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Malaria importation is one of the hypothetical drivers of malaria transmission dynamics
across the globe. Several studies on malaria importation focused on the effect of the use of
conventional malaria control strategies as approved by the World Health Organization
(WHO) on malaria transmission dynamics but did not capture the effect of the use of
traditional malaria control strategies by vigilant humans. In order to handle the afore-
mentioned situation, a novel system of Ordinary Differential Equations (ODEs) was
developed comprising the human and the malaria vector compartments. Analysis of the
system was carried out to assess its quantitative properties. The novel computational al-
gorithm used to solve the developed system of ODEs was implemented and benchmarked
with the existing Runge-Kutta numerical solution method. Furthermore, simulations of
different vigilant conditions useful to control malaria were carried out. The novel system of
malaria models was well-posed and epidemiologically meaningful based on its quantita-
tive properties. The novel algorithm performed relatively better in terms of model simu-
lation accuracy than Runge-Kutta. At the best model-fit condition of 98% vigilance to the
use of conventional and traditional malaria control strategies, this study revealed that
malaria importation has a persistent impact on malaria transmission dynamics. In lieu of
this, this study opined that total vigilance to the use of the WHO-approved and traditional
malaria management tools would be the most effective control strategy against malaria
importation.
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1. Introduction

Malaria is a disease of concern in different countries of the World over the years (Girum et al., 2019; Narain & Nath, 2018).
The greatest burden of the disease is carried by the Sub-Sahara African-residential human population according to recent
reports (World Health Organization, 2018, 2020). However, the low socio-economic and educational status of most people
that live in Africa are contributing factors to this burden (Darteh et al., 2021; Degarege et al., 2019; Ngandu et al., 2020). Also,
climatic conditions such as wind, rainfall, relative humidity, and temperature; obtainable in Africa accelerate the survival and
reproduction rate of the malaria vector (Adeola et al., 2017; Ngninpogni et al., 2021; Nkiruka et al., 2021). The Plasmodium
falciparum specie is the predominant malaria infection parasite in the Sub-Sahara African region in contrast to other endemic
regions of the World (Amambua-Ngwa et al., 2019; Kojom & Singh, 2020; Weiss et al., 2019).

Several control efforts in the Sub-Sahara African region have focused on curbing malaria by controlling the vector that
serves as the primary host of the Plasmodium parasite (Beier et al., 2018, pp. 387e402; Benelli & Beier, 2017; Killeen et al.,
2017). In line with this, the World Health Organization (WHO) has approved the use of conventional malaria vector con-
trol strategies such as Long Lasting Insecticide-treated Net (LLIN) and Indoor Residual Spray (IRS) (Kaindoa et al., 2021; Ryan
et al., 2020; Syme et al., 2021). Asides from the WHO-approved malaria control strategies, a number of people in the Sub-
Sahara African region employ the use of other common traditional malaria control strategies such as air conditioners, pro-
tective clothing, lotion, and house net (Bazan & Mora, 2020; Fischer, 2021; Shellvarajah et al., 2017). However, the effort to
eliminate malaria by controlling the vector has not yielded the desired output in the past years as a result of the persistent
issues of insecticide resistance and the high rate of non-adherence to the use of the malaria management tools by the human
population (N'Do et al., 2021; Mekuriaw et al., 2020; Krezanoski et al., 2018). Hence, recent studies have focused on humans
who serve as the secondary reservoir host for the malaria parasite. Specifically, most of these current clinical research studies
investigated the factors responsible for malaria transmission using human subject reference data (Achieng et al., 2020;
Anokye et al., 2018; Esayas et al., 2020). Several statistical and mathematical models have been useful in investigating these
factors (Adeboye et al., 2020; Adegbite et al., 2022; Alegana et al., 2020; Li & Liu, 2020).

Mathematical models have specifically proven to bemore useful than statistical models in studying the factors influencing
the transmission dynamics of malaria because of their increased predictive computational capability (Li& Liu, 2020; Marshall
et al., 2018; Sweilam et al., 2020). These models can be formulated using experimental data and biological knowledge (Awine
et al., 2017; Marshall et al., 2018). Specifically, compartmentalized epidemiological mathematical model variants can be
represented using continuous modeling constructs such as Ordinary Differential Equations (ODEs), Fractional Differential
Equations, and the Partial Differential Equations (PDEs) (Almeida et al., 2021; Edeki et al., 2020; Handari et al., 2020; Tchoumi
et al., 2021). In linewith this, continuousmodels are constructed based on the conservation principle inmathematical biology
(Brauer, 2017; Buonomo et al., 2018; Inaba, 2017). Models constructed based on conservation principle can be represented
using different epidemiological incidence rates. Hence, the incidence rate could be bilinear, standard, and saturated
depending on the size of the understudied population and the parameters of interest (Ahmed et al., 2018; Nana-Kyere et al.,
2017).

Malaria importation is one of the hypothetical parametric factors influencing the dynamics of malaria transmission
(Guerra et al., 2019; Iqbal et al., 2020; Mukhtar et al., 2020; Nana-Kyere et al., 2017). Malaria importation refers to the
incidence of malaria infection in the human host in a new location due to prior travel to a malaria-endemic region (Chang
et al., 2019; Iqbal et al., 2020). Specifically, malaria importation often occurs as a result of human travel from a high to low
malaria transmission zone, as evident in several studies (Chang et al., 2019; Guerra et al., 2019; Iqbal et al., 2020; Mukhtar
et al., 2020; Porter et al., 2020). In line with this, malaria importation could have an impact on malaria transmission dy-
namics. Hence, this study developed mathematical and computational models to study the effect of malaria importation as
well as WHO-approved and traditional malaria control usage levels on malaria transmission dynamics using Covenant
University environment which is a lowmalaria-endemic region in Nigeria, as case study (Adegbite et al., 2022). Furthermore,
this study accounted for the hysteresis effect of the model based on the incubation period of Plasmodium infection in the
human host. Hysteresis inmalaria modeling is defined as the situationwhereby the present state (malaria-infected condition)
of an individual relies on its past (malaria-exposed) condition and other present condition (Plasmodium parasite incubation
period in the exposed individual) (Schwinning et al., 2004; Yamana et al., 2017).
2. Materials and methods

