- 1. <u>Home</u>
- 2. Futuristic Trends in Networks and Computing Technologies
- 3. Conference paper

Face Recognition Using VGG16 CNN Architecture for Enhanced Security Surveillance—A Survey

- Conference paper
- First Online: 16 November 2022
- pp 1111–1125
- Cite this conference paper

Futuristic Trends in Networks and Computing Technologies

- <u>Alashiri Olaitan</u>,
- Adeyinka Adewale,
- <u>Sanjay Misra</u>,
- Akshat Agrawal,
- Ravin Ahuja &
- Jonathan Oluranti

Part of the book series: <u>Lecture Notes in Electrical</u> Engineering ((LNEE,volume 936))

- 959 Accesses
- 2 <u>Citations</u>

Abstract

A review of the web camera surveillance, face recognition, convolution neural network (CNN), digital images are presented in this work. Previous works on face recognition systems for enhanced surveillance-based security are presented together with relevant deep learning concepts and theories relating to convolutional neural networks. In-depth analysis is summarized and presented in concise way.

This is a preview of subscription content, log in via an institution to check access.

Similar content being viewed by others

Automation of surveillance systems using deep learning and facial recognition

Article 06 January 2023

Convolutional Neural Network Super Resolution for Face Recognition in Surveillance Monitoring

Chapter © 2016

A Convolution Neural Networks and IoT-Based Approach to Surveillance System

Chapter © 2021 References

1. Lumaban MBP, Battung GT (2020) WEBCAM-based surveillance system with face recognition feature. Int J Eng Adv Technol 9

Google Scholar

 Ahamed H, Alam I, Islam MM (2018) HOG-CNN-based real-time face recognition. International conference on advancement in electrical and electronic engineering, pp 1–4

Google Scholar

3. Chawla D, Trivedi MC (2018) A comparative study on face detection techniques for security surveillance. A comparative study on face detection techniques for security surveillance, pp 531–541

Google Scholar

4. Singh M, Nagpal S, Singh R, Vatsa M (2014) On recognizing face images with weight and age variations. IEEE Access 2:822–830

Article Google Scholar

5. Ghorbani M, Targhi AT, Dehshibi MM (2015) HOG and LBP: towards a robust face recognition system. International conference on digital information management, pp 138–141

Google Scholar

6. Kumar PR, Surendar M, Kumar TUMDM (2019) Smart surveillance cam using face recognition algorithm. J Netw Comput Appl

Google Scholar

 Aniche C, Yinka-Banjo C, Ohalete P, Misra S (2021) Biometric e-voting system for cybersecurity. In: Artificial intelligence for cyber security: methods, issues and possible horizons or opportunities. Springer, Cham, pp 105–137

Google Scholar

 Ugot OA, Yinka-Banjo C, Misra S (2021) Biometric fingerprint generation using generative adversarial networks. In: Artificial intelligence for cyber security: methods, issues and possible horizons or opportunities. Springer, Cham, pp 51–83

Google Scholar

 Olanrewaju L, Oyebiyi O, Misra S, Maskeliunas R, Damasevicius R (2020) Secure ear biometrics using circular kernel principal component analysis, Chebyshev transform hashing and Bose–Chaudhuri– Hocquenghem error-correcting codes. SIViP 14(5):847–855

Article Google Scholar

 Assibong PA, Wogu IAP, Misra S, Makplang D (2020) The utilization of the biometric technology in the 2013 Manyu division legislative and municipal elections in cameroon: an appraisal. In: Advances in electrical and computer technologies. Springer, Singapore, pp 347–360

Google Scholar

11. Mohammed AA, Minhas R, Wu QMJ, Sid-Ahmed MA (2011) Human face recognition is based on multidimensional PCA and extreme learning machines. Pattern Recogn 44(10–11):2588– 2597. <u>https://doi.org/10.1016/j.patcog.2011.03.013</u>

Article MATH Google Scholar

12. Antón-Rodríguez M, González-Ortega D, Díaz-Pernas F, Martínez-Zarzuela M, Díez-Higuera J (2012) Color-texture image segmentation and recognition through a biologically-inspired architecture. Pattern Recogn Image Anal 22:54–68

