SIMULATION OF CARBOHYDRATE PRODUCTION USING CO₂ CAPTURED FROM FLUE GASES WITH ASPEN PLUS SIMULATION TOOL

AONDOAKAA, EPHRAIM AHILE (22PCF02409) B.Eng Chemical Engineering, Landmark University, Omu-Aran, Kwara State

AUGUST, 2024

SIMULATION OF CARBOHYDRATE PRODUCTION USING CO₂ CAPTURED FROM FLUE GASES WITH ASPEN PLUS SIMULATION TOOL

BY

AONDOAKAA, EPHRAIM AHILE (22PCF02409) B.Eng Chemical Engineering, Landmark University, Omu-Aran, Kwara State

A DISSERTATION SUBMITTED TO THE SCHOOL OF POSTGRADUATE STUDIES IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE AWARD OF THE MASTER OF ENGINEERING DEGREE IN CHEMICAL ENGINEERING IN THE DEPARTMENT OF CHEMICAL ENGINEERING, COLLEGE OF ENGINEERING, COVENANT UNIVERSITY, OTA, NIGERIA

AUGUST, 2024

ACCEPTANCE

This is to attest that this dissertation is accepted in partial fulfilment of the requirement for the award of the degree of Master of Engineering (M.Eng) in Chemical Engineering in the Department of Chemical Engineering, College of Engineering, Covenant University, Ota, Nigeria.

Miss Adefunke Fola Oyinloye (Secretary, School of Postgraduate Studies)

Signature and Date

Prof. Akan B. Williams (Dean, School of Postgraduate Studies)

Signature and Date

DECLARATION

I, AONDOAKAA, EPHRAIM AHILE (22PCF02409), declare that this research, "SIMULATION OF CARBOHYDRATE PRODUCTION USING CO₂ CAPTURED FROM FLUE GASES WITH ASPEN PLUS SIMULATION TOOL", was conducted by me under the supervision of Dr. Francis B. Elehinafe and Dr. Temitayo E. Oladimeji of the Department of Chemical Engineering, College of Engineering, Ota, Nigeria. I attest that the dissertation has not been presented either wholly or partially for another degree at this or any other institution. All sources of data and scholarly information used in this dissertation has been duly acknowledged in the text, and a list of references has been provided.

AONDOAKAA, EPHRAIM AHILE

Signature and Date

CERTIFICATION

We certify that this dissertation titled "SIMULATION OF CARBOHYDRATE PRODUCTION USING CO₂ CAPTURED FROM FLUE GASES WITH ASPEN PLUS SIMULATION TOOL" is an original research work conducted by AONDOAKAA, EPHRAIM AHILE (22PCF02409) in the Department of Chemical Engineering, College of Engineering, Covenant University, Ota, Ogun State, Nigeria under the supervision of Dr. Francis B. Elehinafe and Dr. Temitayo E. Oladimeji. We have examined and found this work acceptable as part of the requirements for the award of the degree of Master of Engineering (M.Eng) in Chemical Engineering.

Dr. Francis B. Elehinafe Supervisor

Dr. Temitayo E. Oladimeji Co-supervisor

Dr. Ayodeji A. Ayoola Head of Department

Prof. Olalekan Adeniyi External Examiner

Prof. Akan B. Williams Dean, School of Post-graduate Studies **Signature and Date**

DEDICATION

This research project is dedicated to God Almighty, who helped me to the point of completion, my sponsor Mr. Sunil Mahbubani, Mr. Mahesh Punjabi, and Major General Chris Jemitola for their financial support, and my entire family and friends for their encouragement during my course of study. I also dedicate it my lecturers in the department of Chemical Engineering, Covenant University. May God bless them all with paradise.

ACKNOWLEDGEMENT

I thank the Most High God for the wisdom that granted me strength and health in the cause of this program. My lips cannot glorify you to meet the standard of glorification. Glory, Might and Power over all things are yours in this world and in the world to come. Thank you.

