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Abstract: This paper presents the development and implementation of a numerical method for the
solution of one dimensional Mixed Fredholm Volterra Intergro-Differential Equations (MFVIDEs). The new
technique transformed MFVIDEs into an integral equation which is then approximated using a polynomial
collocation method. Standard collocation points are then used to convert the problem into a system of
algebraic equations. Some numerical examples are used to test the efficiency of the method. The results
show that the new method is efficient, accurate and easy to implement.
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1 Introduction

The integro differential equation, which is a hybrid of integral and differential equations, was discovered
as a result of Vito Volterra’s findings on hereditary influences while examining a population growth model
[[9]. This arises in nano-dynamics and desert wind ripple [I¥, 2Z], fluid dynamics and chemical kinetics
[i5, ©3], biological modeling and ecology [G, []. Some of the methods developed to solve integro differential
equations include: iterative method [I3, B, B], moving least method [[@], collocation method [1, 086, (4, i1, &].
The aim of this paper is to develop a new polynomial collocation method different from the methods
discussed earlier for the solution of MVIDEs of the form

M x 1
S P (2) 6™ (@) = f(2) + /0 /0 k(r, yu(t)dtdr, @ € [0,1] (1.1)

with the initial condition
u™(0) =bm, m=0,1,...,(M —1) (1.2)
where u(™)(z) is the mth derivative of the unknown function u(z) to be determined, u(¥ (z) = u (z).
ke Cl0,1], f, u e C[0,1], Pu (z) =1, K(r,t) is the Kernel function of (1.1)
The remaining paper is organized as follows: preliminary studies are presented in Section 2. Section 3
discusses methodology which includes the theoretical background, method of solution, and convergence of
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the method of solution. Section 4 deals with numerical examples and discussion of results. This paper is
concluded in Section 5.

2 Preliminary Study

In this section, we present definition of terms, results that are used in this study

Definition 2.1. [T1] (Lipschitzian) Let (X,d) denotes a metric space. A mapping T : X — X is called a
contraction on X if there ezist a positive constant k < 1 such that

d(T(z),T(y)) < kd(z,y), Vx,y € X. (2.1)

Definition 2.2. [j] (Strict contraction): Let (X,d) be a metric space, A mapping T : X — X 1is strict
contraction if T is a— Lipschitzian with o € [0,1) i.e.

d(T (z),T (y)) < ed(z,y), € [0,1), Va,y € X (2.2)

Lemma 2.3. [20] Let o, B € RT, then
¢ —1,6— L@)I(B) a+p—1
r—0)* T At = e 2.3
JACED e (23)

Definition 2.4. [Z1] (Convergence) A sequence {un} in a metric space (X,d) converges to u € X if
lim d(un,u) =0 i.e. lim u, = u.
n— oo n—oo
Theorem 2.5. [8] (Continuity): Let (X, d) be a metric space and T : X — X be a mapping, then let u(z),

un(z) € X, and the lim u,(x) = u(z), then T is continuous if d (Tun,Tu) — 0 as n — oco.
n—o0

Theorem 2.6. [/ Let (X,d) denotes a metric space and T : X — X be a self-mapping of x. Then, T is
called a Lipschitz continuous mapping if

d(Tn (yl) 7Tn (y2)) < k"d (ylva) , L>0, Vy17y2 € X, (24)

Theorem 2.7. [j] (Contraction mapping principle) Let (X,d) be a complete metric space and T : X — X
is a given contraction on X, then T has a unique fized point p and T" (x) — p (asn — o) for each x € X

Theorem 2.8. [4] (Banach fized point) Let (X,d) be a complete metric space and T : X — X is a
contraction on X, then T has a unique fized point x € X such that Tx = x, moreover the iterative scheme

Tn =Txn_1 (2.5)

converges to x.