Google Scholar

 Choi SE, Lee YJ, Lee SJ, Park KR, Kim J (2011) Age estimation using a hierarchical classifier based on global and local facial features. Pattern Recogn 44(6):1262– 1281. <u>https://doi.org/10.1016/j.patcog.2010.12.005</u>

Article MATH Google Scholar

14. Carré P, Denis P, Fernandez-Maloigne C (2014) Spatial color image processing using clifford algebras: application to color active contour. SIViP 8:1357–1372

Article Google Scholar

15. Pattanasethanon P, Savithi C (2012) Human face detection and recognition using web-cam. J Comput Sci 8:1585

Article Google Scholar

16. Mustafah YM, Azman AW, Bigdeli A, Lovell BC (2007) An automated face recognition system for intelligence surveillance: smart camera recognizing faces in the crowd. 2007 1st ACM/IEEE

International conference on distributed smart cameras, ICDSC, pp 147–152. <u>https://doi.org/10.1109/ICDSC.2007.4357518</u>

17. Wu X, He R, Sun Z, Tan T (2018) A light CNN for deep face representation with noisy labels. IEEE Trans Inf Forensics Secur 13(11):2884–2896. <u>https://doi.org/10.1109/TIFS.2018.2833032</u>

Article Google Scholar

- Zheng HH, Zu YX (2018) A normalized light CNN for face recognition. J Phys: conference series 1087(6). <u>https://doi.org/10.1088/1742-6596/1087/6/062015</u>
- Shang C, Ai H (2018) Cluster convolutional neural networks for facial age estimation. Proceedings—international conference on image processing, ICIP, 2017–Sept, pp 1817– 1821. <u>https://doi.org/10.1109/ICIP.2017.8296595</u>
- Rattani A, Reddy N, Derakhshani R (2018) Convolutional neural network for age classification from smart-phone based ocular images. IEEE international joint conference on biometrics, IJCB 2017, 2018– Jan, pp 756–761. <u>https://doi.org/10.1109/BTAS.2017.8272766</u>
- 21. Yoo B, Kwak Y, Kim Y, Choi C, Kim J (2018) Multitask learning with weak label expansion. IEEE Signal Proc Lett 25(6):808–812. Retrieved from <u>https://doi.org/10.1109/LSP.2018.2822241</u>
- 22. Bharadwaj S, Bhatt HS, Vatsa M, Singh R (2010) Periocular biometrics: when iris recognition fails. BTAS, pp 1–6

Google Scholar

 Castrillón-Santana M, Lorenzo-Navarro J, Ramón-Balmaseda E (2016) On using periocular biometric for gender classification in the wild. Pattern Recogn Lett 82:181– 189. <u>https://doi.org/10.1016/j.patrec.2015.09.014</u>

Article Google Scholar

 Xu J, Cha M, Heyman JL, Venugopalan S, Abiantun R, Savvides M (2010) Robust local binary pattern feature sets for periocular biometric identification. IEEE 4th International conference on biometrics: theory, applications and systems, BTAS 2010, pp 3– 10. <u>https://doi.org/10.1109/BTAS.2010.5634504</u> Lyle JR, Miller PE, Pundlik SJ, Woodard DL (2012) Soft biometric classification using local appearance periocular region features. Pattern Recogn 45(11):3877– 3885. https://doi.org/10.1016/j.patcog.2012.04.027

Article Google Scholar

26. Uzair M, Mahmood A, Mian A, McDonald C (2015) Periocular region-based person identification in visible, infrared, and hyperspectral imagery. Neurocomputing 149:854–867

Article Google Scholar

27. Aginako N, Castrillón-Santana M, Lorenzo-Navarro J, Martínez-Otzeta JM, Sierra B (2017) Periocular and iris local descriptors for identity verification in mobile applications. Pattern Recogn Lett

Google Scholar

28. Sequeira AF, Chen L, Ferryman J, Wild P, Alonso-Fernandez F, Bigun J (2017) Cross-spectral iris/periocular recognition competition, in Biometrics. 2017 IEEE international joint conference on, pp 725–732

