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Abstract 
Agronomic traits of plants especially those of economic or aesthetic 
importance are threatened by climatic and environmental factors such 
as climate change, biotic, and abiotic stresses. These threats are now 
being mitigated through the analyses of omics data like genomics, 
transcriptomics, proteomics, metabolomics, and phenomics. The 
emergence of high-throughput omics technology has led to an 
avalanche of plant omics data. Plant research demands novel 
analytical paradigms to extract and harness large plant omics data for 
plant improvement effectively and efficiently. Machine learning 
algorithms are well-suited analytical and computational approaches 
for the integrative analysis of large unstructured, heterogeneous 
datasets. This study presents an overview of omics approaches to 
improve plant agronomic traits and crucial curated plant genomic 
data sources. Furthermore, we summarize machine learning 
algorithms and software tools/programming packages used in plant 
omics research. Lastly, we discuss advancements in machine learning 
algorithms' applications in improving agronomic traits of 
economically important plants. Extensive application of machine 
learning would advance plant omics studies. These advancements 
would consequently help agricultural scientists improve economically 
important plants’ quality, yield, and tolerance against abiotic and 
biotic stresses and other plant health-threatening issues.
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1. Introduction
The global agricultural system is threatened by ecological events such as climate change and other environmental

stresses.1,2 These events affect the yield, stability, and quality of production of economically important plants, i.e.,

medicinal plants, fruit crops, food crops, cereal or grain crops, legume seed crops or pulses, etc.1,3 These challenges are

addressed by omics approaches via numerous unconventional improvement methodologies.4,5 Omics approaches

involve analysis of the constituents of genome sequence and other macromolecules generated from encoded genomic

information. The utilization of omics-derived knowledge and technologies in plant improvement strategies is limited and

difficult. Other drawbacks of omics technologies include a lack of data integration and effective phenotype-genotype

correlation strategies. As a result, promoting the integration of computational biology and plant genomics to assist plant

development is critical.6,7 This paper gives an overview of omics methodologies for improving plant agronomic traits as

well as essential curated plant genomic data sources. We discuss the bioinformatics software, tools, and packages that are

utilized in omics-based plant improvement research. We also dissect how machine learning algorithms has been used to

improve agronomic features of commercially significant plants, their major contributions and future outlook in plant

omics and agronomics.

1.1 Plant genome sequences and bioinformatics resources
Genome sequencing was made possible with the advent of sequencing technologies.8,9 Complete sequencing of a

plant genome was first demonstrated for a model plant named Arabidopsis (Arabidopsis thaliana)10,11 and afterward

for rice (Oryza sativa). Subsequently, the whole genome of over 250 species in the plant kingdom have been sequenced:

bryophytes, pteridophytes, gymnosperms, and angiosperms12,13 (Figure 1). Angiosperms account for 95% of the

sequenced species, most of which are economically important plants or their wild relatives (Figure 2). Food crops like

rice, wheat, beans, oat, maize, and soybean are among the sequenced plants, as are ornamental plants like orchid and

hibiscus, industrial plants like oilseed, hemp, and spice/herbs like garlic, ginger, turmeric, moringa, artemisia, and neem,

which are known for their high therapeutic value.

There have been a variety of databases created to access plant genome datasets.14,11 The model plant A. thaliana genome

database launched in 2001 was the premier plant genome database.10,15 Subsequently, many databases and resources

have been developed for plant genomes. The earliest genome databases were essentially archives of genome sequence

data. These databases have expanded into genome portals/hubs that combine different genomic data and web servers that

Figure 1. Publishedplant genomesequences from2000 todate.Most sequenced plants are angiosperms and are
subdivided into three groups. Most of the sequenced angiosperms fall under rosids and asterids clades. Other
sequenced angiosperms clades are grouped here as other dicots.
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offer online genomics analysis. The availability of annotated plant genome data has led to many discoveries, including

genome organization and gene function.16 These discoveries elucidate the complexity, evolution, and dynamics of plant

genomes, contributing to a deeper understanding of plant biology.6,17 Available genomic information includes cis-

elements, gene expression data, protein interactome, transcriptional and post-transcriptional data. These genome

databases exist as single species and comprehensive databases as shown in Table 1.

