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Background
Despite tremendous advances in understanding malaria epide-
miology and the availability of several therapeutic options, 
malaria remains one of the leading global causes of death, with 
children accounting for a large proportion of those affected.1 
Many antimalarial drugs have been produced over the years, 
but resistance has been observed against most, including chlo-
roquine, pyrimethamine, and proguanil.2 Recent treatment 
failures with artemisinin-based combination therapy (ACT) 
have raised concerns about the loss of the highly effective treat-
ment currently available to treat malaria.3 The licensed antima-
larial drug’s poor efficacy, combined with the spread of 
antimalarial drug resistance, necessitates the development of an 
innovative strategy to identify novel antimalarial compounds.4

In silico techniques have been successful and have become 
powerful tools in the search to cure diseases,5 reducing the use of 
animal models in pharmacological research, assisting in the 

rational design of novel and safe drug candidates, and reposition-
ing marketed drugs.6 They are vital in identifying viable thera-
peutic candidates at a low cost and time by using sophisticated 
computers and information technology to speed up drug discov-
ery, lead optimization, drug development, and design.7 In silico 
methods such as molecular dynamics (MD) simulations, molecu-
lar docking, drug-likeness prediction, and ADMET (absorption, 
distribution, metabolism, elimination, and toxicity) studies are 
used to screen candidate drugs/molecules from various databases/
libraries.7 These in silico methods have been proposed to recog-
nize and select therapeutic relevant targets, study the molecular 
basis of drug-receptor complexes interactions, structurally char-
acterize ligand-binding sites on biological targets, design de novo 
target-specific compound libraries, predict target protein struc-
ture, identify hit compounds by ligand- and structure-based vir-
tual screening, estimate binding free energy between a ligand and 
receptor, and optimize high-affinity ligands.8
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ABSTRACT: Plasmodium falciparum Apicomplexan Apetala 2 Invasion (PfAP2-I) transcription factor (TF) is a protein that regulates the expres-
sion of a subset of gene families involved in P. falciparum red blood cell (RBC) invasion. Inhibiting PfAP2-I TF with small molecules represents 
a potential new antimalarial therapeutic target to combat drug resistance, which this study aims to achieve. The 3D model structure of PfAP2-I 
was predicted ab initio using ROBETTA prediction tool and was validated using Save server 6.0 and MolProbity. Computed Atlas of Surface 
Topography of proteins (CASTp) 3.0 was used to predict the active sites of the PfAP2-I modeled structure. Pharmacophore modeling of the 
control ligand and PfAP2-I modeled structure was carried out using the Pharmit server to obtain several compounds used for molecular docking 
analysis. Molecular docking and postdocking studies were conducted using AutoDock vina and Discovery studio. The designed ligands’ toxic-
ity predictions and in silico drug-likeness were performed using the SwissADME predictor and OSIRIS Property Explorer. The modeled protein 
structure from the ROBETTA showed a validation result of 96.827 for ERRAT, 90.2% of the amino acid residues in the most favored region for 
the Ramachandran plot, and MolProbity score of 1.30 in the 98th percentile. Five (5) best hit compounds from molecular docking analysis were 
selected based on their binding affinity (between −8.9 and −11.7 Kcal/mol) to the active site of PfAP2-I and were considered for postdocking 
studies. For the absorption, distribution, metabolism, elimination, and toxicity (ADMET) properties, compound MCULE-7146940834 had the 
highest drug score (0.63) and drug-likeness (6.76). MCULE-7146940834 maintained a stable conformation within the flexible protein’s active site 
during simulation. The good, estimated binding energies, drug-likeness, drug score, and molecular dynamics simulation interaction observed 
for MCULE-7146940834 against PfAP2-I show that MCULE-7146940834 can be considered a lead candidate for PfAP2-I inhibition. Experimental 
validations should be carried out to ascertain the efficacy of these predicted best hit compounds.
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The idea of targeting transcription and transcription factors 
(TFs) for drug therapy was long considered a “Sisyphean task,” 
but recent work in drug discovery has shown the direct modu-
lation of TF function by small molecules.9-11 Transcription fac-
tors are proteins that bind to DNA sequences and control the 
stream of genetic information from DNA to mRNA.12 
Transcription factors, along with other proteins in a complex, 
control P. falciparum gene expression by promoting (activator) 
or blocking (repressor) the recruitment of RNA polymerase to 
specific genes during the intra-erythrocytic development cycle 
(IDC) in the red blood cells (RBCs).13,14 In antimalarial drug 
design, TFs as drug targets have enormous potential to be drug 
resistance free because targeting TFs affects many genes 
instead of one gene for enzymatic site-based drugs.11 One of 
such essential TFs found across the different Plasmodium spp is 
the Apetala 2—Invasion (AP2-I) TF (a member of the 
Apicomplexan Apetala 2 (ApiAP2) TF). P. falciparum Apetala 
2—Invasion (PfAP2-I) TF is a 183 kDa protein located on 
chromosome 10 of the Plasmodium genome whose primary 
function is to regulate RBC invasion genes.15 P. falciparum 
Apetala 2—Invasion also targets promoters of nucleosome- 
and chromatin-related genes, cell-cycle-related genes, and 
genes associated with vesicle transport and host-cell remode-
ling.14,16 It contains 3 AP2 domains, and only the third AP2 
domain is essential for regulating a subset of genes involved in 
RBC Invasion15,16 (Campbell et  al15; PfAP2-I is associated 
with several chromatin-associated proteins, including the 
Plasmodium bromodomain protein 1 (PfBDP1)), and that 
complex formation is related to transcriptional regulation. P. 
falciparum Apetala 2—Invasion represents a potential new 
antimalarial therapeutic target as a critical regulator of RBC 
invasion.17 It is essential to study and understand its function-
ing and determine drugs that can inhibit its activity for dis-
rupting the parasite cycle in the human host and for designing 
effective therapies that can augment the efficacies of existing 
antimalarials. This study aims to identify small molecules with 
inhibitory potential against AP2-I regulatory action in P. 
falciparum.