The Chancellor of Covenant University, Dr. David Oyedepo: a spiritual father and revolutionary leader whom God has empowered in creating a conducive environment for learning and research study. The Lord continue to empower you for greater exploits with those of the entire management of Covenant University, Particularly the Vice Chancellor, Prof. Abiodun H. Adebayo, and the Dean, School of Postgraduate Studies, Prof. Akan B. Williams for their tireless efforts in ensuring a research driven institution. My gratitude of many extends to the Dean of Engineering, Prof. David O. Omole for immense roles of organised activities towards a successful research year.

My profound appreciation is hereby expressed to my supervisor Dr. Francis B. Elehinafe and Dr. Temitayo E. Oladimeji, for constantly pushing me towards completing this project in due time and Mr. Adisa Hassan for their useful advice and contribution to the successful completion of this dissertation. May the Almighty God bless them in all their endeavours. I also thank the entire staff of the Department for their cooperation during my stay in the school.

I am thankful to the Head of the Department of Chemical Engineering, Dr. Ayodeji Ayoola, and Dr. Agboola Oluranti and Dr. Ayeni Augustine for their effort in helping me understand the research and review. I recognise your assistance and other well-wishers to mention but a few. I am immensely grateful

TABLE OF CONTENTS

CONTENTS

6

6

COVER PAGE

iii
iv
v
vi
vii
viii
xii
xiii
XV
xvi
xix

CHAPTER ONE 1 **INTRODUCTION** 1 1.1 Background of the study 1 1.2 Statement of Research Problem 3 1.3 Research Questions 3 1.4 Aim and Objectives of the Study 4 Aim of the Study 1.4.1 4 1.4.2 Objectives of the Study 4 1.5 Justification for the Study 4 1.6 Scope of the Study 5

CHAPTER TWO LITERATURE REVIEW

2.1 Overv	iew of Flue Gases	6
2.1.1	Constituent Flue Gases	6
2.1.2	The Generation of Flue Gases	8

2.1.3 Resultant Implication of Flue Gases		8	
2.2 I	duction and Control of Emissions Associated with Flue Gases	8	
2.2.1	Electrostatic Precipitator (ESP)	9	
2.2.2	Wet Scrubbers	10	
2.2.3	Gravity Settling Chambers	11	
2.2.4	Fabric Filters	12	
2.2.5	Cyclone Separator	13	
2.2.6	Adsorption Technique	14	
2.2.7	Membrane Technology	15	
2.2.8	Plasma Technology	17	
2.2.9	Photo-catalytic Process	18	
2.2.1	Bio-filtration Technology	19	
2.3	rbon Dioxide Capture from Industrial Flue Gases	20	
2.3.1	Pre-combustion CO ₂ Capture	20	
2.3.2	Post-combustion CO ₂ Capture (PCC)	23	
2	3.2.1 Adsorption Method	23	
2	3.2.2 Absorption Method	24	
4	3.2.3 Membrane Method	25	
2.3.3	Chemical Looping Technology	27	
2	3.3.1 Calcium Looping Technology	28	
	3.3.2 Oxy-combustion Looping Technology	28	
2.3	Advantages and Disadvantages of Carbon Capture Technologies	29	
2.4]	e Concept of Artificial Photosynthesis (AP)	30	
2.4	Photosynthetic Cell	32	
2.5 A	tificial Photosynthesis Process for the Formation of Carbohydrates	34	
2.5.1	2.5.1 Catalysts for the Conversion Processes in the Photosynthetic Reaction 35		