Figure 2. Percentage of sequenced plantswith their commonnames. 94%of sequenced plants are angiosperms
consisting of both monocots and dicots. Percentage of other plants are 1%, 2%, 3% for Pteridophytes, Bryophytes,
and Gymnosperms, respectively.

Table 1. General plant genomics databases and tools.

Database Description Website

AgBase A unified resource for
functional analysis in
agriculture

http://www.agbase.msstate.edu/

Ensembl Plants A genome-centric portal for
plant species

http://plants.ensembl.org

AutoSNPdb An annotated single
nucleotide polymorphism
database for crop plants

http://autosnpdb.qfab.org.au/

BarleyBase An expression profiling
database for plant
genomics

http://www.barleybase.org/
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Table 1. Continued

Database Description Website

CR-EST A resource for crop ESTs
Search for sequence,
classification, clustering
and annotation data of crop
EST projects

http://pgrc.ipk-gatersleben.de/cr-est/

CSRDB A small RNA integrated
database and browser
resource for cereals

http://sundarlab.ucdavis.edu/smrnas/

ChromDB The Chromatin Database http://www.chromdb.org/

DRASTICx97INSIGHTS Querying information in a
plant gene expression
database

http://www.drastic.org.uk/

FLAGdb++ A Database for the
Functional Analysis of the
Arabidopsis Genome

http://urgv.evry.inra.fr/projects/FLAGdb++/HTML/
index.shtml

GCP The Generation Challenge
Programme

http://www.generationcp.org/

GGT Graphical GenoTypes -
Software for visualization
and analysis of genetic data

http://www.plantbreeding.wur.nl/

GabiPD Integrative Plant Omics
Database

http://www.gabipd.org/

GeneSeqer@PlantGDB Gene structure prediction
in plant genomes - Predict
gene structures of plant
genomes

http://www.plantgdb.org/PlantGDB-cgi/GeneSeqer/
PlantGDBgs.cgi

GrainGenes The genome database for
small-grain crops

http://wheat.pw.usda.gov/index.shtml

Gramene A resource for comparative
grass genomics

http://www.gramene.org/

MIPS Analysis and annotation of
genome information

http://mips.gsf.de/

MetaCrop A detailed database of crop
plant metabolism

http://metacrop.ipk-gatersleben.de/

NIASGBdb National Institute of
Agrobiological Sciences
Gene Bank DataBase

http://www.gene.affrc.go.jp/databases_en.php

P3DB Plant Protein
Phosphorylation Database

http://digbio.missouri.edu/p3db/

PHYTOPROT A Database of Clusters of
Plant Proteins

https://urgi.versailles.inra.fr/phytoprot/

PIP A database of potential
intron polymorphism
markers

http://ibi.zju.edu.cn/pgl/pip/

PLACE Plant cis-acting regulatory
DNA elements

http://www.dna.affrc.go.jp/PLACE/

PLANT-PIs -- A database for protease
inhibitors and their genes in
higher plants

http://plantpis.ba.itb.cnr.it/

PLecDom Plant Lectin Domains server http://www.nipgr.res.in/plecdom.html

PMRD Plant MicroRNA Database http://bioinformatics.cau.edu.cn/PMRD/

PODB The Plant Organelles
Database

http://podb.nibb.ac.jp/Organellome

POGs/PlantRBP A resource for comparative
genomics in plants

http://cas-pogs.uoregon.edu/#/
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Table 1. Continued

Database Description Website

PREP Suite Predictive RNA Editor for
Plants

http://prep.unl.edu/

PRGDB Plant Resistance Genes
DataBase

http://prgdb.cbm.fvg.it/

PathoPlantxae A platform for microarray
expression data to analyze
co-regulated genes
involved in plant defense
responses

http://www.pathoplant.de/

Phytome A platform for plant
comparative genomics

http://www.phytome.org/

Plant MPSS databases Signature-based
transcriptional resources
for analyses of mRNA and
small RNA

http://mpss.udel.edu/

Plant snoRNA
database

Search for comprehensive
information on small
nucleolar RNAs in plants

http://bioinf.scri.sari.ac.uk/cgi-bin/plant_snorna/
home

PlantCARE A database of plant
cis-acting elements

http://bioinformatics.psb.ugent.be/webtools/
plantcare/html/

PlantGDB Plant Genome Database
and Analysis tools

http://www.plantgdb.org/

PlnTFDB Database of Plant
Transcription Factor

http://www.softberry.com/berry.phtml?
topic=plantprom&group=data&subgroup=plantprom

