradient Boost 0.33402 0.950725 0.96800 0.933451 0.910831 0.923 0.945 0.967
Random Forest 0.33001 0.94020 0.95030 0.93002 0.90030 0.924 0.955 0.956
Linear SVM 0.45001 0.93005 0.95400 0.95401 0.94300 0.930 0.965 0.946
Decision Tree 0.32002 0.94060 0.95504 0.95703 0.94700 0.934 0.966 0.936
Naïve Bayes Classifier 0.37010 0.96010 0.95806 0.95504 0.94200 0.926 0.967 0.962

Figure 2: Graphical representation of a comparison of six models with the metrics.

African Journal of Science, Technology, Innovation and Development 1625

https://github.com/soldierlytomcat/RedditCrawler
http://orcid.org/0000-0002-3556-9331
https://doi.org/10.1109/ISI.2017.8004877
https://www.wired.com/story/reddit-redesign/
https://doi.org/10.3390/informatics8010010

Azeez, N. A., B. B. Salaudeen, S. Misra, R. Damasevicius, and R.
Maskeliunas. 2019b. “Identifying Phishing Attacks in
Communication Networks using URL Consistency
Features.” International Journal of Electronic Security and
Digital Forensics (InderScience). https://www.inderscience.
com/info/ingeneral/forthcoming.php?jcode=ijesdf.

Azeez, N. A., and C. V. Vyver. 2019. “Verifying Literal and
Conceptual Consistency for Anti-Phishing.” IST-Africa
2019 In Proceedings of Conference Nairobi, Kenya, 08-10
May 2019, edited by Paul Cunningham and Miriam
Cunningham. IIMC International Information
Management Corporation.

Babagoli, M., M. P. Aghababa, and V. Solouk. 2018. “Heuristic
Nonlinear Regression Strategy for Detecting Phishing
Websites.” Soft Computing 3: 1–13.

Basnet, R., and A. Sung. 2011. “Learning to Detect Phishing
Webpages.” Journal of Internet Services and Information
Security 4 (3): 21–39.

Buber, E., B. Diri, and O. K. Sahingoz. 2017. “NLP Based
Phishing Attack Detection from URLs.” In Intelligent
Systems Design and Applications, edited by A. Abraham,
P. K. Muhuri, A. K. Muda, and N. Gandhi, 608–618.
Cham: Springer International PUBLISHING.

Chiew, K. L., C. L. Tan, K.Wong, K. S. C. Yong, andW. K. Tiong.
2020. “A newHybrid Ensemble Feature Selection Framework
for Machine Learning-Based Phishing Detection System.”
Information Sciences 484 (2019): 153–166.

Clement, J. 2019a. “Online Industries Most Targeted by
Phishing Attacks as of 4th Quarter 2018.” Accessed from
Statista https://www.statista.com/statistics/266161/
websites-most-affected-by-phishing/.

Clement, J. 2019b. “Percentage of U.S. Adults Who Use Reddit
as of February 2019, by Age Group.”Accessed from Statista
https://www.statista.com/statistics/261766/share-of-us-
internet-users-who-use-reddit-by-age-group/.

Feng, F., Q. Zhou, Z. Shen, X. Yang, L. Han, and J. Wang. 2018.
“The Application of a Novel Neural Network in the
Detection of Phishing Websites.” Journal of Ambient
Intelligence and Humanized Computing 9: 2009–2010.

Islam, M., and N. K. Chowdhury. 2016. “Phishing Websites
Detection Using Machine Learning Based Classification
Techniques.” International Conference on Advances in
Informatics and Communication Technologies (63).

Jain, A. K., and B. B. Gupta. 2018a. “A Machine Learning
Based Approach for Phishing Detection Using Hyperlinks
Information.” Journal of Ambient Intelligence and
Humanized Computing 10: 2015–2028.

Jain, A. K., and B. B. Gupta. 2018b. “Towards Detection of
Phishing Websites on Client–Side Using Machine
Learning Based Approach.” Telecommunication Systems
68 (4): 687–700.

Jeeva, S. C., and E. B. Rajsingh. 2016. “Intelligent Phishing
URL Detection Using Association Rule Mining.” Human-
Centric Computing and Information Sciences 6 (10).
doi:10.1186/s13673-016-0064-3.

Kamal, G., and M. Manna. 2018. “Detection of Phishing
Websites Using Naïve Bayes Algorithms.” International
Journal of Recent Research and Review XI (4): 34–38.

Katuri, R., and S. Gorantla. 2021. “Math Function-Based
Controller Combined with PI and PID Applied to
Ultracapacitor Based Solar-Powered Electric Vehicle.”
African Journal of Science, Technology, Innovation and
Development 13 (4): 509–526. doi:10.1080/20421338.
2020.1857542.

Mediakix. 2017. “The Top 8 Reddit Statistics on Users,
Demographics & More.” Mediakix. https://mediakix.com/
blog/reddit-statistics-users-demographics/.

Misra, S. 2020. “A Step-by-Step Guide for Choosing Project
Topics and Writing Research Papers in ICT Related

Disciplines.” In International Conference on Information and
Communication Technology and Applications, edited by S.
Misra, and B. Muhammad-Bello, 727–744. Cham: Springer.

Mohammad, R.M., F. Thabtah, and L. McCluskey. 2012. “An
Assessment of Features Related to Phishing Websites
Using an Automated Technique.” Proceedings of the 2012
International Conference for Internet Technology and
Secured Transactions, 492–497. London, UK, 10–12
December 2012.