2.6 Carb	2.6 Carbohydrates 36			
2.7 Aspe	en Plus Simulation Software	37		
2.7.1	Properties of Aspen Plus	38		
2.7.2	Pure Component Databanks in Aspen Plus	39		
2.7.3	Aspen Plus Model Development	39		
2.7.3	.1 Selection of Model Block	40		
2.7.3	3.2 Selection of Stream Class	41		
2.7.3	3.3 Collection of Data	41		
2.7.3	3.4 Thermodynamic Equations of State (EoS)	42		
CHAPTER THREE44METHODOLOGY443.1 Materials44				
3.2 Proc	ess Description	44		
3.3 Aspe	en Plus Development	45		
3.3.1	Concept of Gibb's Free Energy Minimisation	46		
3.3.2	Design Basis	48		
3.3.3	Aspen Equipment	51		
3.4 Process Analysis and Optimisation 57				
3.4.1	CO ₂ Capturing	57		
3.4.2	Artificial Photosynthesis; Sensitivity Analysis and Optimisation	57		
3.4.3	Disaccharide Synthesis via Condensation; Sensitivity Analysis	61		
3.4.4	Polysaccharide (Cellulose) Synthesis	61		

CHAPTER FOUR RESULTS AND DISCUSSION 4.1 Results	62 62 62
4.1.1 CO ₂ Capturing	64
4.1.2 Artificial Photosynthesis	66
4.1.2.1 APR Sensitivity	66
4.1.2.2 APR Optimisation	67
4.1.3 Disaccharide Synthesis	68
4.1.4 Polysaccharide Synthesis	70
4.2 Discussion of Results	71
4.2.1 CO ₂ Capture Via Pressure Swing Adsorption	71
4.2.2 Artificial Photosynthesis, Sensitivity Analysis, and Optimisation	72
4.2.2.1 Artificial Photosynthesis Reaction	72
4.2.2.2 APR Sensitivity	73
4.2.2.3 APR Optimisation	75
4.2.3 Disaccharide Synthesis	77
4.2.4 Polysaccharide Synthesis	78

CHAPTER FIVE	79
CONCLUSION, RECOMMENDATION, AND CONTRIBUT	ION TO KNOWLEDGE
	79
5.1 Conclusion	79
5.2 Recommendation	80
5.3 Contribution to Knowledge	80

REFERENCES	81
APPENDICES	93

LIST OF TABLES

TA	BLES LIST OF TABLES P	PAGES
2.1.	Constituent of flue gases	6
2.2.	Advantages and disadvantages of carbon capture technologies	29
2.3.	Natural and artificial photosynthesis	31
2.4.	Effective Catalysts for the production of carbohydrates	35
2.5.	Aspen plus flow sheet unit operation blocks	41
3.1.	Composition of flue gases obtained from literature	48
3.2.	Average compositions of flue gases used for the simulation	49
3.3.	List of Aspen components	50
3.4.	Split specification for pressure swing adsorber(B)	52
3.5.	Sensitivity analysis specification for artificial photosynthesis	57
3.6.	Operating parameter range for artificial photosynthesis glucose yield optimisation	58
3.7.	Operating parameter range for artificial photosynthesis galactose yield optimisation	59
3.8.	Operating parameter range for artificial photosynthesis fructose yield optimisation	60
3.9.	Sensitivity analysis specification for condensation reactor	61
4.1.	Energy datasheet of the simulated based case	62
4.2.	Material balance datasheet for the simulated based case	63
4.3.	Composition of feed gas before capturing	64
4.4.	Composition of captured gas	65
4.5.	Optimisation for artificial photosynthesis glucose	67
4.6.	Optimisation for artificial photosynthesis galactose	68
4.7.	Optimisation for artificial photosynthesis fructose	68
4.8.	Effect of condensation reactor temperature on product yield	69
4.9.	Effect of condensation reactor pressure on product yield	70