PlantTribes A gene and gene family
resource for comparative
genomics in plants

http://planttfdb.cbi.pku.edu.cn/

PlantTFDB Plant Transcription Factor
Databases

http://fgp.huck.psu.edu/tribe.html

PmiRKB Plant MicroRNA Knowledge
Base - Find information
about plant microRNAs

http://bis.zju.edu.cn/pmirkb/

SALAD Surveyed contained motif
ALignment diagramand the
Associating Dendrogram

http://salad.dna.affrc.go.jp/salad/en/

TheAdaptive Evolution
Database (TAED)

A phylogeny based
comparative genomics
tools

http://www.bioinfo.no/tools/TAED

The Plant DNA
C-values Database

Search for information on
plant DNA C-values and
genome sizes.

http://data.kew.org/cvalues/homepage.html

The PlantsP Functional
Genomics Database

Search for information on
plant kinases and
phosphatases

http://plantsp.sdsc.edu/

The PlantsT Functional
Genomics Databases

Search for genes and
proteins involved in plant
membrane transportation

http://plantst.sdsc.edu/

The TIGR Plant Repeat
Databases

A Collective Resource for
the Identification of
Repetitive Sequences in
Plant

http://www.tigr.org/tdb/e2k1/plant.repeats/index.
shtml

The TIGR Plant
Transcript Assemblies
database

Search for plant EST and
cDNA sequences from this
comprehensive collection

http://plantta.tigr.org/

TropGENE-DB A Multi-Tropical Crop
Information System

http://tropgenedb.cirad.fr/
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1.2 Plant omics technologies
Plant studies involving the analysis of biological macromolecules are collectively termed plant omics. Omics is a broad

field of study encompassing subfields like genomics, transcriptomics, proteomics, metabolomics, phenomics, glycomics,

lipidomic, etc. Plant genomics involves studying the compositions, organizations, functions, and structures of genetic

materials (DNA/RNA) and molecular genetic networks of interactions in the plant genome.17,18While genome structure

Table 1. Continued

Database Description Website

UK CropNet A collection of databases
and bioinformatics
resources for crop plant
genomics

http://ukcrop.net/

openSputnik x97 A database for annotated
expressed sequences tags
information and
comparative plant
genomics analysis

http://sputnik.btk.fi/

Figure 3. Important plant omics branches and their major techniques. Representation of major omics
approaches in plant molecular studies and the methods utilized in conventional analysis of plant omics datasets.
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and organization are studied in structural genomics,13,19 functional genomics investigates the functions, interaction, and

regulation of gene and gene products.5,20

Plant functional genomics is a goldmine in agronomic traits improvement. It incorporates other omics approaches like

transcriptomics, proteomics, metabolomics, phenomics, etc.16,21 (Figure 3). Other aspects of genomics are epigenomics,

mutagenomics, and pangenomics.22 Epigenetic changes, such as histone modifications, small RNA and DNA methyl-

ations occurring at the genomic phase, are dissected within epigenomics. Mutagenomics is used to explore mutation

events mediating modified genotype and phenotype in mutant species. Pangenomics studies the whole set of genomic

sequences present in the entire population of a species. It also explores dispensable genomes that are individual specific or

partially shared. Mutagenomics and pangenomics are new omics techniques in crop sciences.22,23

Plant transcriptomics involves investigating the control of plant metabolite production processes at the RNA level.

Transcript-level gene expression control regulates the whole plant's development and growth.24 Plant proteomics

explores the structural and functional features of proteins in a living organism. It encompasses studies on plants’ typical

morphological and physiological properties.16,22 The role of proteins in controlling the plant metabolic processes is also

studied in plant proteomics, especially in medicinal plants.25

Plant metabolomics involves profiling primary and secondary metabolites in plants.26 Metabolic data are useful when

developing metabolic correlation networks. These networks can aid comparative analysis of cellular compartments such

as carbon and nitrogen transport and partitioning in plants.27 In addition, themolecular and cellular regulation of different

enzymatic processes can also be investigated.25 Plant phenomics involves the systematic study of phenotypes such as

plant composition, growth, and production analysis. This study can be conducted both in controlled environments and in