Methods
PfAP2-I structure prediction

The structure of PfAP2-I was modeled ab initio because there 
is a lack of experimentally validated structure for PfAP2-I in 
the Protein Data Bank (PDB)18 as well as the UniProt database 
(UniProtKB).19 The protein ID of the target (PfAP2-I 3D7 
strain) was retrieved from the National Center for Biotechnology 
Information (NCBI) with the accession number P3D7_1007700. 
Afterward, the protein ID was submitted to the SWISS-
MODEL web server20 to develop a homology model with suf-
ficient query sequence coverage and sequence identity. The 
confident match to a protein of known structure was below 
40%, so comparative modeling of PfAP2-I could not be done. 
P. falciparum Apetala 2—Invasion was then synthesized on 

both the I-TASSER server (http://zhanglab.dcmb.med.umich.
edu/I-TASSER)21 and ROBETTA Baker server (http://
robetta.bakerlab.org)22 using RoseTTAFold. RoseTTAFold is 
the default option that uses a deep learning-based modeling 
method. This method outperforms every other way for protein 
structure modeling on the ROBETTA Baker server. The most 
reliable three-dimensional (3D) structure was selected based 
on the confidence value. The confidence values are usually 
between 0.00 (bad) and 1.00 (good), and the higher the num-
ber, the higher the reliability of the predicted structure. The 
AlphaFold-predicted structure of PfAP2-I is available on 
UniProt (www.beta.uniprot.org/uniprotkb/Q8IJW6/entry) 
and was compared with the predicted structure results from the 
I-TASSER server and ROBETTA Baker server.

Structure validation of modeled protein

PROCHECK23,24 and ERRAT25 on UCLA-DOE LAB—
SAVES v6.0 was used to check for the quality of the modeled 
3D structure of PfAP2-I generated on the I-TASSER and 
ROBETTA Baker Laboratory. The .pdb file format of the 
modeled PfAP2-I was uploaded on the UCLA-DOE LAB—
SAVES v6.0 site to obtain the overall quality factor from 
ERRAT and Ramachandran plot statistics from PROCHECK. 
The overall quality factor of a protein structure is expressed as 
the percentage of protein for which the calculated error value 
falls below the 95% rejection limit. Good high-resolution 
structures usually produce values around 95% or higher.26

The Ramachandran plot is used to access a modeled pro-
tein’s quality or an experimental structure. The Ramachandran 
plot statistics provide information on the total number of 
amino acid residues found in the favorable, allowed, and disal-
lowed regions.24 The prioritized PfAP2-I 3D modeled struc-
ture from the ROBETTA Baker server and I-TASSER 
structure prediction and the AlphaFold-predicted structure of 
PfAP2-I retrieved from UniProt were subjected to further 
structure validation using MolProbity27 to determine the qual-
ity of prediction.

Active site prediction of AP2-I modeled structure

The active sites of modeled PfAP2-I 3D7 structure were pre-
dicted using the Computed Atlas of Surface Topography of 
proteins (CASTp) 3.028 and ConCavity.29 The CASTp is an 
online service for identifying, defining, and quantifying certain 
geometric and topological features of protein structures such as 
surface pockets, interior cavities, and cross-channels.30 ConCavity 
is an online service used for predicting protein-ligand-binding 
sites by combining evolutionary sequence conservation and 3D 
structure and works based on a confidentiality score (C-score). 
C-score is a confidence score of the predicted binding site. 
C-score values range from 0 to 1, where a higher score indi-
cates a more reliable prediction. The modeled AP2-I 3D struc-
ture was submitted on the server in .pdb format. The necessary 

http://zhanglab.dcmb.med.umich.edu/I-TASSER
http://zhanglab.dcmb.med.umich.edu/I-TASSER
http://robetta.bakerlab.org
http://robetta.bakerlab.org
www.beta.uniprot.org/uniprotkb/Q8IJW6/entry
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amino acids for binding interactions predicted by the 2 servers 
were compared to determine the similarity between the 2 pre-
dicted active sites.

