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  Abstract: Background: The use of machine learning models in sequence-based Protein-Protein In-
teraction prediction typically requires the conversion of amino acid sequences into feature vectors. 
From the literature, two approaches have been used to achieve this transformation. These are re-
ferred to as the Independent Protein Feature (IPF) and Merged Protein Feature (MPF) extraction 
methods. As observed, studies have predominantly adopted the IPF approach, while others preferred 
the MPF method, in which host and pathogen sequences are concatenated before feature encoding.  

Objective: This presents the challenge of determining which approach should be adopted for im-
proved HPPPI prediction. Therefore, this work introduces the Extended Protein Feature (EPF) 
method.  

Methods: The proposed method combines the predictive capabilities of IPF and MPF, extracting es-
sential features, handling multicollinearity, and removing features with zero importance. EPF, IPF, 
and MPF were tested using bacteria, parasite, virus, and plant HPPPI datasets and were deployed to 
machine learning models, including Random Forest (RF), Support Vector Machine (SVM), Multi-
layer Perceptron (MLP), Naïve Bayes (NB), Logistic Regression (LR), and Deep Forest (DF).  

Results: The results indicated that MPF exhibited the lowest performance overall, whereas IPF per-
formed better with decision tree-based models, such as RF and DF. In contrast, EPF demonstrated 
improved performance with SVM, LR, NB, and MLP and also yielded competitive results with DF 
and RF. 

Conclusion: In conclusion, the EPF approach developed in this study exhibits substantial improve-
ments in four out of the six models evaluated. This suggests that EPF offers competitiveness with 
IPF and is particularly well-suited for traditional machine learning models. 
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1. INTRODUCTION 

Proteins frequently interact with one another to facilitate 
diverse biochemical functions, culminating in the formation 
of protein complexes [1-4]. This phenomenon is referred to 
as protein-protein interactions (PPIs), where electrostatic or 
hydrophobic forces are employed to facilitate the binding of 
two or more proteins [5-8]. The identification of PPIs is cru-
cial for understanding cellular functions and vital biological 
processes, such as protein function, disease pathogenesis, 
and drug development [9-12]. PPIs can either involve inter-
actions between the proteins of the same organism  
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or those of different organisms. These interactions are re-
ferred to as intra- or inter-species interactions, respectively 
[13, 14]. A pathogen (an organism that causes disease) and a 
host (the victim organism) can interact through a process 
known as host-pathogen interaction (HPI), also referred to as 
host-pathogen protein-protein interaction (HPPPI) [15-17]. 
Over time, the concept of HPPPI has contributed to the gen-
eral understanding of the pathogenesis of infectious diseases, 
which in turn has led to the development of treatments for 
those diseases [18-20]. 

Despite the use of experimental methods to identify PPIs, 
the comprehensive set of PPIs in organisms remains limited 
[12, 21]. Some of the most commonly used experimental 
methods for detecting PPIs are fluorescence resonance ener-
gy transfer (FRET) [22], protein-fragment complementation 
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assay (PFCA) [23], LUMIER [24], and yeast two-hybrid 
(Y2H) [25-27]. However, using these aforementioned exper-
imental methods to detect HPPPIs is not scalable as the 
space of HPPPI is too large to be explored experimentally 
and to generate interactions with high confidence [8, 25, 29]. 
Machine learning, on the other hand, enables computers to 
learn and advance through the use of statistical techniques so 
that they may make more accurate predictions without being 
particularly programmed to do so [30]. To complement the 
effort being made in detecting HPPPI using the experimental 
methods, machine learning techniques, such as Random For-
est (RF), Logistic Regression (LR), Naive Bayes (NB), Sup-
port Vector Machine (SVM), and Deep Neural Network 
(DNN) have been utilized over the years [15, 31-33]. Simi-
larly, Symbolic Regression (SR), which is a new Genetic 
Programming model, has also been used for predicting dis-
ease-related PPIs [34, 35]. SR involves deriving a mathemat-
ical function that describes a given dataset [36]. While tradi-
tional regression methods rely on the pre-determined inde-
pendent variable(s) and aim to create a fit model by adjusting 
various numerical coefficients, SR seeks to simultaneously 
discover both the parameters and equations. Hence, with SR, 
a mathematical expression that fits a given data is produced 
[36, 37]. 

Machine learning models require data for effective per-
formance [38-40], and in recent times, there has been an in-
crease in the number of interacting protein complexes and 
their respective sequence data. As a result, computational 
methods for HPPPI prediction using only the protein se-
quence information have attracted growing interest [41, 42]. 
In an experiment conducted by Christian Anfinsen several 
decades ago, he found that a protein's sequence determines 
its structural conformation, which in turn affects how the 
protein works and how it interacts with other proteins [43-
45]. Also, several studies [46-49] have demonstrated that 
utilizing information from amino acid sequences is sufficient 
to discover highly potential HPPPIs that can also be experi-
mentally validated. Furthermore, compared to other data 
types like gene expression and knockout phenotypes that 
might also be employed for HPPPI prediction, amino acid 
sequence information is the protein data type that is most 
easily accessible [50]. However, using protein sequences in 
machine learning requires that they are processed into fea-
ture vectors. To create a fixed-length vector that can be em-
ployed in standard prediction models, features from the input 
amino acid sequences are extracted using feature extraction 
methods, such as Pseudo Amino Acid Composition (Pse-
AAC) [51], Moran Autocorrelation [15], and Conjoint Triads 
[52]. In addition, due to the single representation of protein 
sequences in techniques, such as dipeptide composition 
(DipC), PseAAC, and position-specific scoring matrix 
(PSSM), Wang and Liu [53] introduced a fusion of PSSM 
with DipC as well as PSSM with PseAAC to produce tech-
niques for future representation called DipPSSM and Pse-
AAPSSM respectively. Also, taking into consideration the 
distances between polynucleotide sequences using the con-
cept of fuzzy polynucleotide space (FPS), Nieto et al. [54] 
examined varying methods of calculating distances between 

