POLYMORPHISM AND CIRCULATING LEVELS OF IGF-1, IGF-1R, AND IGF-BP3 AMONG PROSTATE CANCER PATIENTS IN LAGOS STATE, NIGERIA

AGBETUYI-TAYO, PRAISE TOMIWA 22PCP02375 B.Sc Biochemistry, Federal University Oye-Ekiti, Ekiti State

AUGUST, 2024

POLYMORPHISM AND CIRCULATING LEVELS OF IGF-1, IGF-1R, AND IGF-BP3 AMONG PROSTATE CANCER PATIENTS IN LAGOS STATE, NIGERIA

BY

AGBETUYI-TAYO, PRAISE TOMIWA 22PCP02375 B.Sc Biochemistry, Federal University Oye-Ekiti, Ekiti State

A DISSERTATION SUBMITTED TO THE SCHOOL OF POSTGRADUATE STUDIES IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE AWARD OF MASTER OF SCIENCE, (M.Sc.) IN BIOCHEMISTRY IN THE DEPARTMENT OF BIOCHEMISTRY, COLLEGE OF SCIENCE AND TECHNOLOGY, COVENANT UNIVERSITY, OTA, NIGERIA

AUGUST, 2024

ACCEPTANCE

This is to attest that this dissertation is accepted in partial fulfillment of the requirements for the award of a Master of Science (M.Sc.) in Biochemistry in the Department of Biochemistry, College of Science and Technology, Covenant University, Ota, Nigeria.

Miss Adefunke F. Oyinloye (Secretary, School of Postgraduate Studies)

Signature and Date

Prof. Akan B. Williams (Dean, School of Postgraduate Studies)

Signature and Date

DECLARATION

I, **AGBETUYI-TAYO**, **PRAISE TOMIWA** hereby declare that I carried out this research work under the supervision of Dr. Oluwakemi A. Rotimi (Supervisor) of the Department of Biochemistry, College of Science and Technology, Covenant University, Ota, Ogun State. I attest that the dissertation has not been presented either wholly or partially for the award of any degree elsewhere. All sources of data and scholarly information used in this dissertation were duly acknowledged.

AGBETUYI-TAYO, PRAISE TOMIWA

Signature and Date

CERTIFICATION

We hereby, certify that this dissertation titled "POLYMORPHISM AND CIRCULATING LEVELS OF IGF-1, IGF-1R, AND IGF-BP3 AMONG PROSTATE CANCER PATIENTS IN LAGOS STATE, NIGERIA" is an original research work carried out by AGBETUYI-TAYO, PRAISE TOMIWA with matriculation number (22PCP02375) from the Department of Biochemistry, College of Science and Technology, Covenant University, Ota, Ogun State, Nigeria, under the supervision of DR. OLUWAKEMI A. ROTIMI. We reviewed the work and determined that it meets the requirements for the award of the degree of Master of Science (M.Sc.) in Biochemistry.

Dr. Oluwakemi A. Rotimi (Supervisor)

Prof. Solomon O. Rotimi (Head of Department)

Prof. Oladipo Ademuyiwa (External Examiner) **Signature and Date**

Signature and Date

Signature and Date

Prof. Akan B. Williams (Dean, School of Postgraduate Studies)

Signature and Date

DEDICATION

This dissertation is dedicated to God for his never-ending faithfulness and grace throughout the course of this project.

ACKNOWLEDGMENT

My heartfelt gratitude goes to Abba, El-Shaddai, and the one who saw me through the completion of my M.Sc. degree. I am deeply grateful to my parents for their emotional and material support during my project work, and to CApIC-ACE for sponsoring my M.Sc program and funding my research project. My sincere appreciation goes to my supervisor, Dr. Oluwakemi A. Rotimi, for her guidance, unwavering support, insightful feedback, and patience. Her insight and expertise were crucial in shaping this research and bringing it to fruition.

I would also like to thank Prof. S.O. Rotimi and the members of the Cancer Genomic Laboratory, at Covenant University for their consistent support during my research design and sample collection. Your guidance greatly enhanced the quality of this work.

A special thanks to my project colleague, Mary Gbadebo, for her assistance throughout the research work. Her dedication and hard work were vital to the successful completion of this study.

TABLE OF CONTENT

CONTENTS	PAGES
COVER PAGE	ii
ACCEPTANCE	iii
DECLARATION	iv
CERTIFICATION	V
DEDICATION	vi
ACKNOWLEDGMENT	vii
TABLE OF CONTENT	viii
LIST OF TABLES	xi
LIST OF FIGURES	xii
LIST OF APPENDICES	xiii
LIST OF ABBREVIATIONS	xvi
ABSTRACT	XV

CHAPTER ONE
INTRODUCTION

NTRODUCTION 1.0 Background to Study	Error! Bookmark not defined. Error! Bookmark not defined.
1.1 Statement of Research Problem	Error! Bookmark not defined.
1.2 Research Questions	Error! Bookmark not defined.
1.3 Research Aim	Error! Bookmark not defined.
1.4 Research Objectives	Error! Bookmark not defined.
1.5 Justification	Error! Bookmark not defined.

Error! Bookmark not defined.