Pharmacophore-based virtual screening

Pharmacophore-based virtual screening was designed using 
Pharmit server.31 Pharmit server is a collection of built-in data-
bases such as Molprot, ChEMBL, ZINC, and PubChem. It 
contains millions of chemical compounds that can be used to 
screen drug-like compounds against a given protein.32 The 
Pharmit server is based on a pharmacophore model using the 
AutoDock Vina scoring function.33 A control ligand (3 W7 
from the COACH server) was selected for screening,34 and 
both the modeled protein and control ligand were loaded into 
the Pharmit Server. The pharmacophore model was built using 
6 features (Supplementary Table 1). The Pharmit filters hit 
screening for the pharmacophore modeling were set using the 
Lipinski rule of 5 and Veber’s rule to minimize the results sig-
nificantly and obtain the best possible inhibitors out of mil-
lions of drug-like compounds (Supplementary Table 1).

Protein and ligand preparation for molecular 
docking analysis

The modeled protein structure was defined as a receptor, while 
the complexed ligands were removed using Chimera soft-
ware.35 Furthermore, the protein was prepared by computing 
Gasteiger charges, adding polar hydrogens, and merging the 
nonpolar hydrogens using AutoDockTools 4.2.6.36 In addition, 
OpenBabel software37 was used to convert the .pdb files to the 
AutoDock docking format (.pdbqt), which was further used 
for the docking simulation.

Molecular docking analysis

Molecular docking of compounds against the active sites of 
PfAP2-I was carried out using AutoDock Vina, an accessible 
graphical user interface (GUI) for the AutoDock 4.2 pro-
gram.38 The grid box was constructed using 80, 80, and 80 
pointing in the x, y, and z directions, respectively, with a grid 
point spacing of 0.375 A. The center grid box was set at 
–29.495, 57.365, and 45.252 A around the amino acid residues 
in the active site of PfAP2-I. Five (5) hits were then generated 
and ranked according to their binding affinities to verify the 
ligand-binding sites and postdocking analysis of the hit com-
pounds was conducted using Discovery studio.39

In silico drug-likeness and toxicity predictions

The in-silico drug-likeness and toxicity predictions of the designed 
ligands were carried out using the SwissADME predictor40 and 
OSIRIS Property Explorer.41 SwissADME predictor provides 
information on the physicochemical properties, lipophilicity, water 

solubility, pharmacokinetics, drug-likeness, and medicinal chemis-
try of the compounds.42 OSIRIS Property Explorer program, on 
the other hand, provides information on a compound’s toxicity 
and determines parameters such as molecular weight, consensus 
lipophilicity (cLogP), total polar surface area (TPSA), solubility, 
drug-likeness, drug score, as well as the mutagenic, tumorigenic, 
irritant, and reproductive risks.43 Drug-likeness is a criterion for 
determining if a pharmacological substance possesses the charac-
teristics of an orally active drug.44 The Lipinski rule of 5 is an 
established concept based on drug-likeness. The law states that for 
a compound to exhibit drug-likeness and to avoid poor absorption 
or permeation, the combination must not possess more than 5 
H-bond donors, more than 10 H-bond acceptors, molecular 
weight must not be greater than 500, and the calculated LogP 
(cLogP) must not be greater than 5.45 Another parameter used to 
select compounds as drug candidates are drug score. A high drug 
score value signifies a high probability of the compound being 
considered a drug candidate.46

Molecular dynamic simulation of the best hit 
compound

Molecular Operating Environment (MOE) 2019.01 software 
simulation module was used to carry out the molecular dynamic 
simulation of the best hit compound.47,48 The protein and pro-
tein-ligand complex were protonated, the energy was minimized, 
and the AMBER 10: EHT force-field was parameterized at 
various times to get the stable conformer of the protein-ligand 
complex in an R-Field implicit solvation system.48 The simula-
tions required 3 steps. The initial step requires the molecular sys-
tem to be heated to 310 K (37°C), followed by a 100-picosecond 
equilibration step at 310 K (37°C). The trajectory of the molecu-
lar system was then generated using the Nose–Poincare–
Andersen (NPA) algorithm at 310 K for 1000 picoseconds (the 
time step of each simulation was set to 0.02 picoseconds). Visual 
molecular dynamics (VDM) software and Bio3D on the Galaxy 
Europe platform were used for visualizations and data process-
ing. Principal components analysis (PCA) was used to model the 
system’s key dynamics.49 The simulation data set was reduced to 
a few essential components that define the directions with the 
most variance. The critical structural variants within the ensem-
ble of protein structures were captured by ordering the principal 
components as eigenvectors based on the variance. The fraction 
of variance attributed to each principal component was visual-
ized using an eigenvalue rank plot. The structural clustering 
based on the principal derived components, and residue-wise 
loadings were then used to determine how much each residue 
contributed to the first 2 principal components.