the nucleotide sequences as opposed to the method used in 
the original FPS.  

There are a variety of approaches used by researchers in 
the application of feature encoding methods for generating 
feature vectors in training machine learning models for 
HPPPI prediction[15,55,56]. Several authors perform feature 
representation of the host and pathogen amino acid sequenc-
es independently before concatenating the resulting encoded 
features, while several other authors combine the amino acid 
sequences of both the host and the pathogen before using an 
encoding technique [16,33,57]. For reference purposes in 
this work, the two methods will be referred to as Independ-
ent Protein Feature (IPF) and Merged Protein Fea-
ture (MPF), respectively. Although studies have shown that 
the IPF strategy is the most widely applied, most recently, 
authors have adopted the use of MPF. This presents the chal-
lenge of what approach should be adopted for improved 
HPPPI prediction. Therefore, in this work, an Extended Pro-
tein Feature (EPF) method is presented. As a contribution, 
this study examines the strengths and weaknesses of these 
two methods and then presents a new and improved strategy 
that integrates their predictive abilities. In addition, sequel to 
the confirmation of the existence of important features and 
less or non-important features generated when both IPF and 
MPF are used, EPF ensures only important features that en-
hance model performance are extracted for subsequent train-
ing of machine learning models. EPF automatically checks 
for multicollinearity, which aids in the identification of re-
dundant features. Finally, the method presented in this work 
adopts a generalized system approach whereby a combina-
tion of protein sequences from interacting and non-
interacting organisms was used in training and evaluating the 
existing methods and the proposed methods as opposed to 
the most frequent approach of training models using data 
from a single interacting pair one at a time. 

The rest of this paper is organized as follows: materials 
and methods, which contain the dataset description, the fea-
ture encoding methods used, the proposed methodology, 
results, discussion, and conclusion. 

2. MATERIALS AND METHODS 

 This section describes the dataset used for this 
study, the feature representation methods, and the machine 
learning models used to train the extracted features. The sec-
tion concludes with a description of the proposed system 
architecture as a whole. 

2.1. Dataset 

PPI computational prediction methods require two da-
tasets: one of the known interacting protein pairs and one of 
the non-interacting protein pairs to enhance their ability to 
discern between the two [58-60]. The HPPPI datasets em-
ployed for this work were experimentally derived as reported 
by Dey et al. [57], Kösesoy et al. [61], Wuchty et al. [62], 
Gordon et al. [63], and Mukhtar et al. [64]. These datasets 
include the human-Bacillus anthracis, human-Plasmodium 
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falciparum, human-SARS-Cov2, Arabidopsis-Pseudomonas 
syringae, Hyaloperonospora arabidopsidis, and 
Golovinomyces orontii. 

The interspecies datasets used by Kösesoy et al. [61] 
were employed for the human Bacillus anthracis. The da-
taset is made up of interactions between humans and Bacil-
lus anthracis, which contains 2500 positive and 9500 nega-
tive interactions. The complete positive interactions were all 
used as each protein pair had already been verified by the 
authors [61]. To train a machine learning model, an equal 
number of positive and negative samples are required [65, 
66]. Hence, a total of 2500 samples were randomly selected 
from the negative interaction dataset. Before that, a script 
was developed and used to ensure that none of the interact-
ing positive pairs was present in the pool of negative pairs.  

Malaria, a lethal infectious disease caused by Plasmodi-
um falciparum, affects a remarkably large part of the world's 
population [67-71]. As a result of this, the human-
Plasmodium falciparum interaction dataset that was used by 
Wuchty et al. [62] will be used in this paper for the human-
parasite interaction. The initial dataset was comprised of 
1,112 positive interactions and 1136 negative interactions. 
The files include the identities of human and parasite pro-
teins. Following the pre-processing stage, a total of 727 posi-
tive and negative samples were utilized. To eliminate biases, 
the proposed model will be trained using the same amount of 
positive and negative examples. Hence, the model was 
trained using a total of 1454 interactions.  

Gordon et al. [63]'s human-SAR-CoV-2 interaction da-
taset was used for the human-virus dataset. Affinity-
purification mass spectrometry (AP-MS) was used to prepare 
the dataset, which includes interactions between new coro-
navirus proteins and human proteins. The database had 332 
unique interactions between 332 human proteins, four struc-
tural coronavirus proteins, and 20 coronavirus proteins that 
are not needed for the virus to work. As described by the 
authors, positive training and testing datasets were created 
using these 332 human-SAR-CoV-2 proteins that had under-
gone experimental validation. The negative samples for this 
category of the dataset were created by choosing human pro-
teins from the HPRD database release 9 that are absent from 
the positive dataset and have a low degree in the human PPI 
network, as explained by Dey et al.[57], who also used the 
332 positive samples in conducting their research. 