the field. Field phenomics involves the measurement of phenotypes that exist under both cultivated and natural

conditions. Studies in controlled environments involve glasshouses, growth chambers, and other systems where growth

conditions can be manipulated.28 These multi-omics approaches have emerged successful for plant research, including

agronomic traits improvement over the last few decades. Agronomic traits are desirable plants’ genetic or phenotypic

features, i.e., quality traits, disease resistance, pest resistance, insecticide tolerance, temperature, drought, and other

adverse environmental factors tolerance traits. Quality traits encompass morphological features like plant height, seed

weight; physiological features like chlorophyll content and photosynthetic rate29; economic features like improved crop

yield, processing, and storage; pharmaceutical and industrial features like the elimination of toxins and allergen,

increased nutritional or dietary value and increased medicinal values.30 Recent research suggests that when multi-

omics technologies are integrated, they can be better harnessed to improve genetic development, crop breeding science,

plant stress resistance, and other agronomic traits.22,23

2. Major areas of application of omics technologies for agronomic traits improvement
2.1 Genomics-assisted pre-breeding
Genomics-assisted pre-breeding is a genetic manipulation strategy to improve agronomic traits of interest in plants at the

DNA level.31Genomics-assisted pre-breeding approaches positively contribute to the efficiency of diseases and climate-

resilient crop development.32–34Crop breeding across the globe has relied on a series of phenotypic selection and crossing

before the genomic era to generate superior crop genotypes.35 Genome sequence availability has paved the way for

identifying all genes and genetic variants associated with agronomics traits.36,37Besides, it has made it possible to assess

genotype level changes incurred during breeding processes.38 Plant breeders have utilized genomics and bioinformatics

in gene-level resolution of agronomic variation using quantitative trait loci (QTL) mapping39–41 and genome-wide

association studies (GWAS).42,43 For instance, studies have recently been conducted to developmultiple stress-adaptable

rice species that are disease and climate resilient using genomics-assisted breeding techniques such as quantitative trait

locus (QTL), gene/markers-phenotype association and phenotype selection.44–46 Pea breeding projects used genetic

marker-trait associations to boost valued yield and market-preferred agronomic traits.47,48 Miedaner et al.43 used high-

density genotype arrays and comprehensive phenotyping of the same species population across diverse conditions,

locations, and seasons in genomic selection and population mapping to speed the breeding of disease resistance traits in

maize, small-grain cereals, and wheat. Hu et al.39 harnessed genomic selection (GS) and genome-wide genetic variants to

prevent reiterated phenotyping in breeding cycles. These studies indicate newbreeding techniques such as speed breeding

and genomic selection to boost genetic and trait improvements. However, the lack of robust phenotypic data limits the

efficient utilization of available genomic information and technologies in genomics-assisted breeding.

2.2 Evolution and crop diversity
Variation in gene content among individuals within the same species is caused by genetic variation ranging from

single-nucleotide polymorphisms to substantial structural variants (SVs). Due to human and natural selection acts, this

variation offers the rawmaterial on which evolution occurs.49,50Deviation in agricultural plants’ phenotypic and genetic
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characteristics is referred to as crop diversity.36 The understanding of crop diversity is enhanced by plant genomics at

both species and gene levels.51According to recent research, a single reference genome is insufficient to capture a species'

entire genetic diversity landscape. Pan-genome analysis provides a platform for evaluating a species' genetic diversity

by looking at its whole genomic repertoire. Pan-genomic studies have shed new light on the landscape of diversity

and improvement of major crops such as Brachypodium distachyon,52 Brassica Spp.,53–55maize,56 rice,57,58 soybean,59

wheat60 etc. Evolution in plant diversity is correlated with and relatively predictable by heterogenous biotic and abiotic

environmental stress induced by global climate change. These stresses, in turn, affect crop yield and crop-growing

seasons.61A study on natural plant populations shows that the organization and evolution of plant populations’ diversity

at all genomic regions is nonrandom at the molecular and organismal level.62,63 Therefore, plants can evolve under

climatic gradients resulting in clinal adaptation. Hence, the breeding of climate resilience crops can be facilitated by

understanding the genomic basis of clinal adaption in crop species.64

2.3 Abiotic and biotic stresses
Biotic stresses are instigated by living organisms such as insects, parasitic plant nematodes, diseases, or weeds in