LIST OF FIGURES

FIGURES LIST OF FIGURES	PAGES
2.1. Electrostatic precipitator mechanism for particle collection	10
2.2. (a) Venturi (b) Cyclone (c) Spray tower of wet scrubber	11
2.3. Gravitational settling chamber	12
2.4. Fabric filter for collection of particulate matter from dusty gas flow	13
2.5. Cyclone for particulate matter collection from dusty gas flow	14
2.6. Member technologies for air filtration (a) membrane bioreactor (b) pervaporation	1,
and (c) membrane contactor	16
2.7. Gas separation (a) and absorption membrane procedures for carbon emission cor	ntrol
purposes	17
2.8. Non-thermal plasma technology	18
2.9. Bio-filtration process with bio-filter for treatment of flue gas	19
2.10. Classification of CO_2 capture and technology for separation based on the	
characteristic process	20
2.11. Schematic of pre-combustion CO ₂ capture for generating electricity heat produc	ction 21
2.12. Schematic for pre-combustion capture in electricity generation using a gas turb	ine
for an integrated gasification combined cycle (IGCC)	21
2.13. Different technology for post-combustion carbon capture	23
2.14. Process of chemical absorption for post-combustion carbon dioxide capture	24
2.15. Schematic for membrane separation technology for post-combustion CO_2 captu	ire 26
2.16. Principle of gas absorption membrane (on the right side) and gas separation	
membrane (on the left side)	26
2.17. Calcium looping technology	27
2.18. The schematic diagram for the generation of electricity with the oxy-combustic	n
CO ₂ capture method	28
2.19. Photosynthetic cell	33
3.1. Aspen PFD	45

4.1. Effect of feed water flowrate on APR products yield	66
4.2. Effect of APR pressure on product yield	66
4.3. Effect of APR temperature on product yield	67

LIST OF PLATES

PLATES	LIST OF PLATES	PAGES		
3.1. Aspen modellin	g of filter (A)	51		
3.2. Aspen modellin	g of PSA (B)	52		
3.3. Aspen modelling of Artificial Photosynthesis Reactor (C1)				
3.4. Aspen modellin	g of Condensation Reactor (D)	54		
3.5. Aspen modelling of Polymerization Reactor (E)				
3.6. Aspen modelling of Polymerization Reactor (F)				
3.7. Artificial photos	synthesis glucose yield optimization	58		
3.8. Artificial photosynthesis galactose yield optimization				
3.9. Artificial photos	synthesis Fructose yield optimization	60		
4.10. Feasibility result for polysaccharide synthesis 70				

LIST OF ABBREVIATIONS

CO_2	-	Carbon dioxide
СО	-	Carbon monoxide
CH ₄	-	Methane
NO _X	-	Oxides of Nitrogen
SO_2	-	Sulfur dioxide
SO _X	-	Oxides of Sulfur
Hg	-	Mercury
HCl	-	Hydrogen Chloride
HF	-	Hydrogen Fluoride
NH ₃	-	Ammonia
H_2S	-	Hydrogen Sulfide
N_2O	-	Nitrous Oxides
N_2	-	Nitrogen
H ₂ O	-	Water
O ₂	-	Oxygen
H_2	-	Hydrogen
PM	-	Particulate Matter
AP	-	Artificial Photosynthesis
PS I	-	Photosystem I
PS II	-	Photosystem II
GHG	-	Greenhouse Gases
ESP	-	Electrostatic Precipitator
PD	-	Potential Difference
FF	-	Fabric Filters
VOCs	-	Volatile Organic Compounds
ACs	-	Activated Carbon

HPR	-	Hyper Crosslinked Polymeric Resins
MOFs	-	Metal-organic Frameworks
PFAS	-	Per/poly-fluoroalkyl Substances
TiO ₂	-	Titanium Dioxide
IGCC	-	Integrated Gasification Combined Cycle
PCC	-	Post-combustion Carbon Capture
CaO	-	Calcium Oxides
CaCO ₃	-	Calcium Carbonate
PSA	-	Pressure Swing Adsorption
VPSA	-	Vacuum Pressure Swing Adsorption
TSA	-	Temperature Swing Adsorption
PTSA	-	Pressure-temperature Swing Adsorption
MEA	-	Monoethanolamine
DEA	-	Diethanolamine
MDEA	-	Methyl-diethanolamine
NADPH	-	Nicotinamide Adenine Dinucleotide Phosphate
ATP	-	Adenosine Triphosphate
NP	-	Natural Photosynthesis
CO ₂ RR	-	Carbon Reduction Reaction
OER	-	Oxygen-evolving Reaction
Ru	-	Ruthenium
Re	-	Rhenium
Fe	-	Iron
Ir	-	Iridium
HECs	-	Hydrogen-evolution Catalysts
Rh	-	Rhodium
ASPEN	-	Advanced System for Process Engineering
PR	-	Peng-Robinson

