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Abstract 

Early identification of genetic risk factors for complex diseases can enable timely interventions 
and prevent serious outcomes, including mortality. While the genetics underlying many 
Mendelian diseases have been elucidated, it is harder to predict risk for complex diseases arising 
from the combined effects of many genetic variants with smaller individual effects on disease 
aetiology. Polygenic risk scores (PRS), which combine multiple contributing variants to predict 
disease risk, have the potential to influence the implementation for precision medicine. However, 
the majority of existing PRS were developed from European data with limited transferability to 
African populations. Notably, African populations have diverse genetic backgrounds, and a 
genomic architecture with smaller haplotype blocks compared to European genomes. 
Subsequently, growing evidence shows that using large-scale African ancestry cohorts as 
discovery for PRS development may generate more generalizable findings. Here, we (1) discuss 
the factors contributing to the poor transferability of PRS in African populations, (2) showcase 
the novel Africa genomic datasets for PRS development, (3) explore the potential clinical utility 
of PRS in African populations, and (4) provide insight into the future of PRS in Africa. 
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Background 

Disease prevalence varies largely across the world, and some diseases are often specific to 
certain geographic locations. Lifestyle, diet, and environmental determinants, as well as genetic 
factors, explain pathological conditions in diverse settings and are likely to impact on the 
severity in different individuals and populations (https://www.who.int/data/gho,18/10/2022). 
Clinical risk can be evaluated from the analysis of blood biomarkers, symptoms, and prevailing 
family history. However, recent work has suggested that risk prediction for common chronic 
diseases can be improved using genetic data [1]. 

Genome-wide association studies (GWAS) have significantly contributed to identifying a huge 
number of loci associated to a variety of complex diseases and traits. However, most genetic 
association discoveries have been made in European ancestry individuals [2,3,4,5]. The strength 
of the genetic association with phenotypes is enhanced when phenotypic data is available from 



large-scale studies linked with relevant phenotypic data and electronic health records. Recently, 
polygenic risk scores (PRSs), which weigh the genetic effect of numerous common variations 
associated to disease or traits, have gained popularity to quantify an individual’s genetic risk for 
a disease or trait. The pace of research in this area has recently improved, and PRS scores are 
now available for a variety of traits and diseases, mostly in the European population 
(Figs. 1 and 2). As a result, PRS is quickly becoming a common tool for estimating genetic 
liability in predicting disease risks, which is essential for early disease identification, prevention, 
and intervention. 

Fig. 1 

 
Proportion of broad ancestry populations that contributed to the development and evaluation of 
2555 PGS scores within the PGS Catalogue (version 2023–06-23). African unspecified: African 
that could not be classified as African American, Afro-Caribbean, or Sub-Saharan African. Asian 
unspecified: Asians that could not be classified as East Asian, Central Asian, South Asian, or 
South-East Asian. Multiple studies and subsets of data can contribute towards the development 
and evaluation of a PGS scores within the PGS Catalogue 

Full size image  

Fig. 2 



 
Count of reported countries of recruitment for samples included in the PGS Catalogue (accessed 
August 2020) 

Full size image  

The poor transferability of PRS derived from European ancestry dataset to diverse African 
populations is a cause of concern. This is likely to be due to unique differences in genetic 
architecture and environmental exposures of the different populations [4]. The lack of accurate 
PRS in African ancestry individuals may cause barrier to achieve precise risk stratification which 
is critical for precision medicine. Given that the human genetic diversity is greater in Africa, and 
when large-scale African ancestry cohorts are available for the development of PRS, this may 
generate more generalizable findings [6]. This is high importance, not only for Africa but for the 
entire global medical and research community. For example, the identification 
of PCSK9 missense mutations and their impact on plasma low-density lipoprotein cholesterol 
levels across diverse ancestries. This breakthrough discovery exemplifies how African ancestry 
individuals have contributed to advancing medical knowledge, thereby benefiting the entire 
human race. The rich genetic variation in African populations provides so many opportunities 
that extends well beyond the scope of PRS. In this review article, the aim is to (1) review factors 
contributing to poor transferability of PRS in African populations, (2) showcase the novel 
genomic datasets that could enhance PRS transferability in continental Africa, and (3) explore 
the potential clinical utility of PRS in African populations. 