production agriculture.65 Genomics approaches to biotic stress include ribonucleic acid interference (RNAi) silencing

and transgenesis. RNA interference (RNAi) silencing is employed against viruses and some fungi, while transgenesis has

been exploited to develop resistance against some fungi, for example, Fusarium head blight.66 Genome-wide identifi-

cation and expression analysis in legume crops also revealed the role of small RNA biogenesis mediators in biotic stress

response regulation.42

Abiotic stresses, such as low or high temperatures, heavy metals, insufficient or excessive water, high salinity,

ultraviolet radiation, are hostile to developing plants, resulting in significant wane in crop yield worldwide.67According

to Kumar et al.,28 knowledge of plants' response to abiotic stresses can be enhanced by integrating information generated

from metabolomics and proteomics with genomics data. Sustenance of yield in crops threatened by abiotic stresses is a

significant challenge in breeding resilient crop varieties.68 A study on Brassica oleracea shows that heat stress

transcription factors are integral to signal transduction pathways functioning in response to environmental stresses

and are suggested to contribute significantly to various stress responses.62 Heat stress transcription factors genes were

identified in the in silico analysis of B. oleracea. The identified genes may be exploited in developing crop varieties

resilient to global climate change.1,62

2.4 Population studies
Population genomics is employed to study adaptation and speciation. Population genomics datasets are used in GWAS to

detect the genes responsible for adaptive phenotypic variations of large plant population samples.35,69 For instance,

Bamba et al. identified specific adaptation loci in a GWA study and unveiled the molecular basis of genetic trade-offs. It

also showed that ecological fitness could be predicted by polygenic effects of several loci associated with local climate.35

Medicinal plants’ diversity is of exceptional interest because of their ethnomedicine role. GWAS studies on adaptive

genotypic and phenotypic variation provide a framework to assess the diversity of medicinal plant application across

different cultures and infer modifications in plant use over time.70,71 Other genomic approaches such as genomic

selection, nested association mapping, genetic diversity, and allele mining have been integrated into crop improvement

programs to address the genetic issues associated with maize productivity and nutritional contents.72

Plant omics studies have greatly helped our understanding and interpretation of plant responses to ecological influences

and their contribution to key developmental processes important for crop yield and food quality. However, there are still

some problems, such as a lack of data integration and robust techniques for phenotype-genotype correlation. Also, the use

of omics-derived knowledge and tools in plant improvement strategies is limited and difficult. As a result, there is a

pressing need to promote the integration of computational biology and plant genomics to benefit plant improvement.6,7

3. Applications of machine learning in plant omics and agronomics
3.1 Machine learning algorithms and resources
Machine learning (ML) is a computer science field that utilizes algorithms to learn and capture the characteristics of

target patterns of complex datasets.73Machine learning algorithms are generally classified into the following categories;

supervised, semi-supervised, unsupervised, reinforcement, and deep learning.74 A supervised ML algorithm is trained

using a labeled dataset. It learns to respond more accurately based on these training sets by comparing its output with the

given input.67,73 Semi-supervised algorithms provide a tool that harnesses the potential of both supervised and

unsupervised learning. These algorithms are ideally adapted for model building and can be used for classification,

regression, and prediction.75Unsupervised learning is all about identifying unexplained existing patterns from the data to

generate pattern rules. Unsupervised learning is a learning approach focused on statistics and thus applied to the issue of

discovering a hidden structure in unlabeled data.7,74,76
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Reinforcement learning is considered an intermediate form of learning as the algorithm is only provided with an answer

that tells whether the output is correct or not.75Deep learning is built on artificial neural networks (ANN). The algorithms

extract higher-level features from the raw input usingmultiple layers of neural networks. Learning of the algorithm can be

unsupervised, semi-supervised, or supervised.73Machine learning approaches provide unique techniques for integrating

and analyzing omics data, allowing for the improvement of crops and other economically important plants. Some

machine learning algorithms have been used to developed tools specifically for plant omics analysis. Table 2 highlights

the existing machine learning tools for plant omics analysis. Machine learning algorithms have a broad range of

applications in plant genomics. These algorithms play vital roles in genome assembly, iterative gene regulatory network

inference, and the identification of true SNPs in polyploid plants.77

3.2 Precision plant breeding
Precision breeding is a genetic engineering technique that involves reproducing organisms of the same species together to

preserve desirable characteristics and create a stronger hybrid.84 Traditional statistical methods mainly used in plant

breeding strategies are ineffective in plant data analysis because of the non-deterministic and nonlinear nature of plant

features attributed to environment, genotype, and interaction.85 Machine learning has enabled effective plant phenotyp-

ing and data mining for patterns such as genotype and trait correlation.39 It has also been successful in genomic selection.