Results
PfAP2-I structure prediction

P. falciparum Apetala 2—Invasion structure prediction result 
from the I-TASSER server shows 4 predicted models. The 
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models were predicted based on C-score, Exp. TM-Score, Exp.
RMSD, No. of decoys, and Cluster density, and the result for 
each model are shown in Supplementary Table 2. P. falciparum 
Apetala 2—Invasion structure prediction result from the 

ROBETTA Baker server showed 5 predicted models using 
RoseTTAFold, and model 1 (1) (Figure 1A) was prioritized 
based on its highest C-score. The AlphaFold-predicted structure 
of PfAP2-I was retrieved from UniProt (www.beta.uniprot.org/
uniprotkb/Q8IJW6/entry) (Figure 1B). These 3 predicted struc-
tures from the I-TASSER server, ROBETTA Baker server, and 
AlphaFold were subjected to structure validation to determine 
the best-predicted structure.

Structure validation of modeled proteins

P. falciparum Apetala 2—Invasion 3D structure from the 
I-TASSER server and ROBETTA Baker server were vali-
dated using ERRAT and PROCHECK on UCLA-DOE 
LAB—SAVES v6.0. Model 1 from the ROBETTA Baker 
server showed the best result after validation. ERRAT value 
for model 1 from the ROBETTA Baker server was 96.827. 
Good resolution values are usually around 95% or higher 
(Figure 2). The Ramachandran plot statistics of model 1 
from ROBETTA Baker server showed 90.2% of its residues 
in the most favored regions, 8.5% of its residues in additional 
allowed regions, 0.4% of its residues in the generously 
allowed regions, and 0.9% of its residues in disallowed 
regions of the Ramachandran plot. A good quality model is 
expected to have 90% of its residues in the most favored 
region (Figure 3). Model 1 from the ROBETTA Baker 
server and the AlphaFold-predicted structure of PfAP2-I 
were subjected to further structure validation using 
MolProbity (www.molprobity.manchester.ac.uk). The pre-
dicted structure from the ROBETTA Baker server showed a 
better result than the AlphaFold-predicted structure of 
PfAP2-I (Tables 1 and 2 and Supplementary Table 3).

Figure 1.  3D modeled structure of PfAP2-I TF from (A) ROBETTA Baker 

server and (B) AlphaFold-predicted structure of PfAP2-I TF from UniProt.
PfAP2-I indicates P. falciparum Apicomplexan Apetala 2 Invasion; TF, 
transcription factor.

Figure 2.  ERRAT structure validation value of PfAP2-I-modeled structure.
PfAP2-I indicates P. falciparum Apicomplexan Apetala 2 Invasion.

www.beta.uniprot.org/uniprotkb/Q8IJW6/entry
www.beta.uniprot.org/uniprotkb/Q8IJW6/entry
www.molprobity.manchester.ac.uk
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Active site prediction of AP2-I-modeled structure

Using CASTp 3.0 active site prediction tool, a total of 102 
pockets were generated, and pocket ID 1 with an area (SA) of 
15 407.119 and a volume (SA) of 13 411.050 (Figure 4) was 
selected as the preferred active site for the docking analysis. 
The amino acid residues in pocket ID 1 are listed in 
Supplementary Table 4.

Pharmacophore-based virtual screening and 
molecular docking analysis

Hit screening of drug-like compounds from 9 databases 
(Chemble, ChemDiv, ChemSpace, MCULE, MCULE-
ULTIMATE, MolPort, NCI open repository, Lab Network, 
Zinc) on the Pharmit Server Engine gave a total of 8115 drug-
like compounds (Table 3) that were used for the docking analysis 
including the reference compound (CHEMBL3359262) and 
the standard drug (chloroquine). Five (5) compounds were 

identified based on the high-ranked auto-dock score from the 
docking analysis (Table 4). The chemical structure and IUPAC 
name of the 5 selected hit compounds against the PfAP2-I active 
site are shown in Table 5.

Post-docking analysis

The 5 selected hit compounds from the molecular docking 
were subjected to postdocking analysis using Discovery studio. 
The 2D and 3D model interaction between the compounds 
and PfAP2-I are shown in Figure 5.

In silico drug-likeness and toxicity predictions

Absorption, distribution, metabolism, elimination, and toxicity 
screening and toxicity testing results of the hit compounds 
including that of the reference compound (CHEMBL3359262) 
and standard drug (chloroquine) are shown in Tables 6 and 7, 
while their oral bioavailability radar are shown in Figure 6.

Figure 3.  Ramachandran plot statistic validation of PfAP2-I-modeled structure.
PfAP2-I indicates P. falciparum Apicomplexan Apetala 2 Invasion.
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Table 1.  Summary statistics of MolProbity structure validation analysis output for PfAP2-I RoseTTAFold-predicted structure from Robetta Baker server.