Factors contributing to poor transferability of PRS in 
African populations 

There are many factors contributing to poor transferability of PRS in African populations. This 
includes genetic factors such as minor allele frequencies, difference in linkage disequilibrium 
patterns, and their interactions with environmental considerations like diet, exercise, age, gender, 
and variability in phenotype measurement. 

PRS are calculated by aggregating the effect of many common variants that are associated with 
the diseases of interest. Given that Africa is the continent where all humans originated, it has the 
highest genetic diversity in the whole world. However, the current lack of diversity in genomic 
studies have implications on the predictive power of the methods that are trained and developed 
on euro-centric datasets. PRS constructed with such method may differ primarily on how the 
weight of the effect size is generated and how the number of single nucleotide polymorphism 
(SNPs) to be included in the PRS calculation is determined. For example, the interrogation of 
high-risk variants may involve inclusion of a causal variant from a population, whereas PRS 
estimates may incorporate variants that are not perfectly correlated with the causal genetic factor 
[7]. The implication of this is that the method may incorporate a variant with uncertain effect 
size in the PRS which invariably may reduce the generalizability of PRS risk estimates in the 
target population. 

A linkage disequilibrium (LD) reference panel and data on allele frequencies are prerequisites 
for application of PRS methods in a heterogeneous background. These factors are important for 
PRS development. For example, allele frequency differences may cause predicted risks of a 
disease to vary across populations. Given that LD blocks are shorter in African populations, the 
SNPs which are in high LD can be removed as they inflate the score. Several studies have shown 
lower levels of LD in African populations compared to other populations [8] which may imply 
that the power to detect untyped causal loci is reduced. This LD and distance between the causal 
variants and the GWAS tagging SNPs can explain lower accuracy and limited transferability. 
The relative accuracy of polygenic scores is enhanced when LD and minor allele frequencies are 
integrated into the model [9] assuming that causal variants are shared between populations. 
Invariably, LD pattern differences between discovery and target populations may impact the 
effect size calculation and determination of causal variant. Therefore, the transferability of risk 
score across populations is a major challenge when they do not share the same genetic 
architecture for each disease [10]. 

The phenomenon of pleiotropy is an indication of the complexity of how mutations in one locus 
may influence several pathways or functions. One gene may be responsible for different 
unrelated traits. SNP markers that are selected for PRS calculations may well impact on another 
phenotype(s) than the one for which the risk is being calculated. Graff et al. found patterns of 
pleiotropy when investigating PRS in Europeans for 16 different types of cancers [11]. Positive 
associations were reported between several forms of cancer. Some variants may be associated 



with a disease while being protective for another pathology [11]. Pleiotropic effects of certain 
variants may well confound risk estimations when used for PRS calculations [11]. 

Many PRS methods have attempted to solve the problem of different LD pattern using LD 
clumping or/and penalised regression. Ge and colleagues [12] and Baker and colleagues [13] 
have extensively reviewed such different PRS methods, and, as such, this paper is not intended to 
duplicate this effort. However, we provide a summary of how some popular PRS tools account 
for LD (Additional file 1: Table S1). The main problem with the clumping and thresholding 
approach is that it does not take environmental factors such diet and exercise into consideration 
which might confound the predictive accuracy of these measures. 

