- 1. Home
- 2. Innovations in Information and Communication Technologies (IICT-2020)
- 3. Conference paper

From Modeling to Code Generation: An Enhanced and Integrated Approach

- Conference paper
- First Online: 16 July 2021
- pp 421–427
- Cite this conference paper

<u>Innovations in Information and Communication Technologies</u> (IICT-2020)

- Oluwasefunmi Tale Arogundade,
- Olutimi Onilede,
- · Sanjay Misra,
- Olusola Abayomi-Alli,
- Modupe Odusami &
- Jonathan Oluranti

Part of the book series: <u>Advances in Science, Technology & Innovation</u> ((ASTI))

- 923 Accesses
- 1 Citations

Abstract

Information system drives every aspect of human endeavor, and it is a major stakeholder in human existence. Systems with poor modeling suffer a lot from poor implementation down to poor performance due to lack of critical subjection and testing. Software modeling is, therefore, of paramount importance in order to achieve a reliable system. There has been a lot of works done in software modeling, and eventually, the Universal Modeling Language was formulated to create a standard for software modeling. Although there have been some development or modeling tools that can be used to model a software system and the design then converted to software codes that can then be perfected, none of these tools has considered security and integrated as a single tool. Therefore, this paper focuses on building an integrated system (all-encompassing system) for building UMLsec-based modeled systems that will convert UML diagrams to code. The system integrates Eclipse Mars incorporated with Papyrus modeling plug-ins and Eclipse Kepler with Java EE incorporated with CARiSMA plug-ins. These four tools were integrated together by an executable application built with NetBeans. The system was tested by modeling an e-government system from the class diagram to analysis and code generation.

This is a preview of subscription content, <u>log in via an institution</u> to check access.

Similar content being viewed by others

Integrating UML and ALF: An Approach to Overcome the Code Generation Dilemma in Model-Driven Software Engineering

Chapter © 2020

An MDA Approach to Develop Web Components

Chapter © 2013

Model-Based Code-Generators and Compilers - Track Introduction

Chapter © 2014

References

- Amaral, J. N., et al. (2011). About computing science research methodology. Edmonton, Alberta, Canada. https://doi.org/10.1.1.124.702.
- Amirat, A., Menasria, A., Oubelli, M. A., & Younsi, N. (2012). Automatic generation of PROMELA code from sequence diagram with imbricate combined fragments. In 2nd International Conference on the Innovative Computing Technology (INTECH 2012), pp. 111–116. IEEE.

Google Scholar

Arogundade, O.'T., Adubiagbe, H. K., Ojokoh, B. A., & Mustapha, A. M. (2016). Design and validation of e-motoring services model. *FUTA Journal of Research in Sciences*, 12(2), 307–324.

Google Scholar

Arogundade, O. T., Ogunyinka, B. A., Mustapha, A. M., & Asahiah, F. O. (2018). A validated model for secured e-government services: A case study of civil status and rights. *Journal of Science and Technology* (*IJoST*), 2(1), 92–112.

Google Scholar

 Beckert, B., Keller, U., & Schmitt, P. H. (2002). Translating the object constraint language into first-order predicate logic. In *Proceedings of the* VERIFY Workshop at Federated Logic Conferences (FLoC), pp. 113– 123.

Google Scholar

Bhullar, N. S., Chhabra, B., & Verma, A. (2016). Exploration of UML diagrams based on code generation methods. In *International Conference on Inventive Computation Technologies (ICICT)*, Vol. 2, pp. 1–6. IEEE.

Google Scholar

• Breu, R., & Popp, G. (2004). Actor-centric modeling of user rights. In: *International Conference on Fundamental Approaches to Software Engineering*, pp. 165–179. Berlin, Heidelberg: Springer.

 Broy, M., & Cengarle, M. V. (2011). UML formal semantics: Lessons learned. Software & Systems Modeling, 10(4), 441–446.

Article Google Scholar

Cenys, A., Normantas, A., & Radvilavicius, L. (2009). Designing role-based access control policies with UML. The Journal of Engineering Science and Technology Review, 2(1), 48–50.

Google Scholar

• Ciccozzi, F., Cicchetti, A., Sjödin, M. (2012). Full code generation from UML models for complex embedded systems. In: *Second International Software Technology Exchange Workshop (STEW)*, Kista.

Google Scholar

Franconi, E., Mosca, A., Oriol Hilari, X., Rull, G., & Teniente López, E. (2018). OCLFO: first-order expressive OCL constraints for efficient integrity checking. Software and Systems Modeling, 1–23

Google Scholar

- Holz, H. J., Applin, A., Haberman, B., Joyce, D., Purchase, H., & Reed, C. (2006). Research methods in computing. In: Working Group Reports on ITiCSE on Innovation and Technology in Computer Science Education—ITiCSE-WGR 2006 (p. 96). New York: ACM Press. https://doi.org/10.1145/1189215.1189180
- Hovsepyan, A., Van Landuyt, D., Michiels, S., Joosen, W., Rangel, G., Fernandez Briones, J., & Depauw, J. (2014). Model-driven software development of safety-critical avionics systems: An experience report. In: 1st International Workshop on Model-Driven Development Processes and Practices Co-located with ACM/IEEE 17th International Conference on Model-Driven Engineering Languages & Systems, Vol. 1249, pp. 28–37.

Google Scholar

• Jiang, P., & Jonsson B. (2009). Using SPIN to model check concurrent algorithms, using a translation from C. In: 2nd Swedish workshop on multi-core computing (MCC09), pp. 1–9.

 John, B., Kadadevaramath. R. S., & Edinbarough, I. A. (2017). A brief review of software reliability prediction models. *International Journal for Research in Applied Science and Engineering Technology (IJRASET)*, 5(4), 990–997.