All-atom contacts Clashscore, all atoms: 1.93 99th percentilea (N = 1784, all resolutions)

Clashscore is the number of serious steric overlaps (>0.4 Å) per 1000 atoms.

Protein geometry Poor rotamers 1 0.09% Goal: <0.3%

Favored rotamers 1099 99.55% Goal: >98%

Ramachandran outliers 14 1.17% Goal: <0.05%

Ramachandran favored 1139 95.08% Goal: >98%

Rama distribution Z-score 2.58 ± 0.24 Goal: abs (Z score) <2

MolProbity scoreb 1.30 98th percentilea (N = 27 675, 0–99 Å)

Cβ deviations >0.25 Å 1 0.09% Goal: 0

Bad bonds: 1/9809 0.01% Goal: 0%

Bad angles: 16/13 251 0.12% Goal: <0.1%

Peptide omegas Cis Prolines: 0/22 0.00% Expected: ⩽1 per chain, or ⩽5%

Cis non-Prolines: 2/1177 0.17% Goal: <0.05%

Low-resolution criteria CaBLAM outliers 36 3.0% Goal: <1.0%

CA Geometry outliers 13 1.09% Goal: <0.5%

Additional validations Chiral volume outliers 0/1382  

Waters with clashes 0/0 0.00% See UnDowser table for details

Abbreviation: PfAP2-I, P. falciparum Apicomplexan Apetala 2 Invasion.
In the 2 column results, the left column gives the raw count, right column gives the percentage.
The green region signifies good, the yellow region signifies caution and the red region signifies warning.
a100th percentile is the best among structures of comparable resolution; 0th percentile is the worst.
bMolProbity score combines the clashscore, rotamer, and Ramachandran evaluations into a single score, normalized to be on the same scale as X-ray resolution.

Table 2.  Summary statistics of MolProbity structure validation analysis output for PfAP2-I AlphaFold-predicted structure.

Protein geometry Poor rotamers 102 6.90% Goal: <0.3%

Favored rotamers 1199 81.07% Goal: >98%

Ramachandran outliers 446 27.96% Goal: <0.05%

Ramachandran favored 872 54.67% Goal: >98%

Rama distribution Z-score –6.42 ± 0.14 Goal: abs (Z score) <2

Cβ deviations > 0.25 Å 176 11.49% Goal: 0

Bad bonds: 1/12 934 0.01% Goal: 0%

Bad angles: 992/17 501 5.67% Goal: <0.1%

Peptide omegas Cis Prolines: 2/27 7.41% Expected: ⩽1 per chain, or ⩽5%

Cis non-Prolines: 194/1569 12.36% Goal: <0.05%

Twisted peptides: 526/1596 32.96% Goal: 0

Low-resolution criteria CaBLAM outliers 567 35.6% Goal: <1.0%

CA geometry outliers 660 41.43% Goal: <0.5%

Additional validations Tetrahedral geometry outliers 4  

Abbreviation: PfAP2-I, P. falciparum Apicomplexan Apetala 2 Invasion.
In the 2 column results, the left column gives the raw count, and the right column gives the percentage.
The green region signifies good, the yellow region signifies caution and the red region signifies warning.
a100th percentile is the best among structures of comparable resolution; the 0th percentile is the worst.
bMolProbity score combines the clashscore, rotamer, and Ramachandran evaluations into a single score, normalized to be on the same scale as X-ray resolution.
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Molecular dynamic simulation of the lead 
compound

The molecular dynamic simulation results of the lead com-
pound MCULE-7146940834 are represented in Figures 7 

and 8. The root mean square deviation (RMSD) plot, the 
RMSD histogram, and the Root Mean Square fluctuation 
(RMSF) plot are all shown in Figure 7. A stable fluctuation 
between 0.020 and 0.035 Å after an initial rise from 0.00 Å 
was observed for the RMSD (Figure 7A). Oscillations around 
positions 400, 920, and 1020 were observed for the RMSF 
(Figure 7B). The PCA plot, PCA cluster plot, and Principal 
components 1 (PC1) on RMSF are shown in Figure 8. PC2 
versus PC1, PC2 versus PC3, and PC3 versus PC1 graphs, an 
eigenvalue rank plot (a and b), and the result of residue-wise 
loadings are included in the PCA plot and the PCA cluster 
plot. The cumulative variance is labeled for each data point in 
the eigenvalue plot. The first principal component (PC1) 
accounts for 8.75% of the overall variance, while the first 3 
principal components account for 21.37% of the variance, 
according to the findings. Along the PC planes, a continuous 
color from blue to white to red was achieved (Figure 8A). 
Through the top 3 PC1, PC2, and PC3 spaces, the trajectory 
snapshots were divided into 2 different clusters of the hues 
black and red (Figure 8B). High peaks on residues 920 and 

Figure 4.  The binding pocket of 3D structure PfAP2-I as computed by 

CASTp 3.0.
CASTp indicates Computed Atlas of Surface Topography of proteins; PfAP2-I, P. 
falciparum Apicomplexan Apetala 2 Invasion.