Positive datasets consisting of 459 Arabidopsis (Ara)-
pathogen interactions with three different pathogens were 
compiled from published literature. For the bacterial patho-
gen Pseudomonas syringae (Psy), 104 Ara-Psy PPIs were 
found. These PPIs involved 60 proteins from Arabidopsis 
and 38 from Psy's effectors [64]. 233 Ara-Hpa PPIs were 
retrieved for the oomycete Hyaloperonospora arabidopsidis 
(Hpa), which involved 122 proteins from Arabidopsis and 64 
effectors from Hpa [66]. We retrieved 122 Ara - Gor HPPPI 
from Weßling et al. [72] for the fungal pathogen 
Golovinomyces orontii (Gor), which contained 60 Arabidop-
sis proteins and 46 Gor effectors. Negative samples were 
analyzed by retrieving PPIs involving 2639 Arabidopsis pro-

teins from the TAIR database. As a result of the prepro-
cessing, however, 444 positive and negative samples were 
ultimately used. 

Moreover, consequent to the unbalanced nature of inter-
acting and non-interacting PPI datasets, as evident from the 
aforementioned data sources and in a biologically relevant 
scenario, the techniques discussed in this work were also 
trained and evaluated using a complete set of the unbalance 
datasets.  

In the data preparation and preprocessing stage, the inter-
acting host-pathogen protein pairs that were identified and 
retrieved were processed and prepared to fit into machine 
learning models. During this process, any pair with either the 
host or pathogen protein sequence or both missing was re-
moved from the interaction and non-interaction list. Similar-
ly, before feature encoding was performed, protein pairs with 
any invalid amino acid code were filtered out. This further 
reduced the host-pathogen protein pairs. The final valid 
number of balanced and unbalanced datasets used in this 
work is presented in Table 1. Finally, the preprocessed da-
tasets were combined to create a comprehensive dataset con-
sisting of various host-pathogen pairs from different organ-
isms (specifically, four host-pathogen pairs in this instance). 
This resulted in a total of 8006 pairs for the balanced dataset 
and 16488 pairs for the unbalanced dataset, as shown in  
Table 1, including both interacting and non-interacting pairs. 
The protein sequences of these datasets in fasta format can 
be found at https://github.com/JerrySteam/extended-protein-
feature/tree/master/Dataset. The pre-processed data were 
then utilized for training and assessing machine learning 
models to develop a more generalized HPPPI prediction 
model that incorporates an enhanced feature extraction ap-
proach. 

2.2. Extended Protein Feature Representation 

A feature is a fundamental variable used to express and 
capture the information included in data while doing data-
driven tasks like knowledge discovery and machine learning 
[73]. The success of workflows in data science is directly 
correlated to the quality of the features that are engineered. 
The use of feature representation methods is crucial for the 
creation of computational models for HPPPI prediction [74]. 
The Composition of k-spaced Amino Acid Pairs (CKSAAP), 
which is equivalent to the Amino Acid Pairs (AAP) when the 
value of k is 0, is used as the primary feature representation 
of sequence information in this study due to its high infor-
mation content and protein-specificity [61, 75].  

Given the substantial number of feature vectors generated 
by AAP (400 per protein sequence), we also incorporate 
Amino Acid Composition (AAC)[1-4]. AAC in this work 
produces only 20 feature vectors for each protein sequence. 
This represents a significant reduction compared to the 400 
vectors generated by AAP. The Amino Acid Composition 
encoding calculates the frequency of each amino acid type in 
a protein or peptide sequence [75]. The frequencies of all 20 
natural amino acids (ACDEFGHIKLMNPQRSTVWY) can 
be calculated as: 
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𝑓 𝑡  = ! !
!
, 𝑡 ∈

{A, C,D, E, F,G,H, I,K, L,M,N, P,Q,R, S,T,V,W, Y} (1) 

where N(t) is the number of amino acid type t, while N is 
the length of a protein or peptide sequence. 

The AAP feature encoding calculates the frequency of 
amino acid pairs. Pairing the 20 natural amino acids given 
previously produces 400 residue pairs, and the feature vec-
tors can be calculated as:  

𝑓 400 =  !!!
!!"!#$

, !!"
!!"!#$

, !!"
!!"!#$

. . . , !!!
!!"!#$

   (2) 

Where 𝑁!!…𝑁!! are the number of times the residual 
pairs appear in a peptide or protein sequence while 𝑁!"!#$ is 
the number of amino acids in the protein or peptide se-
quence. 