SRK	-	Soave-Redlich-Kwong
EoS	-	Equation of State
PDF	-	Process Flow Diagram
APR	-	Artificial Photosynthesis Reaction
MJ	-	Megajoules

ABSTRACT

The Earth's global temperature requires urgent attention in order to reduce it to well below 2 °C, as stipulated by the Paris Agreement. This research models a process for capturing carbon dioxide (CO₂) from flue gases, and producing carbohydrates using post-combustion captured, adaptable to existing plants. A feed flue gas basis of 10 tons per day (300 °C, 10 bar) was considered. The capturing technique modelled achieved a CO₂ recovery of 96 % and a CO₂ purity of 93 %, meeting regulatory targets above 90 %. Based on thermodynamic equilibrium and phase equilibria calculations, the Aspen simulation of the carbon capture process via pressure swing adsorption revealed an energy requirement of 0.163 MJ per kg of CO₂, compared to 0.7 MJ per kg CO₂ reported by Nikolaidis, Kikkinides, and Georgiadis (2017). Conventional monoethanolamine (MEA) absorption processes for CO_2 capture typically require over 4 MJ per kg CO_2 (Ferrara et al., 2017). The process utilised a pressure swing adsorber (PSA) for CO_2 capture, followed by the direct conversion of CO₂ to saccharides (glucose, galactose, and fructose) in an artificial photosynthesis reactor. Varying the feed water flow rate from 20 kg/hr to 50 kg/hr reduced the glucose to galactose mass selectivity from 75:100 to 66:100. Varying the pressure of the artificial photosynthesis reactor (APR) from 0 to 40 bar increased the glucose to galactose mass selectivity from 72:100 to 78:100. Varying the reactor temperature from 0 °C to 320 °C decreased glucose yield from 33.1527 kg/hr to 1.6516 kg/hr, while galactose yield increased from 0.0045 kg/hr to 31.5056 kg/hr. Optimisation revealed a maximum glucose yield of 0.6824 kg per kg CO₂ (1:5.9998 molar basis), with an efficiency of 99.996 % at 0 °C, 31.741 bar, and 40 kg/hr water flow rate. The artificial photosynthesis reactor required 17,255.9375 kJ per kg of glucose (3,108.7607 kJ/mol), efficient compared to the theoretical standard enthalpy of formation, 2,802.5 kJ/mol. Optimising galactose yield demonstrated 0.6797 kg per kg CO₂ (1:6.0187 molar basis), comparable to the theoretical stoichiometry of 1:6, at 500 °C, 17.7763 bar, and 44.857 kg/hr water flow rate. The reactor required 20,454.6394 kJ per kg of galactose (3,681.8351 kJ/mol). The condensation reactor predominantly produced sucrose (31.4993 kg/hr), regardless of conditions, indicating thermodynamic favourability. Polysaccharide synthesis was infeasible due to the non-convergence of simulations, likely due to the absence of biological catalysts necessary for complex polymerisation reactions. This research highlights the potential and limitations of CO₂ conversion processes to valuable biochemicals, providing a basis for future experimental investigations.

Keywords: Carbon dioxide, Simulation, Carbohydrates, Flue Gases, Monosaccharides, disaccharides, Polysaccharides, Technologies, Aspen Plus, Optimisation, Sensitivity Analysis, Artificial Photosynthesis, Captured.