Table 4.  Five selected hit compounds from the Pharmit server ranked based on the auto-dock score against PfAP2-I active site.

Docked ligand Pharmit IDs PubChem IDs Molecular formula Binding affinity (Kcal/mol)

a. 57410073 57410073 C29H29N5O2 –11.7

b. MCULE-7146940834 87052587 C28H24N6O3 –11.1

c. 57405339 57405339 C28H31N7O –10.3

d. CHEMBL3923620 123492565 C19H14FN9O2 –8.9

e. MCULE-6567089130 135500213 C20H13N7O –8.9

f. Reference compound 
(CHEMBL3359262)

52934178 C22H25N5O2 –8.8

g. Chloroquine 2719 C18H26ClN3 –5.5

Abbreviation: PfAP2-I, P. falciparum Apicomplexan Apetala 2 Invasion.

Table 3.  Pharmacophore-based virtual screening of compounds from 9 databases on the Pharmit server.

Pharmit database Conformers Molecules Hits

a. CHEMBL25 23 136 925 1 752 844 182

b. ChemDiv 21 562 497 1 456 120 77

c. ChemSpace 250 205 463 50 181 678 1719

d. MCULE 223 460 579 45 257 086 1716

e. MCULE-ULTIMATE 378 880 344 126 471 502 2018

f. MolPort 114 798 054 8 015 098 1534

g. NCI Open Chemical Repository 574 117 52 237 –

h. LabNetwork 22 051 020 1 794 286 138

i. Zinc 123 399 574 13 190 317 1272

Total 8656
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1020 can be seen in the results of residue-wise loadings for 
PC1 (black) and PC2 (blue) (Figure 8C).

Discussion
This study presents a predicted 3D structure of PfAP2-I 
(Figure 1) and molecular docking analysis to determine small 
molecule inhibitors against PfAP2-I TF. The result of the 
modeled protein structure from the ROBETTA server22 was 
prioritized based on structure validation results of 96.827 for 
ERRAT (Figure 2), 90.2% of the amino acid residues in the 
most favored region for the Ramachandran plot statistics24 
(Figure 3), and MolProbity score of 1.30 in the 98th percen-
tile as well as a clashscore of 1.93 in the 99th percentile27 
(Tables 1 and 2). Pocket ID 1 (Figure 4) was selected as the 
preferred active site for the docking analysis. Molecular dock-
ing analysis of 8656 compounds generated from pharmaco-
phore-based virtual screening of drug-like compounds from 9 
databases (Chemble, ChemDiv, ChemSpace, MCULE, 
MCULE-ULTIMATE, MolPort, NCI open repository, Lab 
Network, Zinc) on the Pharmit Server Engine was carried 
out to determine the inhibitory potential of small molecules 
against PfAP2-I TF33 (Table 3). These compounds were used 
to prepare the ligand library and screened against the pre-
pared 3D modeled structure of PfAP2-I. Five (5) drug-like 
compounds were identified based on the docking analysis’s 

highest-ranked auto-dock score. They had lower binding 
energies when compared to the reference compound 
(CHEMBL3359262) and the standard drug (chloroquine), 
with binding energies of –8.8 and –5.5 Kcal/mol, respectively 
(Table 4). The chemical structure and IUPAC name of the 5 
selected hit compounds against PfAP2-I active site are shown 
in Table 5. Postdocking analysis using discovery studio shows 
the 2D and 3D model interaction between the 5 selected hit 
compounds and PfAP2-I active sites (Figure 5).

Absorption, distribution, metabolism, elimination, and tox-
icity screening of the 5 drug-like compounds was based on bio-
availability radar parameters, lipophilicity, water solubility, 
pharmacokinetics, drug-likeness, and medicinal chemistry. The 
oral bioavailability radar summarily describes the degree of 
drug-likeness of a molecule first using 6 properties (lipophilic-
ity, size, polarity, insolubility, saturation, and flexibility)42 
(Figure 6). For each of the properties, the pink area represents 
the physicochemical space with an optimal range of lipophi-
licity (XLOGP3) between –0.7 and +5.0, size (molecular 
weight) between 150 and 500 g/mol, polarity (TPSA) between 
20 and 130 Å2, solubility (log S) not more than 6, saturation 
not less than 0.25 and flexibility, not more than 9 rotatable 
bonds.42 MCULE-7146940834, 57410073, and 57405339 fell 
within the physicochemical space for all 6 properties and can 
be said to be orally bioavailable. CHEMBL3923620 and 

Table 5.  The Pharmit ID, PubChem ID, Chemical structure, and Compound name of the 5 selected hit compounds against PfAP2-I active site.