In addition to genetic contributions to lower PRS accuracy in African population, environmental 
exposures can also play a major role in contributing to poor transferability of PRS across 
populations [5]. As most GWAS may have already been subject to ascertainment bias [7], such 
study recruitment mainly from rural, urban, healthier, poorer, or educated participants only may 
introduce collider bias [14]. In a recently published paper describing PRS in African populations, 
Kamiza and colleagues4 show that environmental factors such as diet, exercise, age, gender, and 
living in rural or urban community can influence PRS portability [15]. The results from this 
paper suggest that poor transferability of PRS between South African Zulu and Ugandan 
populations is due to differences in environmental and genetic factors between the two African 
populations [15]. They also showed that lipid predictability was lower in East Africa Uganda 
population than in South Africa Zulu population which was attributed to non-fasting of 
participants before blood collection for lipid analysis. Similarly, a type 2 diabetes PRS paper [16] 
shows a varied predictability between Kenya and Ghana and Nigeria, where predictability was 
much higher. Although these two studies show that PRS derived from data of African American 
individuals enhance polygenic prediction in sub-Sahara Africa compared to European and multi-
ancestry scores, it is important to note that the studies further show that PRS prediction varied 
greatly within SSA, implying that African American-derived PRS may not be generalizable 
across populations in Africa. This reason may be that only certain geographies and genetic 
variation are represented in African American [17]. 

In the study by Reisberg and colleagues [18], SNPs from the European cohorts were used for 
calculating the risk for type 2 diabetes, and the 1000 Genomes dataset of African populations had 
the highest scores compared to Europeans. The report from Hugues and colleagues15 verifies that 
when population-specific SNPs are included in the calculations, the risk calculation is improved. 
Considerable efforts to understand GxE interaction effects is key for transferability of PRS as the 
effects of genetic variants on phenotype can be different between populations as demonstrated by 
Chikowore and colleagues [16]. 

In addition, research strategies and medical procedures are not always consistent across all 
countries in Africa. This is critical for diseases such as psychiatric disorders, where phenotype 
reporting requires intricate and complicated procedures. As an alternative, minimal phenotyping, 
which has recourse to hospital records, self-reporting symptoms, or prescription of medications, 
is used for identification of cases. This approach consists of sampling based on heterogeneous 



self-reported symptoms and not on the recommended criteria for diagnosis. GWAS based on 
minimal phenotyping produce a large number of associated loci which are however of lower 
heritability and have non-specific effects. Cai et al. show that when minimal phenotyping is 
used, for major depressive disorder (MDD), the genetic architecture is different from when the 
strictly defined MDD is used [19]. 

Collectively, genetic factors such as differences in effect sizes, allele frequencies, LD patterns, 
phenomenon of pleiotropy, and phenotyping in addition to environmental exposures are limiting 
the generalizability of genetic predictions of diseases and traits to African populations. Pereira, et 
al. discussed in detail these factors that influence PRSs and limit transferability including 
highlighting the complex scenarios of the importance of using genomic data from multiple 
populations to develop appropriate population-specific applications [20]. 

Growing collection of continental African genomic datasets for more 
accurate PRS 

To do genomic research, biobanks are essential. As a result, national biobanks have been 
established by several governments globally to support scientific research and advance precision 
medicine. One notable example is UKBioBank [21], a well-known biobank that gathers health 
and genetic information from 500,000 people in the UK. (2) The All of Us Research Programme 
(USA) seeks to recruit one million or more individuals from a variety of backgrounds to provide 
a resource for precision medicine [22]. (3) The Estonian Biobank—a nationwide biobank effort 
with the aim of enhancing genetic research and healthcare in the nation—collects genomic and 
health-related data from over 200,000 members [23]. Some other genomic medicine initiatives 
include those from Canada, Qatar, Turkey, Japan, Finland, Denmark, Australia, Saudi Arabia, 
Switzerland, China, and Brazil [24], but such national biobank is lacking in Africa. 

Growing evidence shows that using large-scale African ancestry cohorts as discovery for PRS 
development may generate more generalizable findings. Data from GWAS are fundamental as 
they are used for developing PRS. To date, GWAS has increasingly identified a large number of 
genetic variants which are associated with a range of complex traits [5, 7, 24, 25]. However, the 
majority of GWAS has been conducted with data from individual of primarily European and 
Asian descents [5, 25]. PRS can help to estimate individual’s genetic risk to a disease or 
condition by aggregating the effect of many common variants associated with the condition, but 
studies have shown that well-powered large-scale-based data are required to derive PRS which 
are currently lacking in continental Africa. This calls for the need to initiate a step-change in the 
scale of such studies in African populations to enhance PRS prediction or aggregate emerging 
genomic datasets comparable with European and Asian genomic initiatives. African genetic data 
have revealed highly relevant African-enriched variants in genes such as APOL1, PCSK9, 
and G6PD for kidney diseases, lipid traits, and diabetes respectively [26]. In Table 1, we show a 
growing collection of rich continental African genomic datasets linked to mostly non-
communicable disease phenotypes becoming available for generating PRS for African 
populations. 