Now, as an improvement on the two approaches of ap-
plying feature representation as discussed in section 1 of this 
work, this proposed system applies feature representation 
primarily at three different points as displayed in the pro-
posed system framework in Fig. (1). Firstly, the feature en-
coding method (AAP or AAC in this case) is applied sepa-
rately on the host and pathogen protein sequence, after which 
the produced feature vectors are concatenated. For example, 
if a protein sequence is encoded using the AAP method, this 
first component generates 400-dimensional feature vectors 
for each of the host and pathogen protein sequences. Concat-
enating the vectors produces an 800-dimension feature vec-
tor. In the second component of this work, the host and path-
ogen amino acid sequences are first concatenated before an 
AAP method is applied. This component generates just a 
400-dimensional vector space. At this point, the respective 
feature vectors generated by the two different components 
are then concatenated, thereby generating a 1200-dimension 
feature vector. Similarly, if AAC is employed, a 60-
dimension feature vector is generated for each protein pair. 

2.2.1. Feature Reduction with Feature Importance 

When analyzing large datasets with thousands of varia-
bles, feature selection is a crucial step. It selects a smaller 
collection of relevant features for classification. In this work, 
five methods of determining feature importance were evalu-
ated and compared to determine the most suitable feature 

importance method for the developed approach. These meth-
ods include: 

a. Impurity-based feature importances: This method is 
based on the mean decrease in impurity of decision 
trees, and it measures the importance of each feature by 
calculating the reduction in impurity (usually measured 
by Gini impurity or entropy) that results from splitting 
the data based on that feature. The higher the value, the 
more important the feature [76]. The Gini impurity of a 
node is calculated as: 

𝐺 𝑁 = 1 −  𝑝! !!
!!!     (3) 

Where c is the number of classes in the dataset, and 𝑝! is 
the probability of class i in node N. To calculate the feature 
importance using Gini impurity, the decrease in impurity 
over all nodes is evaluated where the feature is used for split-
ting, weighted by the number of data points in each node. 

b. Permutation-based feature importances: This method 
calculates the feature importance by randomly permut-
ing the values of each feature and measuring the de-
crease in model performance. This method is computa-
tionally expensive [77]. 

c. Decision tree-based feature importance: This method is 
similar to the impurity-based feature importance meth-
od, but it uses only a single decision tree instead of a 
forest of trees [78, 79]. 

d. Logistic Regression-based feature importance: This 
method measures the importance of each feature by cal-
culating the absolute value of the coefficients of the lo-
gistic regression model [80]. 

e. Feature selection with information gain: This method 
uses mutual information to measure the dependence be-
tween each feature and the target variable, and it selects 
the features with the highest information gain [81, 82]. 
Information gain is calculated as the decrease in entropy 
after the dataset is split on a feature. The entropy of a 
node in a classification task is calculated as follows: 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 𝑁 =  −  𝑝!𝑙𝑜𝑔!(𝑝!)!
!!!   (4) 

Where c is the number of classes and 𝑝! is the probability 
of class i in node N. Information gain is then calculated as 
the entropy of the parent node minus the weighted average of 
the entropies of the child nodes after a split. The feature im-

Table 1. Host-pathogen protein-protein Interaction datasets showing the number of interacting and noninteracting pairs. 

 Balance Unbalance 

Host-Pathogen Interacting Non-Interacting Interacting Non-Interacting 

Human-Bacillus anthracis 2500 2500 2500 8491 

Human-Plasmodium falciparum 727 727 738 727 

Human-SAR-CoV-2 332 332 332 617 

Arabidopsis - Pseudomonas syringae, 
Hyaloperonospora arabidopsidis, 

Golovinomyces orontii 

444 444 444 2639 

TOTAL 4003 4003 4014 12474 
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portance using information gain can be computed by sum-
ming the information gains over all nodes where the feature 
is used for splitting. 

2.2.2. Handling Multicollinearity Using Correlation Matrix 

Feature selection using a correlation matrix involves 
computing the pairwise correlation coefficients between all 
pairs of features in the data matrix and selecting a subset of 
features based on their correlation with the target variable 
and their correlation with other features. The correlation co-
efficient between two features 𝑖 and 𝑗 is defined as the Pear-
son correlation coefficient: 

𝑟!,! =
(! (!!!))∗!"#( !!,!!!"#$ !! ∗(!!,!! !"#$ !! ))

!"# !! ∗!"#(!!)
 (5) 

where 𝑛 is the number of samples, 𝑥!,! and 𝑥!,! are the 
values of features 𝑖 and 𝑗 for sample 𝑘, and 𝑚𝑒𝑎𝑛 𝑥!  and 
𝑠𝑡𝑑 𝑥!  are the mean and standard deviation of feature 𝑖 
across all samples. The correlation coefficient ranges from -1 
to 1, where a value of 1 indicates a perfect positive correla-
tion (that is, the two features increase or decrease together), a 
value of -1 indicates a perfect negative correlation (the two 
features have opposite effects), and a value of 0 indicates no 
correlation. In this work, the correlation threshold was set at 
0.8; hence, highly correlated features are discarded. 

As described in Fig. (1) and Algorithm 1, variable im-
portance with the methods described above and reduction 
with correlation matrix was employed to find and eliminate 
irrelevant variables, specifically, variables with zero im-

 
Fig. (1). Extended Protein Feature representation system framework. The proposed system primarily applies feature representation at three 
different points. The importance of the resulting feature vectors is determined, and features with multicollinearity are identified and eliminat-
ed to reduce redundancy. 
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portance. Subsequently, highly correlated features resulting 
from the correlation matrix were further disengaged. As 
would be seen in subsequent sections of this work, the appli-
cation of these techniques further improved the extended 
method that is proposed.  