2.1. Ethical permission

Ethical approval was acquired from the Covenant University Health Research Ethics Committee in carrying out this study
(Ethical Registration No.:CU/HREC/AGA/157/22). This was because this study collected primary and secondary data from the
human subjects on malaria. Furthermore, these primary and secondary data acquired for this study, were made to fulfill the
bioinformatics standard of confidentiality. Informed consent was also gotten from the human participants prior to using their
data for the research.
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2.2. Study site and population

The Study site was the academic environment of Covenant University. Covenant University (Latitude 6.671823� N,
Longitude 3.158125� E) is a Tertiary Institution located in Ota, which is a town in Ogun State very close to Lagos State, Nigeria
(Adegbite et al., 2022). Specifically, the study site has a government-accredited Medical Centre that provides inpatient nd
outpatient care services to the human populationwithin the academic environment and in extension to people living in other
parts of Ogun State (Adegbite et al., 2022). Ogun State is a State in the Southwestern part of Nigeria (Adegbite et al., 2022).
Plasmodium falciparum parasite accounts for >95% of malariaediagnosed cases in Southwestern Nigeria.

The study site consists of undergraduate and postgraduate students. The undergraduate students are fully residential
within the School's academic environment, a controlled region where all the necessary vector control strategies are imple-
mented. Hence, this study focused on studying malaria importation and the use of the conventional and traditional malaria
control strategies among the undergraduate students residing in a low malaria transmission region. According to the Uni-
versity's Student Affairs Unit, the population strength of undergraduate students is approximately six thousand, one hundred
and two (6102) as at the time of carrying out this study. In line with this, this study developed a mathematical model that can
computationally predict the effect of malaria importation in tandemwith the effect of the use of conventional and traditional
control strategies; on malaria transmission dynamics within the understudied population of the project site.
2.3. The novel malaria mathematical model

In this study, we extended an existing Susceptible, Exposed, Infected and Recovery malaria transmission dynamics model
in humans (Badshah & Akbar, 2021) into a new bilinear-incidence system of ODE(s) incorporating the Vigilant human class
that use the conventional and traditional malaria control strategies (i.e. LLIN, IRS, air conditioner, protective clothing, house
net, and lotion) as well as the Traveller and the Death compartments. Furthermore, we also included the female adult
Anophelesmosquito population represented as Susceptible and Infected mosquito state variables in the model. The reason for
the specific emphasis on the female Anopheles adult mosquito was because it is the gender variant responsible for malaria
parasite infection transmission as a result of its contact with susceptible, infected and exposed human population as the case
may be. The bilinear incidence ratewas applied in this ODE-based system because the humanpopulation of interest was small
ð<10000Þ whereas the ODE continuous modeling construct was used because the population of interest was being studied
from a homogenous point of view. The Undergraduate Students of Covenant University, Ota, Nigeria whose ages are between
fifteen and twenty-two years ð15�22Þ were the homogeneous human host population of interest in this study.

The model's development was based on the following assumptions.

i. Every human host has the same tendency to be exposed to malaria.
ii. Every human host has the same tendency to be infected with malaria

Fig. 1 showed the schematic flow diagram of the novel ODE-based malaria system.
Fig. 1. Schematic Flow Diagram of the novel ODE-based System of Malaria.
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The dotted and coloured lines in the diagram represent the different mechanisms (directions) of malaria infection
transmission involving the malaria vector (female Anopheles mosquito) and the human host.

Based on the conservation and themass action principles, we obtained the following ODE-based system represented using
the bilinear incidence rate.

dT
dt

¼ �a1T � a2T � a3T

dS
dt

¼ �r1S� r2S� r3Sþ a1T þ r4V � c1SB

dE
dt

¼ c1SBþ a2T � lE

dI
dt

¼ lE � Ir � Idþ a3T

dR
dt

¼ Ir

dD
dt

¼ Id

dV
dt

¼ r1Sþ r2Sþ r3S� r4V

dA
dt

¼ g� bAA� c2AE � c3AI

dB
dt

¼ c2AE þ c3AI � bBB

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

(1)
subject to the following initial conditions:

Tð0Þ>0; Sð0Þ>0; Eð0Þ>0;Vð0Þ>0;
Ið0Þ ¼ Að0Þ ¼ Bð0Þ ¼ Rð0Þ ¼ Dð0Þ ¼ 0:

�
(2)

In the system of ODEs stated above, T is the humanTraveller's Population variable, a1 is the parameter representing the rate of
influx of human Travellers into the Susceptible human Population of a given locality, a2 is the parameter representing the rate
of influx of the human Travellers into the human Exposed Population of a given locality, a3 is the parameter representing the
rate of influx of human Travellers into the human Infected Population of a given locality, S is the Susceptible human popu-
lation variable, r1 is the parameter representing the rate of use of LLIN, r2 is the parameter representing the rate of use of IRS,
r3 is the parameter representing the rate of use of traditional malaria control strategies such as lotion, air conditioner,
protective clothing and house net, r4 is the parameter representing the rate of non-adherence to the use of the LLIN, IRS, air
conditioner, lotion, protective clothing and house net, E is the Exposed human population variable, l is the rate at which the
exposed becomes infectious, I is the Infected human population variable, r is the recovery rate of the Infected Population as a
result of treatment, d is the death rate of the Infected Population, R is the Recovered human population variable, D is the
human Death population variable, V is the Vigilant human population variable, A is the Susceptible adult female Anopheles
mosquito state variable, B is the Infected adult female Anopheles mosquito state variable, c1 is the parametric constant
representing the contact rate between the Susceptible human (S) and Infected Anopheles mosquitoes (B), c2 is also the
parametric constant representing the contact rate between the female Susceptible mosquito (A) and Exposed human (E)
Population of a given locality, c3 is the parametric constant representing the contact rate between the Susceptible mosquito
(A) and infected human (I), g is the recruitment rate of the female Anopheles mosquitoes, bA is the mortality rate of the
Susceptible female Anophelesmosquito (A) as a result of exposure to traditional and conventional vector control tools and bB is
the mortality rate of the Infected mosquito as a result of exposure to traditional and conventional vector control tools.