Docked ligand Pharmit IDs PubChem IDs Chemical structure Compound name

a. 57410073 57410073 3-(2-methylpyridin-4-yl)-N-[3-[(2-
oxo-3H-indol-1-yl)methyl]
cyclohexyl]-1H-indazole-5-
carboxamide

b. MCULE-7146940834 87052587 7-[(7-Methoxy-4,5-Dihydro-1H-
Benzo[G]Indazol-3-Yl)Carbonyl]-2-
Phenyl-5,6,7,8-
Tetrahydropyrazolo[1,5-A]
Pyrido[4,3-D]Pyrimidin-9(1H)-One

c. 57405339 57405339 [4-[4-[5-(cyclopenten-1-yl)-1H-
indazol-3-yl]triazol-1-yl]phenyl]-[4-
(dimethylamino)piperidin-1-yl]
methanone

d. CHEMBL3923620 123492565 3-[1-[3-[(7-fluoroquinolin-6-yl)
methyl]triazolo[4,5-b]pyrazin-5-yl]
ethylideneamino]-5-hydroxy-1H-
imidazol-2-one

e. MCULE-6567089130 135500213 2-Amino-6-benzimidazol-2-yl-3,12-
dihydrobenzimidazolo[1',2'-6,1]
pyridino[2,3-d]pyrimidin-4-one

Abbreviation: PfAP2-I, P. falciparum Apicomplexan Apetala 2 Invasion.
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Figure 5. (Continued)
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Figure 5.  2D and 3D model interactions between the 5 selected hit compounds and PfAP2-I using Discovery studio. The nature of protein-ligand 

interactions is shown with different color legends: (A) 57410073, (B) MCULE-7146940834, (C) 57405339, (D) CHEMBL3923620, and (E) 

MCULE-6567089130.
PfAP2-I indicates P. falciparum Apicomplexan Apetala 2 Invasion.

MCULE-6567089130 had a deviation in the degree of satura-
tion outside the physicochemical space.

Tables 6 and 7 showed that all the compounds were within 
the minimum and maximum acceptable range. The 5 com-
pounds had molecular weights of less than 500 g/mol, implying 
that when these compounds are administered as drugs, they are 
likely to be absorbed and reach the site of action. The numbers 
of rotatable bond (NRB), hydrogen bond acceptors (NHA), 
and hydrogen bond donors (NHD) in the 6 compounds (Table 
6) follow Lipinski’s rule of 5.46

Lipophilicity is an essential property in drug discovery as it 
is an indicator of pharmacodynamics, pharmacokinetics, and 
molecular toxicity.50 Multiple predictors (iLOGP, XLOGP3, 
WLOGP, MLOGP, and SILICOS-IT) were used to generate 
a consensus estimation of lipophilicity to increase the predic-
tion accuracy. Consensus LogP values of less than 5 were found 
in all substances, including chloroquine, indicating good 
absorption, and penetration across cell membranes.50

The solubility of a molecule greatly facilitates major drug 
development activities, especially the ease of handling and 

drug formulation. It is a significant property influencing the 
absorption and delivery of sufficient active ingredients in a 
small volume of pharmaceutical therapy.51 Four compounds 
(MCULE-7146940834, 57410073, MCULE-6567089130, 
and 57405339) were moderately soluble in water with LogS 
(ESOL) values ranging from –5.42 to –4.60, while one 
(CHEMBL3923620) of the compounds was soluble in water 
with a –3.41 LogS (ESOL) value.

Pharmacokinetic properties such as gastrointestinal (GI) 
absorption, blood-brain barrier (BBB), and CYP 450 enzymes can 
be used to evaluate individual ADME behavior of small molecules. 
It has been suggested that CYP can process small molecules syner-
gistically to improve the protection of tissues and organisms.52 It is 
estimated that 50% to 90% of therapeutic molecules are substrates 
of 5 major isoforms (CYP1A2, CYP2C19, CYP2 C9, CYP2D6, 
and CYP3A4).53 All 5 compounds have a high GI absorption and 
cannot cross the BBB. Four compounds are suitable inhibitors of 
CYP450 enzymes, while 2 are not (Table 6).

The selected compounds’ physicochemical properties and 
toxicity risks were analyzed using Osiris property explorer.54 
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The drug-likeness, drug score, mutagenic tumorigenic, irri-
tant, and reproductive properties were examined. Drug-
likeness may be defined as a complex balance of molecular 
properties and structural features that determine whether a 
particular molecule is like the known drugs. A positive value 
for drug-likeness means that the molecule contains predomi-
nantly fragments frequently present in commercial drugs.54 
Three compounds, MCULE-7146940834, 57410073, and 
MCULE-6567089130, had positive values for the drug-like-
ness property.