Furthermore, the final feature vectors obtained are used 
in training machines learning models, such as Logistic Re-
gression (LR), Support Vector Machine (SVM), Multilayer 
Perceptron (MLP), Naïve Bayes (NB), Random Forest (RF), 
and Deep Forest (DF) for eventual HPPPI prediction. 

To evaluate the performance of machine learning models 
on a dataset, it is important to use a robust evaluation tech-
nique. One such technique is called cross-validation. In this 
particular case, a 10-fold cross-validation technique was 
used to evaluate the performance of the machine learning 
models. This technique involves splitting the dataset into 10 
equally sized parts, or "folds". The model is then trained on 9 
of the folds and evaluated on the remaining fold. This pro-
cess is repeated 10 times, with each fold used exactly once as 
the evaluation set. Using this method, the performance of the 
machine learning models can be evaluated more robustly, as 
it ensures that each data point is used for both training and 
testing. By evaluating the performance of the models on 
multiple splits of the data, it is also possible to gain a better 
understanding of how well the models can generalize to new 
data. 

However, due to the nature of host-pathogen interaction 
data, random splitting of host-pathogen pairs during cross-
validation can lead to accuracy inflation. To handle this 
problem, we introduced a Stratified Group 10-fold cross-
validation (cv). This method creates folds taking into consid-
eration the dataset groups and also preserves the percentage 
of samples for each class as much as possible in each fold, 
given the constraint of non-overlapping groups between 
folds. To achieve this, at the data preparation stage, we con-
structed a function to ensure that host-pathogen protein pairs 
were grouped based on the host protein sequences and as-
signed group IDs, with group ID starting from 1. We had a 
total of 10979 group IDs from 16488 host-pathogen protein 
pairs (interacting and non-interacting). So instead of splitting 
the host-pathogen pairs randomly, the Stratified Group 10-
fold cv method ensures that any host-pathogen protein pair 
in the same group cannot appear in the training and valida-
tion set at the same time during cross-validation. So this im-
plies that it is not possible for the same host protein (interact-
ing with different pathogen proteins and having the same 
group ID) to appear in both training and validation. 

3. RESULTS 

In this section, the results of the proposed system's pre-
dictive abilities are presented. Also, the two approaches dis-
covered from the literature (IPF and MPF), as used by other 
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researchers, were evaluated and benchmarked using the same 
dataset and the same set of predictors. The results obtained 
were compared and discussed among the three different ap-
proaches. To ascertain if there is a performance difference 
based on the dataset size, we conducted experiments on each 
of the methods being evaluated using different dataset sizes 
comprising 10%, 25%, 50%, and 75% of the original dataset 
size. To ensure that the right proportion of the host-pathogen 
pair was used in training the models, equal fractions of the 
interacting and non-interacting dataset sizes were obtained 
and used in model training. According to the results ob-
tained, 10% of the original dataset presented the lowest per-
formance as compared to the remaining dataset sizes. 

Interestingly, increasing the dataset sizes provides a cor-
responding increase in model performance across RF, SVM, 
MLP, and DF, while NB and LR had their performances 
maintained regardless of the size of the data. However, mod-
el performance increases across the board with an increase in 
the number of feature vectors from 20 (AAC) features to 400 
(AAP) features (see Figs. 2-9). The result presented in this 
section is obtained using the complete dataset. Accuracy, 
Sensitivity, Specificity, F1 score, Precision, Matthews Corre-
lation Coefficient (MCC), and Area Under ROC (AUROC) 
were used in measuring the predictive performance of the 
approaches under consideration [61]. 

3.1. Evaluating the Feature Importance of the Pro-
posed Method 

In Section 2.2.1, it was highlighted that each feature im-
portance method was applied to the features generated by 
EPF. The essence of conducting this process was to show 
that the features generated by the MPF and IPF, to a good 
extent describe any protein pair of interest. This process also 
shows the various levels of importance for each feature. The 
process also helped identify features with zero or close to 
zero importance. Ultimately, using multiple methods helps 
determine which of the methods is most advantageous to the 
proposed approach in this work. In addition, as shown in 
Figs. (2 and 3) for example, using the approaches helps to 
discover if there are overlapping features from both IPF and 
MPF. From the images, it was discovered that there were 
overlapping features; hence there was a need for checking 
multicollinearity and eliminating redundant features. Figs. (2 
and 3) demonstrate that features generated using IPF (blue) 
and MPF (orange) contributed significantly to the outcome, 
regardless of the feature importance method, except for the 
permutation-based method, which indicated that all or major-
ity of the features had zero importance, despite its computa-
tional complexity. To determine the most appropriate feature 
importance method, the five methods were evaluated on EPF 
using six machine learning models. As depicted in Table 2, a 
score of 1 is assigned to a method that exhibits the highest 
predictive accuracy amongst the five methods, whereas a 
score of 0.5 is assigned to the second-best performing meth-
od while 0 is assigned to others. Having obtained the highest 
cumulative score, information gain was selected as the most 
favorable method to proceed with. Henceforth, the following 
discussions on EPF results are grounded on the feature selec-

tion conducted via information gain. Additionally, the fea-
tures that exhibited an importance value of less than or equal 
to 0.00 were eliminated based on the analysis of feature im-
portances. 