2.4. Numerical analyses of the novel malaria ODE-based system

An existing work by Imaga et al. (2022) proved beyond reasonable doubt the importance of checking for the existence and
uniqueness of solution. In our own case, this was done using the Lipschitz continuity theorem.

Lipschitz Theorem Definition: Let D be a region such that ðt; xiÞ is the function's argument f ð:; :Þ ¼ f ðt; xiÞ; xi2X; t � 0:
Given any positive constant L; the function f ðx; tÞ ¼ f ðt; xÞ is said to satisfy Lipschitz condition if jf ðt;x1Þ � f ðt;x2Þj � L jx1 �
x2jVðt;x1Þ; ðt;x2Þ2D.

Prior to the application of the Lipschitz continuity condition, our developed system of mathematical models (1) was
linearized and rewritten as follows.
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dT
dt

¼ f1ðTÞ ¼ �a1T � a2T � a3T

dS
dt

¼ f2ðT; S;V ;BÞ ¼ �r1S� r2S� r3Sþ a1T þ r4V � c1SB

dE
dt

¼ f3ðT ; S; E;BÞ ¼ c1SBþ a2T � lE

dI
dt

¼ f4ðT; E; IÞ ¼ lE � Ir � Idþ a3T

dR
dt

¼ f5ðIÞ ¼ Ir

dD
dt

¼ f6ðIÞ ¼ Id

dV
dt

¼ f7ðS;VÞ ¼ r1Sþ r2Sþ r3S� r4V

dA
dt

¼ f8ðA; E; IÞ ¼ g� bAA� c2AE � c3AI

dB
dt

¼ f9ðA; E; I;BÞ ¼ c2AE þ c3AI � bBB

Tð0Þ>0; Sð0Þ>0; Eð0Þ>0;Vð0Þ>0; Ið0Þ ¼ Að0Þ ¼ Bð0Þ ¼ Rð0Þ ¼ Dð0Þ ¼ 0:

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

(3)
The region of interest ðDÞwhich contains all the model compartmental variables that we are interested in confirming their
existence and uniqueness of solutions based on a Lipschitz constant, is given as follows.

D¼
8<
:

ðT; S; E; I;R;D;V ;A;BÞ : jTðtÞ � Tð0Þj � a; jSðtÞ � Sð0Þj � b;
jEðtÞ � Eð0Þj � c; jIðtÞ � Ið0Þj� d;jRðtÞ � Rð0Þj� e;jDðtÞ � Dð0Þj � f ;
jVðtÞ � Vð0Þj � g; jAðtÞ � Að0Þj � h; jBðtÞ � Bð0Þj � i:

9=
; (4)
Thereafter, the partial derivatives of each of the compartmental variables in system (3) were taken to obtain the following
set of equations.

df1
dT

¼ j � ða1 þ a2 þ a3Þj � ja1 þ a2 þ a3j<∞;
df2
dT

¼ ja1j<∞;

df2
dS

¼ j � r1 � r2 � r3 � c1Bj ¼ j � ðr1 þ r2 þ r3 þ c1BÞj � jr1 þ r2 þ r3 þ c1Bj<∞;

df2
dV

¼ jr4j<∞;
df2
dB

¼ j�c1Sj � jc1Sj<∞;
df3
dT

¼ ja2j<∞;
df3
dS

¼ jc1Bj<∞;

df3
dE

¼ j�lj � jlj<∞;
df3
dB

¼ jc1Sj<∞;
df4
dT

¼ ja3j<∞;
df4
dE

¼ jlj<∞;

df4
dI

¼ j�r � dj ¼ j�ðr þ dÞj � jr þ dj<∞;
df5
dI

¼ jrj<∞;
df6
dI

¼ jdj<∞;

df7
dS

¼ jr1 þ r2 þ r3j<∞;
df7
dV

¼ j�r4j � jr4j<∞;
df8
dE

¼ jc2Aj<∞;

df8
dI

¼ j�c3Aj � jc3Aj<∞;

df8
dA

¼ j � bA � c2E � c3Ij ¼ j � ðbA þ c2E þ c3Ij � jbA þ c2E þ c3Ij<∞;

df9
dE

¼ jc2Aj<∞;
df9
dI

¼ jc3Aj<∞;
df9
dA

¼ jc2E þ c3Ij<∞;

df9
dB

¼ j�bBj � jbBj<∞:

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

(5)
From the aforementioned derivations, the partial derivations (5) existed for every of the ODE-based models (3) and were
continuous/bounded. Hence based on the Lipschitz continuity condition, the new system of ODE-based malaria models
1019
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possessed unique solutions at any given time variant. This further implies that the new system of malaria mathematical
models in this study is meaningful and well-posed as desirable in mathematical epidemiology.

2.5. Positivity proof of the variables in the novel malaria ODE-based system

Some authors expatiated on the importance of proof of positivity to disease models (Edeki et al., 2020). Hence, we further
quantified mathematically, if each of the variables in the novel ODE-based system of malaria in (1), satisfies the positivity
condition. This was summarized briefly as follows:

In the system of mathematical models in (1), there are nine variables. As a case study, the positivity of the one of the nine
variables in the system of ODE-based mathematical models which is T , was carried out using the following step-by-step
methodology.