3 Methodology

In this section, the uniqueness of the solution is proven. In order to obtain the uniqueness of the solution,
the following (i) strict contraction, and (ii) Lipschitzian continuity were established, hence we can conclude
the existence of a convergence sequence in T. Therefore, Banach contraction principle can be used to
establish the uniqueness of solution. Expressing (1) in the form

M—1

WM (@) = f ()= > P (@) ul™ () + /0 : /0 E(r, t)u(t)dtdr (3.1)
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On integrating B0 M*" times and applying (I2) to get

M-1

u(z) = G (x) Z/ YL P (0)u™ (t)dt (3.2)

+%/0 V/ (r, s)u dsdr}d

where G (z) = Z:zfol Eu(’“)( )+ % Jo @ =M f () dt

In order to establish the uniqueness of solution, we use the following hypothesis
H; :Let T : X — X be a mapping, for u1,us € X, L > 0. Define u™ (t) = Ccllti:f’ then ’ugm) ) —ui™ ()| <
L [ua (t) — ua(t)]
H; : Let P : [0,1] — [0,1] be a continuous function, then P* = = max ZM Y P(t)| L, J =1[0,1]

Hj : Let k : [0,1] — [0, 1)? be a continuous function, then k* = = max Iy fo |k(r, )| dsdr

Theorem 3.1. Let T : X — X be a mapping defined by (B2), then T is a strict contraction if

P* + k"

rarsn < - (3.3)

Proof. Let uy (x),u2 (z) € X, using the Banach fixed point in (82)

M-—-1

|(Tu) (@) = (Tuz) ()] Z / (2= )Py () (ul? (1) = uf” ()] e

+ﬁ/o (z =) [/0 /0 [k (r, s) (u1 (s) — uz (s))|dsdr} dt

z M-—1
< ‘r&w‘)/ " ;) B (0 (o (0 =¥ ) ar
+L M- [/ 1|k (ry )| |ur (8) — u2 (s)|dsdr} dt
ron | o Jo
Using H;
< o | @0t IMZ1|P (O] Ly s (8) — uz (O] e
= ton J,

+ﬁ/oz(mft)M71 [/O /0 |k(r,s)||u1(s)fUQ(s)|dsdr} dt

Taking maximum of both sides

1 ® B
= TM)/O (@ —1) maXZ\P )| Lyma [ua (t) — ua(#)| dt

TT(n /Oz(“?‘”M” [m / / [k(r, )| maux [ (s) —u2(s>|dsdr} dt
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Using Hy — H3
« 1 ’ M—1 « 1 * M-1
d(Tur,Tu2) < P 7/ (x—1) dt d(ui,u2) +k 7/ (z —1t) dt d(u1,u2)
(M) J, (M) Jo
P* 4+ k"
Tui, Tuz) < | ————
d( u, UQ) S (F(M+ 1)> d(ul,uQ)

under the condition (E3), then T is a strict contraction mapping O

Theorem 3.2. (Continuity)Let T : X — X be a mapping defined by (3), Let u(x),un (x) € X be the
ezact and approzimate solutions of (4), respectively. If lim un(z) = u(x), then T is continuous.
n—oo

Proof.
Tun (z) — Tu(z)| < ﬁ/g M- 1MZ1\P ( G (1) — u (t))‘dt
+ﬁ/oz(m—t)M_l VO /0 le(r, 5) (un (5) —u(s))|dsdr} dt
< wap ) @m0t 3 1P 01 Ly funt) — (o) e
=0
+ﬁ /Oz(x — t)M_l {/(;t /01 |k(r, s)| lun(s) — u(s)|dsdr] dt
< ﬁ/j (0= M max Z [P ()] 2 ma fun (t) - u(®)] dt
+%]\/[) /Oz(m — )Mt |:9”Iél[%§]/(; /0 |k(r, s)] agl[%,}i] |un(s) —u(s)| dsdr] dt

d(Tun,Tu) < (7;;;;__'_]6;)) d (un,u).