Table 1 Description of a range of genomic datasets in Africa for potential polygenic risk 
scores for disease risk in Continental Africa 

Full size table  

One key factor to determine the accuracy and predictive power of PRS is the power of the 
discovery GWAS data to avoid reaching misleading conclusions [9]. To improve cross-
population polygenic risk prediction, specifically, Weissbrod and colleagues [59] recommended 
that base GWAS should have at least 100 K individuals to observe relate prediction and accuracy 
of PRS. Unfortunately, the most current GWAS data from continental Africa are under-powered 
with sample sizes ranging from 150 to 12,000 individuals representing only 1.1% of genomic 
studies from all African ancestry individuals [5]. 

In order to improve the representation of African genomic data in the global context for 
discovery and genetic risk prediction in the last decade, some initiatives have been initiated in 
Africa including the Africa America Diabetes Mellitus (AADM) [30], the Uganda genome 
project [27, 28], the Human Heredity and Health in Africa consortium [60, 61], the Nigerian 
100 K genome project [50], and many others with smaller sample sizes and limited potential to 
get published. Aggregating all the datasets including many emerging ones (Table 1) will (1) 
improve discovery power for GWAS and PRS, (2) improve representation of African genomics 
in the global context, (3) provide a unique framework to examine a wide range of health indices 
in African populations, and (4) aid insights into the biological mechanisms and aetiology 
underlying disease risk in African populations, informing the wider application of potential 
preventative or therapeutic strategies. 

Barriers and potential clinical utility of PRS in African populations 

Hundreds of PRS studies have been carried out including those on its clinical utility mainly in 
European populations [62,63,64,65]. A recent systematic review by Kumuthini and colleagues 
[65] shows a conflict claim for and against utility of PRS. This analysis did not discover 
published evidence of a PRS’s clear clinical usefulness, though they show numerous examples of 
near evidence of clinical utility and ample demonstration of clinical validity [65]. Conversely, 
there is also a growing number of investigations suggesting that PRS are not more predictive 
than standard of care [66], for example, two retrospective studies that integrated coronary disease 
PRS and found no and a modest statistically significant improvement in accuracy compared to 
use of the same models without the score [67, 68]. In the analysis of two US cohorts, Mosley and 
colleagues [68] show that the PRS was associated with incident of coronary heart disease events 
but did not significantly improve discrimination, calibration, or risk reclassification compared 
with conventional predictors. However, a few PRS-based genetic risk estimates from continental 
Africa [15, 16] have shown promises in the ability of PRS to identify subgroups of individuals 
who may benefit from the prioritisation of preventive actions. 

The potential utility of PRS in African populations is limited by many factors. First, the current 
PRS methods limit the general utility of PRS as they have mostly been developed and optimised 
in European populations. Unless sufficient research is also undertaken to optimise the application 



of PRS in African populations, there is a risk of inequitable distribution of health benefits from 
future clinical utility of PRS. PRS calculations cannot, for now, capture the full spectrum of 
disease risk because of allele types, their frequencies, and their effect sizes. For precise estimates 
to be possible, a complete representation of all contributing loci is desirable [69]. Current PRS 
methods can be improved with non-genetic parameters included in the models. More dynamic 
methods to estimate the effects of specific genetic variations given the genetic, demographic, and 
clinical risk factor backgrounds of the individual are anticipated to be developed as 
representation from Africa and other underrepresented populations increases. It is reassuring to 
see a coordinated efforts such as the Polygenic RIsk MEthods in Diverse Populations (PRIMED) 
that promises to deliver new methods for risk prediction in diverse ancestry and specifically a 
pan-Africa initiative—CARdiometabolic Disorders IN African-ancestry PopuLations 
(CARDINAL) project which aim to test PRS performance on African individuals with phenotype 
and genotype data available from H3Africa projects [70]. 