We applied separation of variables method on the ODE for compartment T in (1) as follows:

dT ¼ � Tða1 þa2 þa3Þdt
Further, we integrated both sides of the above equation.

Zt

0

dT ¼ � T
Zt

0

ða1 þa2 þa3Þdt

Zt Zt
0

dT
T

¼ �
0

ða1 þa2 þa3Þdt

Zt
ln TðtÞjt0 ¼ �
0

ða1 þa2 þa3Þdt

Zt
ln TðtÞ� ln Tð0Þ¼ �
0

ða1 þa2 þa3Þdt
Since Tð0Þ>0 then the equation was further written as follows based on the initial condition.

ln TðtÞ¼ �
Zt

0

ða1 þa2 þa3Þ dt
We took the exponential of both sides of the equation to confirm positivity.

eln TðtÞ ¼ e

�
Zt

0

ða1 þ a2 þ a3Þ dt

Zt
0TðtÞ¼ e

�
0

ða1 þ a2 þ a3Þ dt
>0
Hence, this proved that the variable T will always remain positive at any given time variant. The aforementioned step-by-
step methodology applied to confirm the positivity of the T variable, were adapted to prove the positivity of the remaining
variables S; E; I;R;D;V ;A;B in the novel ODE-based malaria system. Hence, we concluded that S; E; I;R;D;V ;A;Bwould all also
remain positive at any given time-variant.

2.6. The novel algorithm for the mathematical model-based malaria prediction system

The system of equations in (1) can be re-defined as functions for dT; dS; dE; dI; dR; dD; dV ; dA; dB as follows:
1020
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functFT ð Þ ¼ ð � a1T � a2T � a3TÞdt
functFSð Þ ¼ ð � r1S� r2S� r3Sþ a1T þ r4V � c1SBÞdt
functFEð Þ ¼ ðc1SBþ a2T � lEÞdt
functFIð Þ ¼ ðlE � Ir � Idþ a3TÞdt
functFRð Þ ¼ ðIrÞdt
functFDð Þ ¼ ðIdÞdt
functFV ð Þ ¼ ðr1Sþ r2Sþ r3S� r4VÞdt
functFAð Þ ¼ ðg� bAA� c2AE � c3AIÞdt
functFBð Þ ¼ ðc2AE þ c3AI � bBBÞdt

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

(6)
Hence, the novel algorithm for the implementation of a mathematical model-based malaria prediction system termed
ModMTD was given as follows using compartment T as an example. T1; T15; T30; T45; T60; T75; T90; T105; T120 denote the
simulation value for T in 1 day, 15 days, 30 days, 45 days, 60 days, 75 days, 90 days, 105 days and 120 days, respectively.

Novel algorithms based on the specific ODE Function (F) for S; E; I;R;D;V ;A;B in (6) were applied in this work similar to
what was shown for compartment T . Furthermore, similar continuous time-point notations used to show the different
outputs for compartment T were used for other compartmental algorithmic representations (S;E; I;R;D;V ;A;B).

2.7. Model parameter estimation

This study estimated specifically the parameters representing the rate of use of traditional and conventional malaria
control strategies and their respective non-adherence parametric rate based on the data obtained from the Undergraduate
Students in Covenant University through the administration of questionnaires (likert scale) during the first week of
resumption for a new academic session in September 2019. The model's initial variable condition for those that travelled was
set to the total population count of Undergraduate Students in Covenant University as obtained from the Student Affairs Unit.
This was because it is mandatory for all Undergraduate students to travel during the school's vacation periods. The model's
variable initial condition for the Exposed was set based on the observed malaria incidence data obtained from the Covenant
University Medical Centre (CUMC) during the first fourteen (14) days of resumption for a new academic session which was
between September 15-29, 2019. The justification for the use of 14 days to derive the exposed (imported) initial simulation
variable value was because the incubation period of Plasmodium falciparum in an exposed individual before the individual can
become infectious is 14 days on the average. Also, the parameter representing the rate (probability) at which the exposed
becomes infectious was set to be 1 because it is assumed that every exposed humanwill be recruited into the infected human
population after the mandatory incubation period of Plasmodium infection in the human host. Based on the discussed
parameter estimation methods used in determining the values for the Exposed initial simulation variable and the rate at
which the exposed becomes infectious set in this work, hysteresis effect of the malaria model was taken into account.

Parameters such as the rates of influx of human Travellers into the Susceptible and Exposed human Population for our
study area were set based on the aforementioned field data that was collected relating to the Traveller, Susceptible and
Exposed Initial Variable Condition Values. Moreover, the parameter on the rate of influx of human Travellers into the Infected
human Population for our study area was set based on the initial variable condition for the Infected human as this work
assumed that it is not possible to determine the number of infected individuals at the model start state (Ið0Þ ¼ 0). This was
also useful in accounting for the hysteresis effect of the model. In this study, some other parameters were also set based on
information from literatures such as the rate of successful treatment (recovery), the death rate of individuals as a result of the
malaria infection, recruitment rate of mosquitoes at different seasons, mortality rates of female Anopheles mosquitoes as a
1021
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result of use of malaria control tools as well as the contact rates between the female Anopheles mosquitoes and the human
host (Ahkrizal et al., 2023; Arambepola et al., 2022; Arambepola et al., 2022, 2022; Collins & Duffy, 2022; Herdicho et al.,
2021; Okuneye & Gumel, 2017; World Health Organization, 2020). Table 1a & 1b show the summary of the parameters
used in this study with their definitions, values and data sources.