Since d (un,u) — 0 as n — oo, then d (Tun, Tu) — 0 as n — oo, hence T is continuous. O

Theorem 3.3. (Lipschitizian continuity) Let X be a metric space and let T : X — X be a mapping defined

by (2.1), Let u € X be the solution to (2.2), then

P* + k* n
d(T"ur, T"u2) < | =———— d(Tu1, T
( Ui, uz) S (F(M—i—l) ) ( U1, uz)
. . . o P*+ k"
Proof. : We have shown that T is continuous and Lipschitzian. If k = m in Theorem (2.4), the
result is obtained. O

Remark 3.4. Since T is Lipschitzian continuous, hence there exist a convergence sequence in X, therefore,
X is a complete metric space. Moreover, since X is a complete metriz space and a contraction, therefore
using theorem 2.3, there exist a unique fized point r € X
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3.1 Method of solution
Let the solution to (I) and () be approximated by

N
x) = Z anz” (3.4)
n=0
therefore
(L) Fintl) nr o
uy’ (z) = F(nfLJrl)m ,n>1L (3.5)

n=L

Substituting (B4) and (BH) into (B2), we obtain,

[ 81+J

5 k (r, s)} .
Oridsi (15)=(0,0)

t
I
<)
-
I
=)
~
I
o

Z anz” = G(z)-— % Z Z % /0 (e o
1risn7L+J' sdr

A dd]ﬁ

Z M / (@ — )M (3.8)

1 YL ankij N M—1 i+l
+r()§:§jzjm+y+nu+1y£(x_” £

+
E
~
M=
M~
$
ES
S~
5]
"]
|
=
IS
L
S

Applying (23) to (B3)

Zanx":G(m)f Z

_anpe P(n+ DI(n—m+r+1)
where Hy (m,r) = n—m+1)I'(M+n—m-+r+1)’
ankijf‘(i—i— 2)

Qn (i,5) = CES TS ETER We then collocate (BH) at x;
N M-1 R N I J 4
Zanml + Z Z ZH m, )z T ZZZQ" (G, )z — G (x) =0 (3.10)
n=m m=0 r=0 n=0 1=0 j=0

We then solve (B1M), the system of linear equations for the unknown constants and substitute the results
into (83)
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3.2 Convergence of solution

Lemma 3.5. (Convergence) Let (X,d) be a metric space and T : X — X be a mapping. If un (t) and
un—1(t) € X are convergent approzimate solutions, then

lim (un (t) —limun—1 (¢)) = 0. (3.11)

N —oco

Proof. Let u (t) € X be the exact solution, since un (t) and uy—1 (¢) are convergent, then

lim un (t) = u(t)

N —o0
Moreover
1\}21100 un—1 (t) = u(t)
hence
lim (un (t) —limun—1(¢)) =0
N —o0
which implies that the solution converges to a unique fixed point in X O

Theorem 3.6. (Convergence of method of solution) Let (X,d) denotes a metriz space and T : X — X
a Lipschitz continuous mapping, un (t) ,un—1(t) € X are approzimate solutions of (B). Let An (t) =
lun (t) —un—1 (t)|, if limn—o0 (AN (¢)) — 0, then the method converges to the exact solution.

N N—1

Proof. Let uy (x) and uz (x) be approximate by un (z) = Y anz™ and un—_1 (z) = > b,z™ respectively.
n=0 n=0

Applying the fixed point theorem on (BH) and substituting the approximate solution

N M-1

Tuy (z) = G(z Z > - n—T:n—i_—l—ll) / (x — )M Py ()" ™t (3.12)

n'm'mO

Zan/ Ml[// rssdsdr}d

Following the approach in the method of solution, then

N M-1 R
_ anprI'(n+1I'(n—m+7+1) Man—mdr
Tun () = G (z) HZMZ:OTZFH_WH_U (M—|—n—m+r—|—1)x (3.13)
N I J
anki;T(i 4 2) M+it1
+;;;(n+]+l)(i+1)F(M+i+2)x
similarly
N-1M-1 R
_ bpprI'(n+ DI'(n —m 417+ 1) Mn—mtr
Tun-1(z) = G(x) 7; Q;F(n—m+1) (M+n—m+r+1)x (3.14)