Muppavarapu, V., A. Rajendran, and S. Vasudevan. 2018.
“Phishing Detection Using RDF and Random Forests.”
The International Arab Journal of Information Technology
15 (55): 817–824.

Niakanlahiji, A., B.-T. Chu, and E. Al-Shaer. 2018. PhishMon:
A Machine Learning Framework for Detecting Phishing
Webpages. 978-1-5386-7848-0/18, 6.

Peng, T., I. Harris, and Y. Sawa. 2018. “Detecting Phishing
Attacks Using Natural Language Processing and Machine
Learning.” In IEEE 12th International Conference on
Semantic Computing (ICSC), edited by D. Bulterman, A.
Kitazawa, D. Ostrowski, and P. Sheu, 300–301. Laguna
Hills, CA: IEEE Computer Society.

Preethi, V., and G. Velmayil. 2016. “Automated Phishing
Website Detection Using URL Features and Machine
Learning Technique.” International Journal of
Engineering and Techniques 2 (5): 107–115.

Ramzan, Z. 2010. “Phishing Attacks and Countermeasures
(Vols. ISBN 978-3-642-04117-4).” In Handbook of Notes
Information and Communication Security, edited by Mark
Stamp, and Peter Stavroulakis, 433–448. Berlin,
Heidelberg: Springer.

Rao, R. S., and A. R. Pais. 2018. “Detection of Phishing
Websites Using an Efficient Feature-Based Machine
Learning Framework.” Neural Computing and
Applications 31: 3851–3873.

Sahingoz, K., E. Buber, O. Demir, and B. Diri. 2019. “Machine
Learning Based Phishing Detection from URLs.” Expert
Systems with Applications 117: 345–357.

Sananse, B. E., and T. K. Sarode. 2015. “Phishing URL
Detection: A Machine Learning and Web Mining-Based
Approach.” International Journal of Computer
Applications 123 (13): 46–50.

Sheng, S., M. Holbrook, P. Kumaraguru, L. F. Cranor, and J.
Downs. 2010. “Who Falls for Phish? A Demographic
Analysis of Phishing Susceptibility and Effectiveness of
Interventions.” In CHI ‘10: Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems,
edited by E. Mynatt, G. Fitzpatrick, S. Hudson, K.
Edwards, and T. Rodden, 373–382. Atlanta Georgia:
Association for Computing Machinery.

Silaa, J., H. Jazri, and H. Muyingi. 2021. “A Study on the use of
Mobile Computing Technologies for Improving the
Mobility of Windhoek Residents.” African Journal of
Science, Technology, Innovation and Development 13 (4):
479–493. doi:10.1080/20421338.2020.1838083.

Smadi, S., N. Aslam, and L. Zhang. 2018. “Detection of Online
Phishing Email Using Dynamic Evolving Neural Network
Based on Reinforcement Learning.” Decision Support
Systems 107: 88–102.

Vanhoenshoven, F., G. Nápoles, R. Falcon, K. Vanhoof, and M.
Köppen. 2016. “Detecting Malicious URLs Using Machine
Learning Techniques.” In 2016 IEEE Symposium Series on
Computational Intelligence (SSCI), 8. Athens, Greece:
IEEE. doi:10.1109/SSCI.2016.7850079.

Zhao, Z., R. Ye, C. Zhou, D. Wang, and T. Shi. 2021. “Control-
theory Based Security Control of Cyber-physical Power
System Under Multiple Cyber-attacks Within Unified
Model Framework.” Cognitive Robotics 1: 41–57. doi:10.
1016/j.cogr.2021.05.001.

1626 Azeez, Lawal, Misra and Oluranti

https://www.inderscience.com/info/ingeneral/forthcoming.php?jcode=ijesdf
https://www.inderscience.com/info/ingeneral/forthcoming.php?jcode=ijesdf
https://www.statista.com/statistics/266161/websites-most-affected-by-phishing/
https://www.statista.com/statistics/266161/websites-most-affected-by-phishing/
https://www.statista.com/statistics/261766/share-of-us-internet-users-who-use-reddit-by-age-group/
https://www.statista.com/statistics/261766/share-of-us-internet-users-who-use-reddit-by-age-group/
https://doi.org/10.1186/s13673-016-0064-3
https://doi.org/10.1080/20421338.2020.1857542
https://doi.org/10.1080/20421338.2020.1857542
https://mediakix.com/blog/reddit-statistics-users-demographics/
https://mediakix.com/blog/reddit-statistics-users-demographics/
https://doi.org/10.1080/20421338.2020.1838083
https://doi.org/10.1109/SSCI.2016.7850079
https://doi.org/10.1016/j.cogr.2021.05.001
https://doi.org/10.1016/j.cogr.2021.05.001

	Abstract
	Introduction
	Related works
	Methodology
	Data collection and labelling
	Extraction of feature and engineering
	Model training/machine learning
	Random Forest
	Gradient Boost
	AdaBoost
	Decision Tree Classifier
	Linear Support Vector Classifier
	Naïve Bayes Classifier
	Random Forest
	Performance evaluation

	Results
	Conclusion and future works
	Limitations and constraints

	Disclosure statement
	Note
	ORCID iD
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile ()
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings false
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.90
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.90
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [595.245 841.846]
>> setpagedevice