To derive the best model-fit scenario, this study assumed other possible conditions that can potentially reduce the impact
of malaria importation by setting Vigilant human initial condition values to 80% and 98% of the total undergraduate human
population ð6102Þ as obtained from the student affairs unit of the University. These aforementioned new vigilant variables
assumed in this study, denote the varying percentages of human host that were presumed to use traditional and conventional
malaria control tools within the understudied population. For the two assumed vigilant conditions, only their floor values
that are whole numbers, were used for the model simulations as human counts can not be in floating-point form.
2.8. Model simulation

A user-friendly computational tool was developed for model simulation using hypertext preprocessor (PhP), Javascript,
Cascading Style Sheet, Hypertext Markup Language, Extensible Markup Language, MySQL Database, Asynchronous Javascript
and Extensible Markup Language termed AJAX. The user's manual for using the software is provided in Appendix A. PhP
technology was particularly useful in implementing the novel ODE-based algorithm.
2.9. Model performance evaluation

In this work, we checked preliminarily if any of the state variables of our model satisfies the Weierstrass approximation
theorem. The Weisstrass approximation theorem states that for every exact solution, there is an approximate solution (Bond,
2009; Oghonyon et al., 2022). Further details as regards the Weierstrass Approximation theorem is given as follows.

Weierstrass Approximation Theorem Definition: Given that there is a real-valued function g with continuous time-point
data (x;y) such that for every ε>0; there must be an approximate value q (Bond, 2009; Oghonyon et al., 2022). Therefore, for
all p in (x;y), there must be jgðpÞ�qðpÞj < εwhere jgðpÞ�qðpÞj is the absolute error and ε is the tolerance level (convergence
criteria) (Bond, 2009; Oghonyon et al., 2022).

Interpreting the theorem using simulation results from our different compartments, it is justifiable to say that only the
infected human compartment satisfies this theorem because its exact values at different time points were gotten using
empirically observed hospital-reported malaria cases while its approximate values were derived using the ModMTD algo-
rithm and another numerical method of interest such as Runge Kutta during simulation. Other compartments in our
developed novel system did not satisfy theWeierstrass approximation theorem as we do not have real data (exact solution) to
compare with their respective simulation outputs (approximate solution) at different time points. Hence, we carried out
performance evaluation of the novel algorithm developed in this study (ModMTD) with that of the existing Runge-Kutta
numerical solution method with specific emphasis only on the Infected compartment.

Some authors discussed the prowess of using error estimation metrics such as absolute error, relative error, percentage
error, absolute mean error and root mean square error as viable numerical accuracy testing tool for algorithms at continuous
time-point intervals (Chutiman et al., 2021; Ndipmong& Udechukwu, 2022; Oghonyon et al., 2022). Hence, the implemented
ModMTD algorithmic systemwas benchmarkedwith the existing Runge-Kutta numerical solutionmethodwith specific focus
on the infected human compartment in oder to evaluate their accuracy using the aforementioned numerical testing tool
(Abell & Braselton, 2022; Chutiman et al., 2021; Ndipmong & Udechukwu, 2022; Omoloye et al., 2022).
Table 1a
Some Parameters used in the work.

Parameters Definition Values Sources

a1 rate of influx of human Travellers into the Susceptible human Population. 0.965 Field data
a2 rate of influx of the human Travellers into the human Exposed Population. 0.03 Field data
a3 rate of influx of human Travellers into the human Infected Population. 0 Assumed
r1 rate of use of LLIN. 0.320 Field data
r2 rate of use of IRS. 0.1577 Field data
r3 rate of use of traditional malaria control strategies such as lotion, air conditioner,

protective clothing and house net.
0.099 Field data

r4 rate of non-adherence to the use of LLIN, IRS, lotion, air conditioner, protective
clothing and house net.

1.7326 Field data

c1 contact rate between the Susceptible human (S) and Infected Anopheles
mosquitoes (B).

0.0044 Okuneye & Gumel, 2017,
Herdicho et al., 2021,
Collins & Duffy, 2022

d rate at which human dies as a result of infection. 0.00023 WHO, 2020
l rate at which the exposed becomes infectious. 1 Assumed
r rate at which the infected recovers from the malaria disease after treatment. 0.99977 WHO, 2020
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Table 1b
Other Parameters used in the work.

Parameters Definition Values Sources

c2 contact rate between the female Susceptible mosquito
(A) and Exposed human (E).

0.0044 Okuneye & Gumel, 2017, Herdicho et al., 2021,
Collins & Duffy, 2022

c3 contact rate between the Susceptible mosquito
(A) and Infected human (I).

0.0044 Okuneye & Gumel, 2017, Herdicho et al., 2021,
Collins & Duffy, 2022

g (dynamic based on seasons) recruitment rate of the female Anopheles mosquitoes
during high rain.

3500 Arambepola et al., 2022, Ahkrizal et al., 2023

g (dynamic based on seasons) recruitment rate of the female Anopheles mosquitoes
during low rain.

875 Arambepola et al., 2022, Ahkrizal et al., 2023

bA mortality rate of the Susceptible female Anopheles
mosquito (A) as a result of exposure to traditional and
conventional vector control tools.

0.01 Ahkrizal et al. (2023)

bB mortality rate of the Infected mosquito as a result of
exposure to traditional and conventional vector control tools.

0.01 Ahkrizal et al. (2023)
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3. Results

Results from the implementation of the novel malaria algorithm incorporating the conventional and traditional malaria
control strategies were presented. Results of the model's simulation using the acquired experimental data for the susceptible
and vigilant human population at low and high rainy seasons were presented in Figs. 2 and 3, respectively Results of the
model's simulation at 80% assumed vigilance to the use of traditional and conventional malaria control strategies during the
low and high rainy seasons were presented in Figs. 4 and 5, respectively. Also, results of the model's simulation at 98%
assumed vigilance to the use of traditional and conventional malaria control strategies during the low and high rainy seasons
were presented in Figs. 6 and 7, respectively. We showed the initial simulation values for the variables and parameters and the
different behaviours of all the different graphical displays for each of the compartments in our work. In order to enhance the
interpretability of the model simulation outputs and handle the overlapping challenges in the graphing of some of the
compartments, we presented the plotted data for all the compartments at the different simulation scenarios in Appendix B.