N—-1

I J
bnki;I'(i 4 2) M+i+1
+ZZZ mtj+ )G+ OIM+it2)”

n=0 =0 j=
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similarly

Z anpr (N + 1T (N —m+7r+1) MAN=mtr
I'(

1
N-m+1)I(M+N-m+r+1) (3.15)

[Tun (2) = Tun—1 ()] = >

n Z prl(n+ 1)I'(n—m+r+1)
Pn—m+1DI'(M+n—m+r+1)

‘an _ bn‘ :L‘M+n7m+'r

aNkijF(i + 2) M+i+1
~ (N+j+1) i+ 1)T(M +i+2)

(3.16)

lan — by| 2™ (3.17)

Since z € [0,1], and |an — bn| # 0, obviously
lim AN (t) — 0.

N—0

Therefore the method converges to the exact solution O

4 Numerical Examples

Five numerical examples were considered to test the efficiency and accuracy of the new method. All
computations were done with the aid of program written in MATLAB (2015a) and ran on a PC. The
standard collocation z; = a + 2%%4, [a,b] = [0,1]. Results are presented in Tables whenever the exact
solution is not a polynomial.

Example 4.1. [12] Consider the first order mized problem

z 1
o' (z) = i:pQ —e" + //rtu(t)altdr7 z € [0,1] (4.1)
00

with initial condition u(0) = 0.The ezact solution is u(z) =1 — e®. Comparing with (82), M = 1,m = 0,
k(r,t)=rt, Po(z) =0, Py (z) =1, g(z) = 32° — €". Expressing in the integral form

u(x):/oz Gﬁ—et) dt+/oz (/Ot/olrsu(s)dsdr> dt

P* 4+ k*

hence, k™ = maXg.eo,1) fot fol rsu (5) dsdr = i7 P* =0, hence, m = % < 1. It shows that T is strict
contraction, hence the solution converges to a unique solution in X. we take I = J = N. Taking N = 3
ao
3 3 a1 4 az 4 az
for illustration un (z) = ) anz™, G(z) = % —e”+ 1, us (zi) = Y anziy = ao +ﬁ +@+ s |
= n=0 G+ 3+ 5+ %57
ao + a1 + a2 + as
0 0
3 3 3 ) a9 4 @1 4 a2 | ag 325 _ 1
S5 Qe (,9) xfwﬂﬂ = 24 + 55 + 618 + 20 |, G () = | exXp (23) , the unknown con-
#=0i=0 =0 T{%‘*‘%Tlg‘irg ‘*‘6143@ %*QXPG)
ﬁ‘#ﬁ‘i’%‘i’% ﬁ—exp(l)
. _ 1522 272 497
stants give A = [ 0 —%51 —&9 ~— 1919 } , hence

uz (x) = —0.2786502646071892° — 0.4256649464814472° — 1.01399046948781x
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ue () = —0.002305844310518322° — 0.006949543730104212° — 0.0426743917496825x"
—0.1662871947034312° — 0.500069630985783x> — 0.99999522453344:

ug () = —0.0000411044057060689z° — 0.000164845682255676x" — 0.001425169546813412°
—0.008310360625078522° — 0.0416754020405732z" — 0.1666647305723592"
—0.5000002260297042> — 0.9999999895583252

uio (x) = —0.0000004562402721573522"° — 0.000002285002729538532"
—0.00002547533614963242° — 0.000197813024715949z" — 0.00138923705835441z°
—0.008333200042821252° — 0.04166669972046812* — 0.1666666616262461°
—0.5000000004217282% — 0.999999999985562::