The drug score (ds) is a contribution calculated directly 
from parameters of the partition coefficient (cLogP), solu-
bility (clogS), molecular weight (Mol. Wt), drug-likeness, 
and toxicity risk within one good practical value.55 The 
higher the drug score, the better the chance to be a drug 
candidate. The drug score values 1.0, 0.8, and 0.6 are associ-
ated with no risk, medium risk, and high risk. Among the 6 

compounds, MCULE-7146940834 had the highest drug 
score value of 0.63 (more elevated than chloroquine of 0.25), 
fell within the medium-risk range, and may be used as a 
drug molecule. The drug score values of 4 compounds 
(MCULE-7146940834, 57410073, MCULE-6567089130, 
and 57405339) with a range of 0.26 to 0.63 were more sig-
nificant than that of chloroquine (0.25). Only one com-
pound (CHEMBL3923620) was below that of chloroquine 
with a value of 0.14. CHEMBL3923620 possessed medium-
risk mutagenic, low-risk tumorigenic, high-risk irritant, and 
low reproductive toxicity risks. Compound 57410073 
showed low-risk mutagenic, high-risk tumorigenic, low-risk 
irritant, and low reproductive toxicity risks. All other com-
pounds (MCULE-7146940834, 154861216, MCULE-
6567089130, and 57405339) had low-risk mutagenic, 
low-risk tumorigenic, low-risk irritant, and low-risk repro-
ductive toxicity risks.

Figure 6.  Oral bioavailability radar of the 6 best hits vis-à-vis the reference compound and chloroquine using SwissADME prediction: (A) 57410073, (B) 

MCULE-7146940834, (C) 57405339, (D) CHEMBL3923620, and (E) MCULE-6567089130. The colored zone is the suitable physicochemical space for oral 

bioavailability. LIPO(Lipophilicity): –0.7 < XLOGP3 < 5.0, SIZE: 150 g/mol < MW < 500 g/mol, POLAR(Polarity): 20 Å2 < TPSA < 130 Å2, INSOLU(Insolubility): 

–6 < Log S (ESOL) < 0, INSATU (Insaturation): 0.25 < Fraction Csp3 < 1, FLEX (Flexibility): 0 < Number of rotatable bonds < 9.
FLEX indicates flexibility; INSATU, insaturation; INSOLU, insolubility; LIPO, lipophilicity; MW, molecular weight; POLAR, polarity; TPSA, total polar surface area.



Oladejo et al	 13

Molecular dynamics simulation was used to investigate the 
stability of the binding conformation and binding mode of the 
interactions between the lead compound, MCULE-
7146940834 and PfAP2-I active site residues.56 Throughout 
the simulation period, the stability and conformation of the 
protein and ligand were checked using RMSD and RMSF. 
The PCA was used to determine the correlation between sta-
tistically meaningful conformations (significant global 
motions) collected during trajectory.49 MCULE-7146940834 
was stable with a single binding mode in the protein’s active 
site, as indicated by the RMSD result (Figure 7A). The RMSD 
varies between 0.020 and 0.035, meaning that no substantial 
conformational changes occurred during the simulation phase, 
as evidenced by the histogram (Figure 7A). Significant shifts in 
the RMSF occur around positions 400, 920, and 1020, which 
correlate to the protein’s surface’s flexible loop sections (Figure 
7B). The first 3 principal components account for 21.37% of 

the overall variance, according to the eigenvalue rank plot 
(Figure 8A and B). The first principal component (PC1) 
accounts for 8.7% of the variance. The PCA analysis indicated 
a conformational shift in the protein backbone, which was 
grouped into 2 coordinate clusters in black (first cluster) and 
red (second cluster) using simple clustering in the principal 
component subspace. This is consistent with the results of res-
idue-wise loadings (Figure 8C) and RMSF (Figure 7B), which 
showed significant changes around residues 920 and 1020. The 
ability of MCULE-7146940834 to achieve and maintain a sta-
ble conformation within the flexible protein’s active site during 
simulation indicates the complex’s stability, which is a crucial 
benefit for its inhibitory capability against PfAP2-I.

Conclusion
The good, estimated binding energies, drug-likeness, and drug 
score values observed for the MCULE-7146940834 against 

Figure 7.  (A) RMSD time series and histogram for the interaction between MCULE-7146940834 and the active site of PfAP2-I. (B) PfAP2-I RMSF (Å) plot 

against the residue position.
PfAP2-I indicates P. falciparum Apicomplexan Apetala 2 Invasion; RMSD, root mean square deviations; RMSF, root mean square fluctuation.
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Figure 8.  PCA results, comprising graphs of PC2 vs PC1, PC2 vs PC3, PC3 vs PC1, and an eigenvalue rank plot with the cumulative variance annotated 

for each data point. (A) PCA plots colored from blue to red in order of time; (B) PCA plots showing 2 different clusters colored black and red. (C) Residue-

wise loadings for PC1 (black) and PC2 (blue).
PC indicates principal components 1; PCA, principal components analysis.

PfAP2-I active site as well as the stable binding reliability by com-
plex MD simulation from this study indicate that compound 
MCULE-7146940834 is a potential candidate for PfAP2-I inhi-
bition. Further preclinical experimental validations should be car-
ried out to ascertain the efficacy of these predicted best hits.
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