The results of the Comparative Performance Evaluation for the Model Simulations using ModMTD against hospital-
observed Malaria Incidence data during high and low rainy seasons were presented in Tables 2 and 3, respectively with
specific emphasis on the Infected compartment. Tables 4 and 5 show the results of the Comparative Performance Evaluation
for the Model Simulations using Runge-Kutta algorithm against hospital-observed Malaria Incidence data during high and
low rainy seasons, respectively; also with specific emphasis on the Infected compartment. Tables 6 and 7 show the
comparative performance analysis between Runge-Kutta and ModMTD based on their absolute error values for low and high
rain, respectively. Tables 8 and 9 show the comparative performance analysis between Runge-Kutta and ModMTD based on
Fig. 2. Prediction Graph at low rain based on acquired experimental data
(Variable values � cðT ¼ 6102; S ¼ 3869;V ¼ 2233; E ¼ 213; I ¼ 0;R ¼ 0;D ¼ 0;A ¼ 0;B ¼ 0Þ;
Parameters � cðr1 ¼ 0:320;r2 ¼ 0:1577;r3 ¼ 0:099;r4 ¼ 1:7326;r ¼ 0:99977;d ¼ 0:00023;g ¼ 875;c1 ¼ 0:0044;c2 ¼ 0:0044;c3 ¼ 0:0044;l ¼ 1;a1 ¼ 0:965;a2 ¼
0:03;a3 ¼ 0; bA ¼ 0:01; bB ¼ 0:01ÞÞ
Light-blue:Traveller that has an oscillatory behaviour, Orange:Susceptible which has an oscillatory behaviour, Yellow:Exposed that has an oscillatory behaviour,
Green:Infected that has maximum followed by tailing off behaviour, Light-Violet:Vigilant that has an oscillatory behaviour, Violet:Recovered that has maximum
followed by tailing off behaviour, Dark Blue:Death which has a linear behavior, Dark Violet: Infected mosquito that has an oscillatory behaviour, Light Green:
Susceptible mosquito that has an oscillatory behaviour.
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Fig. 3. Prediction Graph at high rain based on acquired experimental data
(Variable values � cðT ¼ 6102; S ¼ 3869;V ¼ 2233; E ¼ 213; I ¼ 0;R ¼ 0;D ¼ 0;A ¼ 0;B ¼ 0Þ;
Parameters � cðr1 ¼ 0:320;r2 ¼ 0:1577;r3 ¼ 0:099;r4 ¼ 1:7326;r ¼ 0:99977;d ¼ 0:00023;g ¼ 3500;c1 ¼ 0:0044;c2 ¼ 0:0044;c3 ¼ 0:0044;l ¼ 1;a1 ¼ 0:965;a2 ¼
0:03;a3 ¼ 0; bA ¼ 0:01; bB ¼ 0:01ÞÞ
Light-blue:Traveller that is decreasing to a limit, Orange:Susceptible which has an oscillatory behaviour, Yellow:Exposed that has an oscillatory behaviour,
Green:Infected that has maximum followed by tailing off behaviour, Light-Violet:Vigilant that has an oscillatory behaviour, Violet:Recovered that has maximum
followed by tailing off behaviour, Dark Blue:Death which has a linear behavior, Dark Violet: Infected mosquito that has an oscillatory behaviour, Light Green:
Susceptible mosquito that has an oscillatory behaviour.

Fig. 4. Prediction Graph at 80% assumed vigilance during low rain
(Variable values � cðT ¼ Þ6102; S ¼ 1220;V ¼ 4881; E ¼ 213; I ¼ 0;D ¼ 0;A ¼ 0;B ¼ 0
Parameters � cðr1 ¼ 0:320;r2 ¼ 0:1577;r3 ¼ 0:099;r4 ¼ 1:7326;r ¼ 0:99977;d ¼ 0:00023;g ¼ 875Þc1 ¼ 0:0044;c2 ¼ 0:0044;c3 ¼ 0:0044;l ¼ 1;a1 ¼ 0:965;a2 ¼
0:03;a3 ¼ 0; bA ¼ 0:01; bB ¼ 0:01ÞÞ
Light-blue:Traveller that has an oscillatory behaviour, Orange:Susceptible which has an oscillatory behaviour, Yellow:Exposed that has an oscillatory behaviour,
Green:Infected that has maximum followed by tailing off behaviour, Light-Violet:Vigilant that has an oscillatory behaviour, Violet:Recovered that has an oscil-
latory behaviour, Dark Blue:Death which has a linear behavior, Dark Violet: Infected mosquito that has an oscillatory behaviour, Light Green: Susceptible
mosquito that has an oscillatory behaviour.
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their relative error values for high and low rain, respectively. Tables 10 and 11 show the comparative performance analysis
between Runge-Kutta andModMTD based on their percentage error values for high and low rain, respectively The simulation
scenario covered only time-series data from 15 to 60 days during high and low rainy periods because we took into account,
different holiday periods specific to Covenant University which can hinder the students from staying longer than 60 days on
campus. In the presented results in the different tables and graphs used to capture the data about the evaluation, ApproxMTD
represents the different model simulation values derived at different time-points (days) when the ModMTD algorithm was
implemented, ExactOBS represents the hospital-observed malaria incidence data at different time intervals and ApproxRK
represents the differentmodel simulation values derived at different time-points (days) when the Runge-Kutta algorithmwas
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Fig. 5. Prediction Graph at 80% assumed vigilance during high rain
(Variable values � cðT ¼ 6102; S ¼ 1220;V ¼ 4881; E ¼ 213; I ¼ 0;R ¼ 0;D ¼ 0;A ¼ 0;B ¼ 0Þ;
Parameters � cðr1 ¼ 0:320;r2 ¼ 0:1577;r3 ¼ 0:099;r4 ¼ 1:7326;r ¼ 0:99977;d ¼ 0:00023;g ¼ 3500;c1 ¼ 0:0044;c2 ¼ 0:0044;c3 ¼ 0:0044;l ¼ 1;a1 ¼ 0:965;a2 ¼
0:03;a3 ¼ 0; bA ¼ 0:01; bB ¼ 0:01Þ
Light-blue:Traveller that is an oscillatory behaviour, Orange:Susceptible which has an oscillatory behaviour, Yellow:Exposed that has an oscillatory behaviour,
Green:Infected that has an oscillatory behaviour, Light-Violet:Vigilant that has an oscillatory behaviour, Violet:Recovered that has maximum followed by tailing
off behaviour, Dark Blue:Death which has a linear behavior, Dark Violet: Infected mosquito that has an oscillatory behaviour, Light Green: Susceptible mosquito
that has an oscillatory behaviour.