Table 1: Exact solution and numerical solution for (E)
Ezact Present method

T 1-—e¢" N =6 N =28 N =10

0.2  -0.22140275816017  -0.221402778158576 -0.2214027581822 -0.22140275816017
0.4  -0.49182469764127  -0.491824683727005 -0.491824697645566 -0.491824697641271
0.6 -0.822118800590509  -0.82211881509425  -0.822118800386624 -0.822118800390509
0.8  -1.22554092849247 -1.2255409077469 -1.22554092847 -1.22554092849247
1.0 -1.71828182845905 -1.71828183001296 -1.71828182846081 -1.71828182845905

Table 2: Errors for (£)

X; E?”?”e ET?“g ETT‘10 Ag Alo
0.2 1.9998e-08 2.2055e-11  0.0000 1.9976e-08 2.203e-11
0.4 1.3914e-08 4.3201e-12  0.0000 1.3919e-08  4.295e-12
0.6 1.4704e-08 4.0927e-12  0.0000 1.4708e-08 3.885e-12
0.8 2.0746e-08 2.2737e-11  0.0000 2.0723e-08 2.247Te-11
1.0 1.5589e-09 1.8190e-12  0.0000 1.5522¢-09  1.760e-12

Table I shows the exact and numerical results at different values of N. Table 2 displays the errors at different
values of N. it shows clearly that as N — oo, erry — 0, which shows that the solution convergence.
Moreover, as N — oo, An — 0, which affirms the theorem on convergence.

Example 4.2. [23] Consider the Volterra-Fredholm integro-differential equation
xz 1
1 7T o
u'(x) =24 6z — 120% + rtu(t)dtdr (4.2)
0 0

with initial condition uw(0) = 1, v/ (0) = 1.The exact solution is u(zx) = 1+ x + x® + x>. writing in the
integral form

u(a:)zl-i—x-l—/oz(a:—t) (2+6t—§0t2> dt—&—/oz(x—t) {/Ot/olrsu(s)dsdr} i (43)
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hence, g(z) = 1+ + [ (x—t) (2+6t= ot?)dt, M =2, Py(z) =1, Py (z) =0, Po(z) = 0. using
ao
ao+ %+ %+ 52
a0+ 2a1 4 4a2 _|_287a$ )
a0+a1 +a2+a3

3
N = 3, we obtain uz (x;) = Y anxy =

0 1
5088 Mtit1 + + + 172723
e 5+ 775 75 N — 11664
222 Qn(i e = 3888 +58a31 iy 6+ 22120 | G(xg) = 16640 | the unknown con-
n=01i=0;=0 243 729 486 1215 g%gg
ay ay
s T3 + 56 T 156 1440

stants give A = [ 11 1 1 ]T, hence uz (z) = o + 2% + x 4 1, which is the exact result
Example 4.3. [23] Consider the Volterra-Fredholm integro-differential equation

z 1
u’(x):8x+ i +// (1 — rt) u(t)dtdr (4.4)
0

with initial condition u(0) = 2. The exact solution is u(zx) = 2 + 6x>. writing in the integral form
0

u(:c):2+/01(2+6t)dt+/0 U /01(1—7"8) (s) dsdr| dt (4.5)

hence, g(z) = 2+ [ (2+6t°)dt, M = 1, Py (z) = 1, Py (x) = 0. using N = 2, we obtain us (z;) =

ao 0
2
En:O a’"m? = ao + % + % ’ Zn 0 Zz 0 E] =0 Q" (Z J) gt = 1120 + (11é + Zg; ’ G (xl) =
ao + a1 + a2 .