Lack of infrastructure and difficulties with accurate phenotyping are major barriers for 
conducting genomic research in resource limit settings like Africa. However, to ensure collection 
of more accurate phenotype, a standardised data collection instrument known as the H3Africa 
Standard Case Report Form (CRF) was developed by H3Africa [71], which enables efficient and 
complete data collection, processing, analysis, and reporting. While the issue of heterogenous 
phenotyping remains, there exists some commonly statistical method for analysing a collection 
of studies for which the effect sizes are expected to vary. Random-effects model for GWAS 
meta-analysis is designed specifically for the case in which there is heterogeneity [72]. The other 
commonly used fixed-effects meta-analysis will only increase power if effects are homogeneous 
across studies. 

For a sustainable solution to some lack of infrastructure in the continent for genomic research, 
H3Africa [60] and other initiatives in Africa are partnering with biotechnology company such as 
Illumina. Africa can now boast of large genomics facility with the latest cutting-edge technology 
in Nigeria, South Africa, Kenya, Uganda, and other places. Notably are African Center of 
Excellence for Genomics in Infectious Diseases (ACEGID) Nigeria, KwaZulu-Natal Research 
Innovation and Sequencing Platform (KRISP), Centre for Epidemic Response and Innovation 
(CERI), and Centre for Proteomic and Genomic Research (CPGR) in South Africa. These new 
facilities enable African researchers to avoid major delays in cross-border shipping of biological 
samples and to ensure the ability to reuse these valuable datasets. In the past, infrastructure for 
sample processing, biobanking, genotyping, or sequencing and computational analysis are often 
outsourced, but these are now gradually changing. To optimally benefit from these technologies 
that foster implementation of PRS, Africa countries must first address the collapsing primary 
health care mostly in the rural communities, although, in the urban context, Africans have choice 
to access advanced medical technologies despite the current shortcomings of the healthcare 
systems including an increased in demand for genetic tests for preventive purposes (for example: 
cancer panels such as MammaPrint in South Africa). 

Even with the most accurate PRS, addition of conventional risk factors to PRS would be central 
to potential clinical utility in Africa [16, 73]. Such clinical utility of PRS in Africa will require an 



extensive awareness and education for both the physicians, patients, and the public regarding the 
importance and interpretation. In particular, methods that integrate uncertainty deriving from 
measured as well as unmeasured factors would be valuable for communicating the uncertainty 
associated with genetic risk estimations at an individual level [74, 75] including approaches to 
mitigate incidental findings, genetic discrimination, and what the role of counsellors and expert 
mediators would be in such cases. Such clinical utility of PRS would need to be fully supported 
by a robust ethical framework and effective regulatory system. For example, ethically, the 
genetic study of cognitive ability remains controversial both scientifically and ethically, and as 
such, the utility of PRS would need to be regulated within certain traits and phenotypes. 

Ultimately, as shown by a few African PRS studies, PRS may have clinical utility in Africa when 
combined with traditional risk factors for some diseases, such as cardiometabolic traits, but first, 
right healthcare system and genomic infrastructure must be in place, and large-scale African 
genomic studies are required to demonstrate the utility of polygenic risk estimation. This might 
require the development of multiple models for every disease given the broad genetic diversity 
within Africa. 