Fig. 6. Prediction Graph at 98% assumed vigilance during low rain
(Variable values � cðT ¼ 6102; S ¼ 122;V ¼ 5979; E ¼ 213; I ¼ 0;R ¼ 0;D ¼ 0;A ¼ 0;B ¼ 0Þ
Parameters � cðr1 ¼ 0:320;r2 ¼ 0:1577;r3 ¼ 0:099;r4 ¼ 1:7326;r ¼ 0:99977;d ¼ 0:00023;g ¼ 875;c1 ¼ 0:0044;c2 ¼ 0:0044;c3 ¼ 0:0044;l ¼ 1;a1 ¼ 0:965;a2 ¼
0:03;a3 ¼ 0; bA ¼ 0:01; bB ¼ 0:01Þ
Light-blue:Traveller that that has an oscillatory behaviour, Orange:Susceptible which has an oscillatory behaviour, Yellow:Exposed that has an oscillatory
behaviour, Green:Infected that has an oscillatory behaviour, Light-Violet:Vigilant that has an oscillatory behaviour, Violet:Recovered that has an oscillatory
behaviour, Dark Blue:Death which has a linear behavior, Dark Violet: Infected mosquito that has an oscillatory behaviour, Light Green: Susceptible mosquito that
has an oscillatory behaviour.
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implemented. ABSERR, RELERR, and PERERR represent the absolute error, relative error and percentage error, respectively.
Specifically ABSRK and ABSMTD represent the absolute error rates for Runge-Kutta and ModMTD, respectively. Also RELRK and
RELMTD represent the relative error rates for Runge-Kutta and ModMTD, respectively. Furthermore, PERMTD and PERRK
represent the percentage error rates for ModMTD and Runge-Kutta, respectively.

The Mean Absolute Error (MAE) Values when the ModMTD algorithmwas used for model simulation during high and low
rainwere 2.0 and 1.0, respectively. Also the RootMean Square Error (RMSE) when theModMTD algorithmwas used for model
simulation during high and low rain were 3.74 and 1.22, respectively.

The MAE Values when the Runge-Kutta algorithm was used for model simulation during high and low rain were 3.5 and
2,0, respectively. Also the RMSE when the Runge-Kutta algorithm was used for model simulation during high and low rain
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Fig. 7. Prediction Graph at 98% assumed vigilance during high rain
(Variable values � cðT ¼ 6102; S ¼ 122;V ¼ 5979; E ¼ 213; I ¼ 0;R ¼ 0;D ¼ 0;A ¼ 0;B ¼ 0Þ
Parameters � cðr1 ¼ 0:320;r2 ¼ 0:1577;r3 ¼ 0:099;r4 ¼ 1:7326;r ¼ 0:99977;d ¼ 0:00023;g ¼ 3500; c1 ¼ 0:0044;c2 ¼ 0:0044;c3 ¼ 0:0044;l ¼ 1;a1 ¼ 0:965;a2 ¼
0:03;a3 ¼ 0; bA ¼ 0:01; bB ¼ 0:01ÞÞ
Light-blue:Traveller that is decreasing to a limit, Orange:Susceptible which has an oscillatory behaviour, Yellow:Exposed that has an oscillatory behaviour,
Green:Infected that has an oscillatory behaviour, Light-Violet:Vigilant that has an oscillatory behaviour, Violet:Recovered that has an oscillatory behaviour, Dark
Blue:Death which has a linear behavior, Dark Violet: Infected mosquito that has an oscillatory behaviour, Light Green: Susceptible mosquito that has an oscillatory
behaviour.

Table 2
Comparative Performance Evaluation for the Model Simulations using ModMTD against hospital-observed Malaria Incidence data during high rain.

Simulation in days ApproxMTD ExactOBS ABSERR RELERR PERERR

15 213 213 0 0 0
30 959 960 1 0.001 0.1
45 617 615 2 0.003 0.3
60 575 580 5 0.009 0.9

Table 3
Comparative Performance Evaluation for the Model Simulations using ModMTD and hospital-observed Malaria Incidence data during low rain.

Simulation in days ApproxMTD ExactOBS ABSERR RELERR PERERR

15 213 213 0 0 0
30 258 260 2 0.008 0.8
45 273 272 1 0.004 0.4
60 249 250 1 0.004 0.4

Table 4
Comparative Performance Evaluation for the Model Simulations using Runge-Kutta and observed Malaria Incidence during high rain.

Simulation in days ApproxRK ExactOBS ABSERR RELERR PERERR

15 213 213 0 0 0
30 958 960 2 0.002 0.2
45 620 615 5 0.008 0.8
60 573 580 7 0.01 0.1

Table 5
Comparative Performance Evaluation for the Model Simulations using Runge-Kutta and observed Malaria Incidence during low rain.