3.2. Performance Evaluation of Models on Independent 
Protein Features 

Results obtained from this research were presented using 
heatmaps. The darker areas of the heatmap represent higher 
values, while the lower values are depicted using more light-
er color display. With regards to the result, Fig. (4) presents 
the performance of IPF when AAC was used as the feature 
encoding method. The accuracy values show DF has the 
highest accuracy with 85.51%, followed by RF at 82.62%, 
MLP at 68.78%, SVM at 67.63%, LR at 60.86%, and NB at 
60.10%. The sensitivity values, which represent the propor-
tion of actual positives that are correctly identified by the 
model, are highest for RF with 86.22%, followed closely by 
DF with 84.77%. NB has the lowest sensitivity, with 
68.86%. 

The specificity values, which represent the proportion of 
actual negatives that are correctly identified by the model, 
are highest for DF with 86.27%, followed by RF with 
79.02%. NB has the lowest specificity, with 44.91%. Look-
ing at the precision values, which represent the proportion of 
positive predictions that are true positives, DF has the high-
est value with 86.79%, followed by RF with 81.66%. NB has 
the lowest precision, with 59.34%. The F1 score values, 
which balance both precision and sensitivity, are highest for 
DF with 85.59%, followed by RF with 83.55%. LR has the 
lowest F1 score, with 64.23%. MCC values, which indicate 
the quality of the classification, are highest for DF with 
71.33%, followed by RF with 65.84%. NB has the lowest 
MCC, with 19.21%. Finally, AUROC values, which indicate 
the model's ability to discriminate between positive and neg-
ative classes, are highest for DF with 85.52%, followed by 
RF with 82.62%. 

Overall, based on these performance metrics, it appears 
DF performs the best in this classification task, while the 
naive Bayes model (NB) performs the worst. 

Fig. (5), similar to Fig. (4), illustrates that various ma-
chine learning algorithms exhibit varying levels of classifica-
tion accuracy. RF and DF are the most precise and accurate 
models, whereas the other models tested demonstrate lower 
accuracy and precision, with differing levels of sensitivity 
and specificity. Interestingly, when AAP is used as the en-
coding method for IPF, the model appears to perform better 
than when using AAC. This is evidenced by the superior 
accuracy rates achieved by DF (88.17%) and RF (83.38%) 
using AAP, compared to DF (85.51%) and RF (82.62%) 
using ACC. 

3.3. Performance Evaluation on Merged Protein Features 

As depicted in Fig. (6), the Deep Forest (DF) model has 
the highest accuracy rate and AUROC of 76.58%, indicating 
that it performs the best overall. It also has a high specificity 
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Fig. (2). EPF Feature importance with AAP. Feature importance based on information gain showing 1200 features generated using EPF with 
AAP as feature encoding method. (A higher resolution / colour version of this figure is available in the electronic copy of the article). 

 

 
Fig. (3). EPF Feature importance with AAC. Feature importance based on information gain showing 60 features generated using EPF with 
AAC as feature encoding method. (A higher resolution / colour version of this figure is available in the electronic copy of the article). 
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Fig. (4). IPF predictive performance with AAC. Performance evaluation of models on Independent Protein Feature (IPF) using AAC as fea-
ture encoding method. Models are random forest (RF), support vector machine (SVM), multilayer perceptron (MLP), naive Bayes (NB), lo-
gistic regression (LR), and decision tree (DF). (A higher resolution / colour version of this figure is available in the electronic copy of the 
article). 

 
Fig. (5). IPF predictive performance with AAP. Performance evaluation of models on Independent Protein Feature (IPF) using AAP as fea-
ture encoding method. Models are random forest (RF), support vector machine (SVM), multilayer perceptron (MLP), naive Bayes (NB), lo-
gistic regression (LR), and decision tree (DF). (A higher resolution / colour version of this figure is available in the electronic copy of the 
article). 
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Table 2. Evaluating the feature importance methods on EPF. 

 Information Gain  Logistic Regression Decision Tree Mean Decrease Impurity (RF) Permutation-based (RF)  

RF 1 0.5 0 0.5 0 

SVM 1 0.5 0 0.5 0 

MLP 0.5 0.5 1 0.5 0 

NB 0.5 1 0 1 0 

LR 0.5 1 0 1 0 

DF 0.5 0 1 0 0 

 

 
Fig. (6). Merged Protein Feature (MPF) predictive performance with AAC. Performance evaluation of models on MPF using AAC as feature 
encoding method. Models are random forest (RF), support vector machine (SVM), multilayer perceptron (MLP), naive Bayes (NB), logistic 
regression (LR), and decision tree (DF). (A higher resolution / colour version of this figure is available in the electronic copy of the article). 

 
of 80.5% and a slightly lower sensitivity of 72.7%, indicat-
ing that it is good at correctly identifying negative instances 
but may miss some positive instances. Additionally, DF has 
a high precision rate of 79.9%. The Random Forest (RF) 
model also performs well, with an accuracy rate of 75.1% 
and an AUROC of 75.1%. It has a higher sensitivity of 
75.9% and a slightly lower specificity of 74.3%, indicating 
that it is good at correctly identifying positive instances but 
may misclassify some negative instances. RF also has a high 
precision rate of 75.6. SVM, MLP, NB, and LR models all 
have lower levels of accuracy and precision, with varying 
levels of sensitivity and specificity. 