Genomic selection is a critical method used in selecting plant species with genetic gains of interest in plant breeding.

Applying different ML algorithms in building GS models has produced robust and accurate prediction.86,87 Multilayer

neural networks (NNs) have been used in genetic value prediction in plant breeding. NNmodels are efficient in predicting

genetic value, regardless of the population size, heritability, or coefficient of variation. Thus, the ANN is promising for

genetic value prediction in unbiased experiments.88 Multilayer NNs have been utilized to select bean genotypes with

highly stable phenotypes using 13 genotypes of common beans between 2002 and 2006. The integration of this model in

plant breeding has enabled precise genetic value prediction and selection.89

Also, deep learning generated a robust prediction accuracy in grain yield compared to the conventional linear statistical

methods used in traditional plant breeding when analyzing multiple traits with mixed ordinal, continuous, and binary

phenotype data. Univariate and multivariate deep learning models' predictive performance was assessed using the

Durum wheat (Triticum turgidum var. durum Desf.) dataset. Deep learning model performance shows that it has a

Table 2. Existing machine learning tools for plant omics data analysis.

Application
area

Developed
tools

URL Algorithms Selected features

Plants
Mitochondrially
Localized
Proteins
Prediction

MU-LOC78 http://mu-loc.org/ SVM and
DNN

gene co-expression information,
protein position weight matrix,
amino acid compositions, and
N-terminal sequence information,

plant resistance
protein NBSLRR
prediction

NBSPred79 http://soilecology.
biol.lu.se/nbs/

SVM R-protein and non-R-protein
sequences attribute like sequence
domain and compositional
frequencies

Ribosomal
proteins (RPs)
prediction

RAMA80 http://inctipp.
bioagro.ufv.br:8080/
Rama.

MLP, RF,
and NB

Amino acid side chains attributes

Plant disease
resistance
proteins
prediction

DRPPP81 http://14.139.240.55/
NGS/download.php

SVM, MLP,
and RF

genomic sequence
(satellite DNAs)

Geminiviruses
Gene and
genera
classification

Fangorn
Forest
(F2)82

www.geminivirus.
org:8080/
geminivirusdw/
discoveryGeminivirus.
jsp.

SVM, MLP,
and RF

genomic sequence
(satellite DNAs)

Transcriptomes
for stress
responses in
Arabidopsis

mIDNA83 www.plantcell.org/
content/26/2/520.
short#def-8

RF with
PSOL
algorithm,
SVM, and
NN

patterns of 32 known stress-
related gene expression traits and
the complementary expression
characteristic
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promising potential to be a successful model for accurate genomic prediction in plant breeding.90 The flexibility of

machine learning algorithms makes them a viable alternative to traditional parametric methods for predicting categorical

and continuous responses in genomic selection.91

An ensemble of RF and SVM was implemented to improve genotype-phenotype classification using manually derived

root trait datasets. The combined model accurately identified the most distinguishing root traits and corresponding

cultivar differentiation. The model's performance demonstrates the potential of ML approaches in unbiased cultivars

classification and trait selection.92

Additionally, predictive models have aided the integration of additive and dominance effects in GWAS and have

enhanced the prediction of complex agronomic traits in polyploid plant species. For instance, a study revealed the

feasibility of genome-wide prediction of potato agronomic traits despite being an autotetraploid food crop. It also shows

that GWA prediction is viable in selecting breeding values in elite germplasm with substantial non-additive genetic

variance.93

3.3 Phenomics
Plant phenomics is a systematic study of plant phenotypes.28 In recent years, plant field phenotyping has gotten a lot of

attention with the possibility of crop fields' high-throughput analysis.94The application of machine learningmethods and

the various technological developments for image analysis have improved quantitative crop traits assessment.92,94,95 For

instance, CNN-based detection and analysis of wheat spikes using wheat field trials images captured over one planting

season achieved an average accuracy of 88 to 94% across diverse groups of test images. CNN's high-performance

accuracy shows that it is a robust model for genome-based selection and prediction in plant breeding.96 Also, the RF

algorithm was used in plant image segmentation involving the acquisition and processing of several plant images

samples.97 The predictions made by the model enabled the discovery of various parameters relevant to plant growth.94

3.4 Stress resilience phenotyping
ML learning has been exploited in identifying favorable agronomic traits, including abiotic and biotic stress resistance.