Google Scholar

Kaur, H., Singh, P. (2009). UML (Unified Modeling Language): Standard language for software architecture development. In *International Symposium on Computing, Communication, and Control (ISCCC, 2009). Proceedings of CSIT*, Vol. 1, pp. 118–125.

Google Scholar

• Kim, D. K., Ray, I., France, R., & Li, N. (2004). Modeling role-based access control using parameterized UML models. In: *International Conference on Fundamental Approaches to Software Engineering*, pp. 180–193. Berlin, Heidelberg: Springer.

Google Scholar

- Noyer, A., Iyenghar, P., Pulvermueller, E., Pramme, F., Engelhardt, J., Samson, B., & Bikker, G. (2014). Tool independent code generation for the UML—Closing the gap between proprietary models and the standardized UML model. https://doi.org/10.5220/0004870701170125. In *Proceedings of the 9th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE-2014)*, pp. 117–125. ISBN: 978-989-758-030-7.
- Poniszewska-Maranda, A. (2012). UML representation of extended role-based access control model with the use of usage control concept.
 In: International Conference on Availability, Reliability, and Security, pp. 131–145. Berlin, Heidelberg: Springer.

Google Scholar

 Ray, I., Li, N., France, R., & Kim, D.-K. (2004). Using UML to visualize role-based access control constraints. In *Conference: 9th ACM* Symposium on Access Control Models and Technologies, Yorktown Heights, New York, USA.

Ringert, J. O., Roth, A., Rumpe, B., & Wortmann, A. (2014). Code generator composition for model-driven engineering of robotics component & connector systems. In MORSE 2014—1st International Workshop on Model-Driven Robot Software Engineering, vol. 1319, pp. 66–77. York, Great Britain (2014).

Google Scholar

 Saunders, M. N. K., Lewis, P., & Thornhill, A. (2009). Understanding research philosophy and approaches to theory development.
 In: Research Methods for Business Students (pp. 128–170). Harlow: Pearson.

Google Scholar

• Sebastián, G., Gallud, J. A., & Tesoriero, R. (2020). Code generation using model driven architecture: A systematic mapping study. *Journal of Computer Languages*, *56*, 100935.

Article Google Scholar

• Shiferaw, M.K., & Jena, A.K. (2018). Code generator for model-driven software development using UML models. In: 2nd International Conference on Electronics, Communication and Aerospace Technology (ICECA), pp. 1671–1678. IEEE.

Google Scholar

• Sommerville, I. (2011). Software Engineering (9th ed.).

Google Scholar

 Sunitha, E. V., & Samuel, P. (2019). Automatic code generation from UML state chart diagrams. *IEEE Access*, 7, 8591–8608.

Article Google Scholar

 Thapa, V., Song, E., & Kim, H. (2010). An approach to verifying security and timing properties in UML models. In: 15th IEEE International Conference on Engineering of Complex Computer Systems, pp. 193– 202. IEEE.

• Wallin, C. (2002). Verification and validation of software components and component-based software systems. Extended Report, Artech House.

Google Scholar

 Yamada, Y., & Wasaki, K. (2011). Automatic generation of SPIN model. checking code from UML activity diagram and its application to web application design. In: 7th International Conference on Digital Content, Multimedia Technology, and its Applications, pp. 139–144. IEEE.

Google Scholar

Download references

Author information

Authors and Affiliations

1. Department of Computer Science, Federal University of Agriculture Abeokuta, Abeokuta, Nigeria

Oluwasefunmi Tale Arogundade & Olutimi Onilede

2. Department of Electrical and Information Engineering, Covenant University, Ota, Nigeria

Sanjay Misra, Olusola Abayomi-Alli, Modupe Odusami & Jonathan Oluranti

Corresponding author

Correspondence to Sanjay Misra.

Editor information

Editors and Affiliations

1. Department of Computer Science and Engineering, ABES **Engineering College, Ghaziabad, India**

Pradeep Kumar Singh

2. Wroclaw University of Economics, Jan Wyzykowski University in Polkowice, Polkowice, Poland

Zdzislaw Polkowski

- 3. Nirma University, Ahmedabad, Gujarat, India Sudeep Tanwar
- 4. ITS Mohan Nagar, Ghaziabad, India

Sunil Kumar Pandey

5. Faculty of Economic Sciences, University of Craiova, Craiova, Romania

Gheorghe Matei

University of Pitesti, Pitesti, Romania Daniela Pirvu

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Cite this paper

Arogundade, O.T., Onilede, O., Misra, S., Abayomi-Alli, O., Odusami, M., Oluranti, J. (2021). From Modeling to Code Generation: An Enhanced and Integrated Approach. In: Singh, P.K., Polkowski, Z., Tanwar, S., Pandey, S.K., Matei, G., Pirvu, D. (eds) Innovations in Information and Communication Technologies (IICT-2020). Advances in Science, Technology & Innovation. Springer, Cham. https://doi.org/10.1007/978-3-030-66218-9_50

Download citation

- .RIS
- <u>.ENW</u>
- <u>.BIB</u>
- DOIhttps://doi.org/10.1007/978-3-030-66218-9 50
- Published16 July 2021
- Publisher NameSpringer, Cham
- Print ISBN978-3-030-66217-2
- Online ISBN978-3-030-66218-9
- eBook Packages<u>Earth and Environmental ScienceEarth and Environmental Science</u> (R0)

Publish with us

Chapter

EUR 29.95 Price includes VAT (Nigeria)

- Available as PDF
- Read on any device
- Instant download
- Own it forever

Buy Chapter

eBook

EUR 160.49

Softcover Book

EUR 199.99

Hardcover Book

EUR 199.99

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

- Sections
- References

165.73.223.224

Covenant University Ota (3006481499)

© 2024 Springer Nature