Google Scholar

29. Bakshi S, Sa PK, Majhi B (2015) A novel phase-intensive local pattern for periocular recognition under the visible spectrum. Biocybernetics Biomed Eng 35(1):30–
44. <u>https://doi.org/10.1016/j.bbe.2014.05.003</u>

Article Google Scholar

30. Karahan Ş, Karaöz A, Özdemir ÖF, Gü AG, Uludag U (2014) On identification from periocular region utilizing sift and surf. Proceedings-22nd Europeans

Google Scholar

31. Alonso-Fernandez F, Bigun J (2016) A survey on periocular biometrics research. Pattern Recogn Lett pp 96–105

Google Scholar

32. Uzair B, Menaa F, Khan BA, Mohammad FV, Ahmad VU, Djeribi R, Menaa B (2018) Isolation, purification, structural elucidation, and antimicrobial activities of kocumarin, a novel antibiotic isolated from actinobacterium Kocuria marina CMG S2 associated with the brown seaweed Pelvetiacanaliculata. Microbiol Res 206:186–197. <u>https://doi.org/10.1016/j.micres.2017.10.007</u>

Article Google Scholar

- Zou F, Li J, Min W (2019) Distributed face recognition based on load balancing and dynamic prediction. Appl Sci (Switzerland) 9(4). <u>https://doi.org/10.3390/app9040794</u>
- 34. Makhija Y, Sharma RS (2019) Face recognition: novel comparison of various feature extraction techniques, in Harmony search and nature inspired optimization algorithms. Springer, pp 1189–1198

Google Scholar

35. Sawhney S, Kacker K, Jain S, Singh N (n.d.) No title. Real-time smart attendance system using face recognition techniques

Google Scholar

36. Besnassi M, Neggaz N, Benyettou A (2020) Face detection based on evolutionary Haar filter. Pattern Anal Appl 23(1):309–330

Article Google Scholar

37. Yun W-H et al (2018) Automatic recognition of children engagement from facial video using convolutional neural networks. IEEE Trans Affect Comput 11(4):696–707

Article MathSciNet Google Scholar

38. Tabatabaie ZS et al (2009) A hybrid face detection system using a combination of appearance-based and feature-based methods. Int J Comput Sci Netw Sec 9(5):181–185

MathSciNet Google Scholar

39. Wu, Yulin, and Mingyan Jiang (2018) Multi-layer CNN features fusion and classifier optimization for face recognition. Proceedings of

the 2018 2nd international conference on computer science and artificial intelligence

Google Scholar

40. Aitkenhead MJ, McDonald AJS (2003) A neural network faces a recognition system. Eng Appl Artif Intell 16(3):167–
 176. <u>https://doi.org/10.1016/S0952-1976(03)00042-3</u>

Article Google Scholar

41. Yang B et al (2017) Facial expression recognition using weighted mixture deep neural network based on double-channel facial images. IEEE Access 6:4630–4640

Article Google Scholar

42. Bhowmik MK et al (2019) Enhancement of robustness of face recognition system through reduced gaussianity in Log-ICA. Expert Syst Appl 116:96–107

Article Google Scholar

 Sajjad M, Nasir M, Muhammad K, Khan S, Jan Z, Sangaiah AK, Elhoseny M, Baik SW (2020) Raspberry Pi assisted face recognition framework for enhanced law-enforcement services in smart cities. Future Gener Comput Syst 108:995– 1007. <u>https://doi.org/10.1016/j.future.2017.11.013</u>

Article Google Scholar

- 44. Chowdhry DA, Hussain A, Ur Rehman MZ, Ahmad F, Ahmad A, Pervaiz M (2013) Smart security system for the sensitive area using face recognition. Proceedings—2013 IEEE conference on sustainable utilization and development in engineering and technology, IEEE CSUDET 2013, pp 11– 14. https://doi.org/10.1109/CSUDET.2013.6670976
- 45. Chetty G, Sharma D (2006) Distributed face recognition: a multiagent approach. Lecture notes in computer science (Including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics), 4253 LNAI, pp 1168– 1175. https://doi.org/10.1007/11893011 148

46. Agarwal V, Bhanot S (2018) Radial basis function neural networkbased face recognition using firefly algorithm. Neural Comput Appl 30(8):2643–2660