ML algorithms are integrated into conventional statistical methodologies to optimize the accuracy of plants stresses

prediction and detection.96 For instance, 25,000 soybean leaflets images exposed to varied diseases and nutritional

perturbation were used to develop a convolutional neural network (CNN), which can infer the image features of the

disease types and dietary deficiencies at high resolution. The prediction accuracy of theML framework was very close to

that of human expert diagnosis. Other plants’ induced stresses can also be identified, classified, and quantified using the

model. The model can also be adapted to identify, classify, and quantify the induced stresses in other plants.95

Random forest has been used to predict metabolite and transcript markers in drought tolerance prediction using

experimental drought-stressed plant field trial datasets. The low error rate recorded in the model shows that the model

could be considered as an alternative model for accurate prediction and identification of molecular markers.98 RF was

used to identify suitable features combination for phenotypic traits prediction using data derived from various agro-

management treatment experiments. This approach achieved optimal prediction accuracy and improved plant breeding

strategies by enabling maximal allocation of stress management resources.99 Sanz-Carbonell and colleagues used deep

sequencing and computational approaches such as PCA and Clustering analysis to infer the biotic and abiotic stress

responses regulatory network mediated by miRNA. 24 miRNAs were used in this study, all of which are known to alter

expression significantly under stressful conditions. The prediction generated inference that target genes of miRNAs

down-regulated under stress conditions contribute to plant response to stress, whereas miRNAs that are up-regulated

control genes associated with growth and development.67 Soybean fields were screened for tolerance to soybean iron

chlorosis deficiency (abiotic stress in soybean) using linear discriminant analysis (LDA) and SVM. The phenotypic data

obtained from soybean fields were used in model training and predicting soybeans' iron chlorosis deficiency stress. The

ML application has helped evaluate the severity of real-time stress in the soybean sector.95

3.5 Plant–pathogen interaction and diseases prediction
Plant diseases and pests pose a significant threat to agriculture. Early identification of plant diseases and pests would aid

in developing effective treatment strategies while economic losses are mitigated.100 Diverse ML approaches for precise

disease recognition and prediction have been implemented in plant populations.101,102 Neural networks (NNs) have

achieved impressive results in plant disease prediction using image classification. A deep convolutional network was

implemented in leaf image classification model for disease recognition. The developed model showed a high predictive

performance in distinguishing plant leaves from their surroundings and recognized 13 plant diseases types on healthy

leaves.103 In another approach, a heterogeneous ensemble of deep-learning-based neural network models was used in

detecting tomato plants diseases and pests using images collected on-site by imaging devices of varying resolutions.
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The ensemblemodel successfully handled image complexity in the plant's surrounding area and recognized nine different

diseases and pests.100,104 Therefore, deep CNNs are promising in automatic classification and detection of diseases traits

from leaf images. In addition, CNN has shown optimal performance when implemented in plant–pathogen interaction,

pest, and disease recognition in some studies. These studies include prediction of pests and diseases occurrence in

cotton105; rice plant diseases and pests recognition106; rice blast disease prediction107,108; image-based potato tuber

disease detection109 and so on. The CNN model is a high-performing method for detecting plant diseases, and it can be

implemented and optimized for practical applications.