Furthermore, the highest performing models based on 
most of the metrics used when MPF features are encoded 
using AAP are DF and MLP, with DF having the highest 
accuracy, specificity, precision, F1 Score, MCC, and AU-

ROC as shown in Fig. (7). However, MLP has the highest 
sensitivity rate. This is in line with what was observed in the 
literature and several reviews that were carried out. MLP 
continues to outperform other models in terms of its ability 
to predict more interacting proteins when most of the dataset 
and features are put into perspective. RF, SVM, NB, and LR 
have lower levels of performance across most of the metrics. 

3.4. Performance Evaluation of the Proposed System 
Figs. (8 and 9) depict the performance of the machine 

learning model on feature vectors generated by the method 
developed in this study, as discussed in Section 3, utilizing 
AAC and AAP as the feature encoding methods, respective-
ly. Using AAC, the highest accuracy rate is achieved by DF 
at 84.11%, followed by RF at 81.30%, MLP at 71.44%, 
SVM at 68.34%, LR at 61.40%, and NB at 60.12%. There-
fore, DF and RF are the highest-performing models in terms 
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Fig. (7). Merged Protein Feature (MPF) predictive performance with AAP. Performance evaluation of models on Merged Protein Feature 
(MPF) using AAP as feature encoding method. Models are random forest (RF), support vector machine (SVM), multilayer perceptron (MLP), 
naive Bayes (NB), logistic regression (LR), and decision tree (DF). (A higher resolution / colour version of this figure is available in the elec-
tronic copy of the article). 

 
Fig. (8). Extended Protein Feature (EPF) predictive performance with AAC. Performance evaluation of models on EPF using AAC as feature 
encoding method. Models are random forest (RF), support vector machine (SVM), multilayer perceptron (MLP), naive Bayes (NB), logistic 
regression (LR), decision tree (DF). (A higher resolution / colour version of this figure is available in the electronic copy of the article). 
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Fig. (9). Extended Protein Feature (EPF) predictive performance with AAP. Performance evaluation of models on EPF using AAP as feature 
encoding method. Models are random forest (RF), support vector machine (SVM), multilayer perceptron (MLP), naive Bayes (NB), logistic 
regression (LR), decision tree (DF). (A higher resolution / colour version of this figure is available in the electronic copy of the article). 

 

of accuracy. DF also has the highest sensitivity rate at 82.74%, 
followed by RF at 84.54%, MLP at 76.95%, NB at 74.78%, 
SVM at 79.17%, and LR at 68.18%. Therefore, DF and RF are 
the highest-performing models in terms of sensitivity. Similar-
ly, DF has the highest specificity rate at 85.49%, followed by 
RF at 78.07%, MLP at 65.93%, SVM at 57.52%, LR at 
54.62%, and NB at 45.48%. Therefore, DF presents the high-
est-performing model in terms of specificity. 

Following the same trend but with an improved perfor-
mance than using AAC, the EPF approach with the AAP 
encoding method displays DF as the best model with 87.25% 
accuracy, followed by MLP at 81.38%, RF at 81.28%, SVM 
at 77.84%, LR at 68.72%, and NB at 67.27%. Similar to the 
result of IPF and MPF, MLP achieved the highest sensitivity 
with 89.86% performance. However, DF shows much better 
strength than other models with regard to the remaining met-
rics. Again, and notably so, NB displays the lowest predic-
tive performance across the majority of metrics. 

3.5. Comparative Analysis of the Evaluated Approaches 

A summarized performance of IPF, MPF, and EPF using 
six machine learning models is displayed in Figs. (10 and 
11) using low (AAC) and high (AAP) dimensional feature 
vectors. As seen from the Figure and the previous figures 
presented, the three approaches follow a similar trend in 
terms of the machine learning model performance, although 
with a variety of values. For instance, the best-performing 

model across the 3 approaches is DF, and the least-
performing is NB. However, contrasting these approaches, 
there is a considerable improvement of SVM, MLP, NB, and 
LR models when the EPF method is used for feature repre-
sentation of host-pathogen protein sequences. In addition, 
EPF and IPF generally outperform MPF across all the mod-
els tested irrespective of the feature encoding method em-
ployed, as shown in Figs. (10 and 11). However, IPF pre-
sented better performance than EPF and MPF consistently 
across the decision tree models (RF and DF), thereby pre-
senting room for further improvement of the proposed meth-
od. Furthermore, Table 3 presents the confidence intervals 
for each of the machine learning models across the three 
approaches. The accuracy confidence interval was calculated 
using the t-distribution with a confidence level of 95%. This 
implies that with 95% confidence, the true value of the dif-
ferent accuracies obtained in this work falls within the range 
provided in Table 3. The significance of the small values 
obtained means that the accuracy produced has a more pre-
cise estimate. Smaller confidence intervals suggest that the 
range of possible values has been narrowed. 