Future directions and conclusion 

PRS currently have limited transferability, caused mainly lack diversity in genomic studies. To 
improve the prediction accuracy of PRS in African ancestry individuals, it is most important to 
include ethnically diverse individuals from continental Africa in genomic studies. Wonkam [76] 
recommended a rough estimate of about three million African genomes (3MAG) to capture the 
full scope of Africa’s genetic variation and a representative human reference genome. This is 
mostly hindered by the lack of accurate population descriptions of African populations. 
Participants are mostly defined as per their geographic region or country, while it is well 
established that most countries are not homogeneous and can have profound genetic differences. 
Botswana, for example, hosts populations that are descendants of Bantu from West Africa and 
people of South African ancestry [77]. Similarly, Bantu speakers of Uganda contrast with non-
Bantu speakers from the same country. Substantial genetic variations across regions of Africa 
must be carefully addressed for the integration of genomics data in health care. In a personal 
communication with Wonkam [76], he explained that 3MAG was a very rough estimate base on 
two simple assumptions: (1) the Human Genomes Project (HGP) estimated that between two 
unrelated individuals, there is a SNV every 1300 bp, therefore about 3,000,000 SNV difference, 
considering that each genome has 3 billion nucleotides. (2) owing to the great diversity in Africa, 
if we assume that most African has at least one uncaptured SNV, we need a minimum of 3 
million African to capture, at least, the SNVs in our genome, although we see the potential of 
bias in this estimation [78] and several logistical and financial challenges to consider. 
Nevertheless, we agree with the proposition that a comprehensive and extensive genome 
sequencing programme in Africa is of utmost importance. This undertaking is essential for the 
comprehensive representation of the continent’s extensive genetic diversity. New initiatives in 
Africa, such as the ambitious plan to establish eight Genomics Centres of Excellence (GenCoE) 
across the continent, seek to revolutionise access to cutting-edge genomics technologies and 
reshape the continent’s response to some of its most pressing health challenges 
(https://www.nature.com/articles/d44148-023-00052-z). The initiative, which carries a 



significant price tag of US$200 million, is built from the 3MAG programme and seeks to obtain 
financial support from many sources globally. These sources include African governments, 
industrial partners, the US government, and other funding agencies. It is imperative that Africa 
actively participates in the genomic medicine revolution, ensuring that it does not lag behind in 
harnessing the transformative potential it offers. 

Such large-scale African genomic studies like 3MAG can reveal novel genes including causal 
genetic variants not found in previous Eurocentric studies. In addition, it would offer the 
opportunity to develop regional PRS within Africa to cater for genetic differences within 
Africans which is even larger than between Africans and Eurasians. Invariably, this would 
largely solve many barriers poised by difference in allele frequencies, effect sizes, and LD 
patterns when developing PRS. Leveraging the greater genetic diversity in Africa, within 
representative genomic data from Africa, PRS derived from African population may be more 
predictive to all global populations [6]. 

Currently, PRS statistical models are trained with Eurocentric datasets. While representation of 
African genomics is being improved which might take decades, statistical model could be trained 
to estimate the projected effect sizes and allele frequency of those unknown African GWAS loci 
for genetic risk prediction. With current advances in machine learning and artificial intelligence, 
expanding the PRS models is a more practical solution to addressing the effect of genetics and its 
interaction with environmental exposure [79]. This method will require to be trained with 
different datasets. Such datasets for PRS across diverse ethnic groups in African populations 
have been highlighted in Table 1. Eventually, more dynamic methods for estimating effects 
associated with individual genetic variants given the individual’s genetic, demographic, and 
clinical risk factor background should be developed [79]. We think the future of PRS in diverse 
Africa population lies in the development of multiple PRS models per disease from African 
discovery datasets. 

Considering the current poor state of many healthcare settings in Africa, even with best models 
and perfect PRS transferability, the prospect of clinical utility of PRS is slim in resource-limited 
medical settings. It is most likely that PRS would first be accessible across Africa via direct-to-
consumer (DTC) company and specialist private hospitals for only those who could afford it, but 
there are concerns about ethical legal and social issues (ELSI) and how PRS will be regulated. 
Regulatory bodies should consider limiting power in the hands of PRS service providers to use 
their discretion to test and report any conditions or traits; otherwise, the easy access to PRS may 
also lead to inappropriate use and abuse. For example, the use of PRS for embryo selection, 
intelligence, and other psychiatric and socio-behavioural traits is strongly recommended to be 
restricted. 

Collectively, in the future, with increased representation of Africans in genomics, sophisticated 
predictive PRS models which account for both genetic and non-genetic factors, it may well be 
possible for PRS to be utilised in the medical practice for some diseases with multiple polygenic 
scores generated for different diseases or traits in combination with conventional risk factors. 



This would need to be guided with robust ethical framework, but more translational research is 
needed. 
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