2
293 | | the unknown constants give A = [ 2 0 6 ]T, hence uz (x) = 2+ 62>, which is the exact result

%

12
Example 4.4. [23] Consider the Volterra-Fredholm integro-differential equation

v(z)=¢" (1+x)— %xz + / /rtu(t)dtdr (4.6)

with initial condition u(0) = 2. The exact solution is u(x) = xe®. writing in the integral form
u(m):2+/ (2+6t dt—l—/ {// (1—rs)u(s)dsdr|dt 4.7)
hence, g(z) = 2+ [ (e' (1+1t) — 1t2) dt, M =1, Py (z) = 1, Po(z) = 0. using N = 3, we obtain
ao + % + 2+ 3 M+l
ug (z:) =3 noan o +2a§+4a2+2a73 3 OZZOZ] 0 Qn (4, 5) Tt
aop +ai + a2 + as
0 0
1ot 3t s T 6as %ﬁ . 1252 629
=] ¥ N 2L Loy % , G (x;) = 3" , the unknown constants give A = [ 0 1222 529
T =
s Tt T el _ %

uz (z) = 0.9831213004969912° + 0.6734470764447352° 4 1.061916980553292

4019

4088

1"
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The following results are obtained

us

u10 (x)

ug () =

0.01501999881691832° 4 0.03146542635132962° + 0.1741334689283642"

40.4971802103616342> + 1.000518309585362° + 0.999964415982862x

(z) =

0.0003498155079329862° 4 0.00107449758563351" + 0.008674519969380732°

+0.04145012059435852° + 0.166749132085284x" + 0.4999817040862242°
+1.000002137416562> 4 0.9999999012154562

= 0.000004794324226403962"° + 0.0000194529645571553z" + 0.0002060937856556052°
+0.00138203881870852" + 0.008337315581008262° 4 0.04166514077939492°
+0.166667045301502x" + 0.4999999422347792> + 1.00000000483478:>
+0.99999999983444x

Table 3: Exact solution and numerical solution for (£=2)

Exact

Present method

X ze® N =6 N =28 N =10
0.2  0.244280551632034  0.244280701029522  0.244280551840745 0.244280551632034
0.4 0.596729879056508  0.596729774075505  0.59672987909635  0.596729879056509
0.6  1.09327128023431 1.09327138866956 1.09327128019408 1.09327128023431
0.8  1.78043274279397 1.7804325809758 1.78043274257189 1.78043274279398
1.0 2.71828182845905 2.71828183002647 2.71828182846083 2.71828182845905

Table 4: Errors for (£-1)

X EI‘I‘6 EI‘I‘g EI‘I‘10 Ag AIO

0.2 1.4940e-07 2.0873e-10 2.8422e-14 1.4919e-07 2.0871e-10

0.4 1.0498e-07 3.9790e-11 0.0000 1.0502e-07  3.9841e-11

0.6 1.0844e-07 4.0245e-11 0.0000 1.0848e-07  4.0230e-11

0.8 1.6182e-07 2.2192e-10 0.0000 1.616e-07 2.2209e-10

1.0 1.5675e-09 1.8190e-12 0.0000 1.5656e-9  1.7799e-12

The results affirm the convergence of the method with good accuracy.

Example 4.5. [23] Consider the Volterra-Fredholm integro-differential equation

z 1
() = 64200 — a? 4 / / (r — ) u(t)dtdr (4.8)
00
with initial condition u(0) = 0. The exact solution is u(z) = 6z + 12x°. writing in the integral form
T x t 1
u(z) = / <6 + 29t — th) dt + / {/ / (r—s)u(s)dsdr|dt (4.9)
0 2 o Lo Jo

hence, g(z) = [ (6+29t — 2t°)dt, M =1, Py (x) = 1, Po(z) = 0. using N = 2, we obtain us (v;) =

aop 0
2 n 2 2 2 o MAitl 7
Dnmo@nTi = | a0+ F+E |, 20200 Zg‘:o Qn (i, 5) " = e *5% » G(z) =
ao + a1+ az -5 — 5%
2
341§1 , the unknown constants give A = [ 0 6 12 ]T, hence ug (z) = 6x + 1222, which is the exact
B

result
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5 Conclusion

The numerical method for the solution of one dimensional mixed integro differential equations has been
presented and discussed. The implementation of this method is carried out with the aid of a MATLAB
code, this makes it easy and flexible. The results show that the method is accurate with fast convergence;
exact solution is almost reached at N = 10.
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