Furthermore, to optimize the performance of these tech-
niques, hyperparameters were tuned using the GridSearchCV 
library in Python. The results of the experiment are presented 
in Supplementary Figs. (S1 and S2), and it was found that 
there was no significant difference between the results ob-
tained using EPF and IPF with GridSearchCV hyperparame-
ter tuning. Supplementary File S3 provides more detailed 
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Table 3. Accuracy confidence interval (CI). 

 IPF Accuracy CI (+/-) MPF Accuracy CI (+/-) EPF Accuracy CI (+/-) 

RF 0.046 0.047 0.045 

SVM 0.053 0.052 0.057 

MLP 0.019 0.036 0.025 

NB 0.081 0.066 0.078 

LR 0.051 0.036 0.044 

DF 0.028 0.028 0.033 

 

 
Fig. (10). Comparative analysis of the evaluated approaches using Amino Acid Composition. (A higher resolution / colour version of this 
figure is available in the electronic copy of the article). 

 

 
Fig. (11). Comparative analysis of the evaluated approaches using Amino Acid Pairs. (A higher resolution / colour version of this figure is 
available in the electronic copy of the article). 

information about the specific hyperparameters used for the 
experiment. 

4. DISCUSSION 
Overall, our comparative analysis revealed that the EPF 

approach was the most effective in terms of prediction accu-

racy, outperforming other approaches in four out of the six 
machine learning models tested (SVM, MLP, NB, and LR). 
This consistent performance was observed regardless of the 
feature encoding method used, whether it was low or high 
dimensional. These results indicate that the EPF approach is 
well-suited for accurately representing the features of protein 
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sequences, making it a promising method for predicting 
HPPPI. 

On the other hand, the IPF approach produced better pre-
diction results for the decision tree-based models employed 
(DF and RF), suggesting that it is better suited for decision 
tree models. This observation was consistent with the find-
ings reported in previous subsections (see Figs. 4, 5, 10, and 
11), further supporting the adoption of IPF for feature repre-
sentation of protein sequences. 

MPF approach presented the least performance across the 
majority of the metrics under consideration. This suggests 
that the MPF method may not adequately collect the neces-
sary data about protein sequences for use in future predic-
tions and may not be the most appropriate approach for pre-
dicting HPPPI. 

Although the NB and LR models did not perform well in 
predicting HPPPI, the proposed approach was able to 
achieve some level of improvement in the model perfor-
mance. This indicates that the adoption of the proposed ap-
proach would greatly impact the accurate prediction of 
HPPPI regardless of the dataset type, dataset size, and fea-
ture encoding method used. 

Furthermore, performing a 10-fold cross-validation train-
ing using all the earlier mentioned models with an unbal-
anced dataset presented a significant increase in performance 
accuracy across all the models (with NB and LR performing 
lowest), as shown in Supplementary Files S4, S5, and S6. 
However, we observed that due to the unbalanced nature of 
the training datasets where the number of negative pairs 
(non-interacting) outweighed the positive (interacting) pairs, 
the models were more tilted towards predicting more non-
interacting pairs more than the interacting ones with the 
highest sensitivity of 80.3% as compared to 99.6% specifici-
ty using the EPF approach. 

Overall, our findings demonstrate the effectiveness of the 
EPF approach for predicting HPPPI and highlight the im-
portance of carefully selecting feature encoding methods 
when developing predictive models for complex biological 
problems like HPPPI. 

CONCLUSION 

This study explores the effectiveness of existing ap-
proaches, namely Independent Protein Features (IPF) and 
Merged Protein Features (MPF), alongside the novel EPF 
method. We employ datasets encompassing host-pathogen 
interactions involving bacteria, parasites, viruses, and plants. 
These datasets are integrated into machine learning models, 
such as Random Forest (RF), Support Vector Machine 
(SVM), Multilayer Perceptron (MLP), Naïve Bayes (NB), 
Logistic Regression (LR), and Deep Forest (DF). Our exper-
imental results provide compelling evidence in favor of the 
widespread adoption of IPF over MPF due to its superior 
capability to represent the intricate compositional aspects of 
protein sequences, thereby enhancing machine learning pre-
dictions. Conversely, the EPF approach developed in this 
study exhibits substantial improvements in four out of the six 

models evaluated. This suggests that EPF offers competi-
tiveness with IPF and is particularly well-suited for tradi-
tional machine learning models, including Logistic Regres-
sion (LR), Naïve Bayes (NB), Support Vector Machine 
(SVM), and Multilayer Perceptron (MLP). It is worth noting 
that IPF outperforms EPF in decision tree-based models, 
such as Random Forest (RF) and Deep Forest (DF), a con-
sistent trend observed across all three approaches, irrespec-
tive of the encoding method employed, be it amino acid 
composition or amino acid pairs. Furthermore, to enhance 
the generalizability of our approach, we conducted training 
and testing on a diverse range of host-pathogen pairs. Ro-
bustness was ensured through a cross-validation technique 
involving a ten-fold split, with nine folds allocated for train-
ing and one for testing, repeated iteratively until all folds 
were employed for testing.  
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