SVMhas also been used for weather-based rice blast prediction and has proven suitable for plant disease forecasting with

incredible predictive accuracy. A world-first SVM-based web server for rice blast prediction was developed. Plant

scientists and farmers have benefited from this tool, especially in their decision-making.110 In the pixel-wise quantifi-

cation and identification of powdery mildew diseased barley tissue, SVM classification was used to establish hyper-

sensitive response spots using multispectral imaging of diseased barley plants. SVM application enabled precise

automatic identification of barley interaction with powdery mildew.111

Recently, a data-driven ML approach named ApoplastP was proposed. RF classifier is the base algorithm for ApoplastP

and has shown high performance in predicting protein localization in plant apoplast. At first, differences in the

constituents of apoplastic and intracellular plant proteins were unknown. However, the advent of ApoplastP enabled

the exploration of differences in the composition of plant proteins. The plant apoplast is integral to plant–pathogen

interactions, transport, and intercellular signaling. Hence, integrating and optimizing machine learning algorithms in

apoplastic localization prediction will aid functional studies and help predict whether an effector will localize to the

apoplast or enter the plant cells.112

Also, RF has been implemented to build an inter-species protein–protein interaction (PPI) prediction model using

Arabidopsis–pathogen PPI data acquired both experimentally and from PPI public databases-UniProt. A critical

assessment of the model performance showed that random forest integration with linear statistical methods using

sequence information and network attributes as model features resulted in substantial and robust improvement in

performance.24

In addition, RF classification has been used to exploit protein biomarkers' potential in precision breeding using

biomarkers generated assays of 104 potatoes (Solanum tuberosum) peptides. These peptideswere selected using diagonal

linear discriminant analysis, bagging, principal component analysis (PCA), and SVM and then classified with RF

classifiers. The ML algorithms' application helped identify Phytophthora infestans resistance in leaves, tubers and its

effect on plant yield using potato leaf secretome data.109 Early disease detection enables farmers to use timely and

targeted crop protection strategies. With the use of ML, researchers have improved the accuracy of object detection and

recognition systems dramatically.

3.6 Challenges and future outlook
MLapplications in plant genomics and agronomics havemajorly contributed to efficient breeding of crops with desirable

agronomic traits, plant phenotyping, genetic trait prediction, and precise disease prediction such as in rice, soybeans,

maize, beans, etc.72,95,106,110 However, several limitations still exist. Firstly, the black-box nature of some sophisticated

ML algorithms inhibits interpretation. The plant research community ismore interested and fascinated with the biological

implications of the prediction than the accuracy of the predictive model. Hence, there is a need for further processing and

careful interpretation of the predictive model output using conforming biological knowledge. Additionally, the dimen-

sionality of omics datasets poses challenges such as multicollinearity, overfitting, and sparsity which are difficult to

avoid. Though contemporary machine learning methods and the huge sample size can partially alleviate these problems,

the model’s accuracy can be significantly enhanced by using different fine-tuning, augmentation, and optimization

techniques.107 Data integration from various sources is necessary for GS-assisted breeding and other trait improvement

approaches.113 Simultaneous analysis of multiple omics datasets can advance our understanding of complex biological

phenomena.78,79Another challenge is the limited and inconsistent information on plant-pathogen interaction phenotypic

information. The ML models used in plant disease recognition can be extended by enriching the plant disease database

with plant-pathogen interaction phenotype data. Developing more robust classification algorithms with an expanded

number of diseases classes will improve plant disease recognition and forecasting.103,105,108,106 Finally, a comprehensive

plant database must be constructed to facilitate comparative studies and promote research collaborations on critical plant

science problems.

4. Conclusion
Machine learning has shown tremendous promise in studying enormous high-dimensional data sets, although it is

still limited in plant molecular studies application. An in-depth understanding of ML models will stimulate ML
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implementation for plant biological data analysis. As sequenced plant genome data continues to accumulate, ML will

accelerate all plant genomic research fields, including identifying genes associated with biotic and abiotic stress

resistance and other genes with significant functions, understanding gene regulation mechanisms, exploring plant

genome genetic framework, and estimating breeding values. These advancements would help agricultural researchers

improve the quality and yield of crops with stronger tolerance to abiotic and biotic stress and other plant health-

threatening issues.

Data availably statement
Extended data
OSF: Extended data for “Machine learning algorithms: their applications in plant omics and agronomic traits’

improvement”, https://doi.org/10.17605/OSF.IO/TE6GC.14

Files included:

Supplementary Table 1. Published sequenced plant genomes. Hundreds of plant genomes have been sequenced and

published since 2000. The statistics for each genome are taken from the publication, despite several model plants having

significant updates to genome assemblies and gene counts. NA, data not available in publication; Mb, megabases; kb,

kilobases.

Data are available under the terms of the Creative Commons Zero “No rights reserved” data waiver (CC0 1.0 Public

domain dedication).
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