Article Google Scholar

- 47. Owandkar M, Kolte A, Peshave D, Jadhav S (2017) Attendance monitoring system using face recognition. Int Res J Eng Technol (IRJET) 4(5):1163–1168. Retrieved from <u>https://www.irjet.net/archives/V4/i5/IRJET-V4I5228.pdf</u>
- 48. Zhang Y, Hu C, Lu X (2018) Face recognition under varying illumination based on singular value decomposition and retina modeling. Multimedia Tools Appl 77(21):28355–28374

Article Google Scholar

49. Deniz S, Lee D, Kurian G, Altamirano L, Yee D, Ferra M, Hament B, Zhan J, Gewali L, Oh P (2018) Computer vision for attendance and emotion analysis in school settings

Google Scholar

50. Olivares-Mercado J et al (2018) Face recognition system based on MOTIF features. J Mod Opt 65(18):2124–2132

Article MathSciNet Google Scholar

51. Trokielewicz M, Szadkowski M (2017) Iris and periocular recognition in Arabian racehorses using deep convolutional neural networks. In: 2017 IEEE international joint conference on biometrics (IJCB). IEEE

Google Scholar

 Gupta SK, Ashwin TS, Reddy Guddeti RM (2018) CVUCAMS: computer vision-based unobtrusive classroom attendance management system. Proceedings—IEEE 18th international conference on advanced learning technologies, ICALT 2018, pp 101– 102. <u>https://doi.org/10.1109/ICALT.2018.00131</u>

Download references

Acknowledgements

The authors appreciate the sponsorship from Covenant University through its Center for Research, Innovation and Discovery, Covenant University, Ota Nigeria.

Author information

Authors and Affiliations

1. Center of ICT/ICE Research, Covenant University, Ota, Ogun, Nigeria

Alashiri Olaitan, Adeyinka Adewale & Jonathan Oluranti

- 2. Department of Computer Science and Communication, Østfold University College, Halden, Norway Sanjay Misra
- 3. Amity University, Haryana, India Akshat Agrawal
- 4. Shri Viswakarma Skill University, Gurgaon, Hariyana, India Ravin Ahuja

Corresponding author

Correspondence to Akshat Agrawal.

Editor information

Editors and Affiliations

- 1. KIET Group of Institutions, Ghaziabad, India Pradeep Kumar Singh
- Institute of Computer Science, Polish Academy of Sciences, Warsaw, Poland Sławomir T. Wierzchoń
- 3. Department of Computer Engineering, NIT Kurukshetra, Haryana, India

Jitender Kumar Chhabra

4. Department of Computer Science and Engineering, Institute of Technology, Nirma University, Ahmedabad, Gujarat, India Sudeep Tanwar

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Olaitan, A., Adewale, A., Misra, S., Agrawal, A., Ahuja, R., Oluranti, J. (2022). Face Recognition Using VGG16 CNN Architecture for Enhanced Security Surveillance—A Survey. In: Singh, P.K., Wierzchoń, S.T., Chhabra, J.K., Tanwar, S. (eds) Futuristic Trends in Networks and Computing Technologies . Lecture Notes in Electrical Engineering, vol 936. Springer, Singapore. https://doi.org/10.1007/978-981-19-5037-7_80

Download citation

- <u>.RIS</u>
- <u>.ENW</u>
- <u>.BIB</u>
- DOIhttps://doi.org/10.1007/978-981-19-5037-7_80
- Published16 November 2022
- Publisher NameSpringer, Singapore
- Print ISBN978-981-19-5036-0
- Online ISBN978-981-19-5037-7
- eBook PackagesComputer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Access this chapter

Log in via an institution

Chapter

EUR 29.95 Price includes VAT (Nigeria)

- Available as PDF
- Read on any device
- Instant download
- Own it forever

Buy Chapter	
eBook	EUR 192.59
Softcover Book	FUR 229 99
Hardcover Book	LON 225.55
	EUR 229.99
Tax calculation will be finalised at checkout Purchases are for personal use only Institutional subscriptions	
165.73.223.224	
Covenant University Ota (3006481499)	
© 2024 Springer Nature	