Simulation in days ApproxRK ExactOBS ABSERR RELERR PERERR

15 213 213 0 0 0
30 256 260 4 0.02 2.0
45 270 272 2 0.007 0.7
60 248 250 2 0.008 0.8
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Table 6
Comparative Performance Evaluation of the Absolute Error Rate for the Model Simulations using
Runge-Kutta and ModMTD during low rain.

Simulation in days ABSRK ABSMODMTD

15 0 0
30 4 2
45 2 1
60 2 1

Table 7
Comparative Performance Evaluation of the Absolute Error Rate for the Model Simulations using
Runge-Kutta and ModMTD during high rain.

Simulation in days ABSRK ABSMODMTD

15 0 0
30 2 1
45 5 2
60 7 5

Table 8
Comparative Performance Evaluation of the Relative Error Rate for the Model Simulations using
Runge-Kutta and ModMTD during high rain.

Simulation in days RELRK RELMODMTD

15 0 0
30 0.2 0.7
45 0.8 0.3
60 0.1 0.9

Table 9
Comparative Performance Evaluation of the Relative Error Rate for the Model Simulations using
Runge-Kutta and ModMTD during low rain.

Simulation in days RELRK RELMODMTD

15 0 0
30 0.02 0.008
45 0.007 0.004
60 0.008 0.004

Table 10
Comparative Performance Evaluation of the Percentage Error Rate for the Model Simulations
using Runge-Kutta and ModMTD during high rain.

Simulation in days PERRK PERMODMTD

15 0 0
30 0.1 0.001
45 0.008 0.005
60 0.01 0.009

Table 11
Comparative Performance Evaluation of the Percentage Error Rate for the Model Simulations
using Runge-Kutta and ModMTD during low rain.

Simulation in days PERRK PERMODMTD

15 0 0
30 2.0 0.8
45 0.7 0.4
60 0.8 0.4
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were 4.42 and 2.45, respectively. Figs. 8 and 9 show the graphs comparing the absolute error of ApproxMTD with that of
ApproxRK during high and low rain, respectively. In the graphs, the first, second, third and 4th continuous time-points
represent 15, 30, 45, and 60 days, respectively. The reason for showing the graph for ABSERR only is because its primary
data was used in determining other error rates such as RELERR, PERERR, MAE and RMSE.
1027



Fig. 8. The Absolute error rates for ModMTD and Runge-Kutta at high rain.

Fig. 9. The Absolute error rates for ModMTD and Runge-Kutta at low rain.
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4. Discussion

The simulation results as depicted in the graphs showed that the predicted simulation values for variables T ; S; E; I;R;D;V ;
A;B � 0 at all different time variants. Hence, the positivity proof of the model compartmental variables were in line with the
model simulation results. The predictedmalaria datawere the future trends of the various variables T ; S; E; I;R;D;V ;A;B in the
system simulated for 1, 15, 30, 45, 60, 75, 90, 105 and 120 days.

Specifically, this study was more concerned about the I variable because it is the only variable whose simulated output can
be validated against hospital-observed malaria incidences. Furthermore based on the model's prediction, malaria infected
cases were highest during the heavy rainfall periods. Reason for the high rate of malaria during the heavy rain seasonwas as a
result of the high survival and reproduction rate of Anopheles spp during this period. Furthermore, the high survival and
reproduction rate of An. spp was as a result of the increase in availability of stagnant water bodies during the rainy season
(Arambepola et al., 2022).

In line with this, this study investigated the impact of potential malaria control strategies on malaria transmission dy-
namics. At 80% assumed vigilance to the use of traditional and conventional malaria control strategies during the two major
seasons, malaria infection rate decreased when compared to the malaria infection simulation results obtained using the
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acquired vigilant and susceptible data. At 98% assumed vigilance to the use of the malaria control strategies of interest in this
work, the rate of malaria infection decreased most significantly during the dry season (low rainy peiod). The reason for the
decrease in the malaria infection is as a result of decrease in the malarial vector population during the dry season. This was as
a result of the decrease in the availability of stagnant water bodies. Although at 98% assumed vigilance initial condition at the
two major different climatic scenarios, malaria importation still has significant impact on malaria transmission dynamics.
Hence, it was opined that total vigilance to the use of LLIN, IRS, air conditioner, protective clothing, house net and lotionwould
be the most effective control strategy against malaria importation.

In order to further evaluate the performance of our model, this work showed that the simulation outputs from the novel
algorithmic (ModMTD) implementation were relatively better in terms of model's prediction accuracy than the existing
Runge-Kutta approach. This wa because the ABSerror, RELERROR, PERERROR, MSE and RMSEwere smaller when theModMTDwas
implemented in contrast to the aforementioned error values when the Runge-Kutta Numerical Solution method was used.

5. Conclusions

In this work, malaria transmission dynamics was studied using Covenant University in Nigeria as case study. The pilot
population of interest in the study were the undergraduate students as a result of the ease of tracking their mobility. In line
with this, a novel ODE-based mathematical models of malaria transmission dynamics incorporating human mobility as well
as traditional and conventional control was developed based on the mass action and conservation principle. Different
assumed vigilant conditions were tested in order to ascertain their efficacy in wiping out malaria. This study showed that at
98% best model-fit assumed vigilance condition, malaria importation still has a significant impact on malaria transmission
dynamics at different seasonal scenarios. As a result of this, this study opined that total vigilance to usage of conventional and
traditional malaria control strategies would be the most effective control against malaria.

This study is limited as it applied only hospital-reported imported malaria cases in the developed model. Local and global
stability analyses of the equilibrium states of the model can be done in future studies. Sensitivity, bifurcation, and optimal
control analyses of themodel can also be done in futurework. Further studies can also include other demographic parameters
such as natural death and birth rates. Other modeling techniques such as the use of PDEs could be applied so as to include
other heterogeneous factors such as age, gender, and race. With realistic parametric combinations, the novel model can be
applied towards the control of other infectious diseases such as dengue, chikungunya, lassa fever among others.
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