1 1

CHAPTER ONE
INTRODUCTION

1.0 Background to Study	1
1.1 Statement of Research Problem	2
1.2 Research Questions	3
1.3 Research Aim	3
1.4 Research Objectives	3
1.5 Justification	3

CHAPTER TWO5LITERATURE REVIEW52.0 Prostate Cancer52.1 The Insulin-Like Growth Factor (IGF) System62.1.1 Insulin-like growth factor I (IGF1)7

2.1.2 Insulin-like growth factor II (IGF-2)	9
2. 1. 3 Insulin-like Growth Factor Binding Protein	9
2.1.4 Insulin-like Growth Factor 1 Receptor (IGF-1R)	12
2.2 IGF-1 and Prostate Cancer	13
2.3 IGF-1R in Prostate Cancer	15
2.4 Genetic Polymorphisms and Prostate Cancer	16
CHAPTER THREE MATERIALS AND METHODS 3.0 Materials	18 18 18
3.1 Methods	18
3.1.0 Sampling Technique	18
3.1.1 Ethical Approval	18
3.1.2 Blood Sample Preparation	19
3.1.3 DNA Extraction, Purification and Quantification	19
3.1.4 Determination of Relative Quantity of Plasma IGF-1	19
3.1.5 Determination of Relative Quantity of Plasma IGF-BP3	20
3.1.6 Determination of Relative Quantity of Plasma IGF-1R	20
3.1.7 Determination of IGF-1 and IGF-1R Genes Single Nucleotide Polymorphisms (SNPs)	21
3.1.8 Determination of IGF-1/IGF-BP3 Molar ratio	23
3.2 Methods of Statistical Analysis	23
CHAPTER FOUR RESULTS	24 24
4.1 IGF-1R Levels in PCa Cases and Controls	24
4.2 IGF-1 Levels in PCa Cases and Controls	24
4.3 IGF-BP3 Levels in PCa Cases and Controls	25

4.5 IGF-1/IGFBP3 Ratio	27
4.6 Genotype Frequencies (GF) in IGF-1 and IGF-1R SNPs among PCa Cases and Controls	28
4.5 Relationship between SNPs genotypes and circulating Levels of IGF-1 and IGF-1R in	
PCa Cases and Controls	29

CHAPTER FIVE	34
DISCUSSION	34
CHAPTER SIX	37
CONCLUSION AND RECOMMENDATIONS	37
6.1 Summary	37
6.2 Conclusion	37
6.3 Contributions to Knowledge	38
6.4 Recommendations	38

APPENDICES REFERENCES

39 42

LIST OF TABLES

TABLES	LIST OF TABLE	PAGES
Table 3.1: TaqMan	SNP Genotyping reaction mix	26
Table 3.2: TaqMan	SNP Genotyping	26
Table 3.3: TaqMan	SNP Genotyping cycling conditions	27
Table 4.1: Genotype	e Frequencies (GF) in IGF-1 and IGF1R genes SNPs in PCa Case	es 32
and Controls		

LIST OF FIGURES

FIGURES TITLE OF FIGURES	PAGES
Figure 2.1: Sagittal view of prostate cancer initiation, and progression	10
Figure 2.2: IGF system	11
Figure 2.3. Schematic diagram of insulin-like growth factor binding protein 3 (IGFBP-3)	13
Figure 2.4: Role of IGF in initiation and progression of prostate cancer	14
Figure 4.1: Plasma concentration of IGF-1R in PCa patients and healthy controls	28
Figure 4.2: Plasma concentration of IGF-1 in PCa patients and healthy controls	29
Figure 4.3: Plasma concentration of IGFBP3 in PCa patients and healthy controls	30
Figure 4.4: IGF-1/IGFBP3 molar ratio in PCa patients and healthy controls	31
Figure 4.5: Distribution of protein levels for the different genotypes of rs6219	34
Figure 4.6: Distribution of protein levels for the different genotypes of rs6220	35
Figure 4.7: Distribution of protein levels for the different genotypes of rs5742694	36
Figure 4.8: Distribution of protein levels for the different genotypes of rs6222976	5 37

LIST OF APPENDICES

APPENDICES LIST OF APPENDICIES	PAGES
Appendix 1: Allelic discrimination plot showing of IGF-1R rs2229765	43
Appendix 2: Allelic discrimination plot showing of IGF-1 rs6220	44
Appendix 3: Allelic discrimination plot showing of IGF-1 rs6219	44
Appendix 4: Allelic discrimination plot showing of IGF-1 rs5742694	45

LIST OF ABBREVIATIONS

PCa	Prostate Cancer
IGF-1	Insulin-Like Growth Factor 1
IGF-1R	Insulin-Like Growth Factor 1 Receptor
GF	Genotype Frequency
SNP	Single Nucleotide Polymorphism
GH	Growth Hormone
EDTA	Ethylenediamine tetraacetic acid
STAT3	Signal transducer and activator of transcription 3
ELISA	Enzyme-Linked Immunosorbent Assay
МАРК	Mitogen-activated protein (MAP) kinase pathway
AKt	Protein kinase B

ABSTRACT

Prostate cancer (PCa) is the most prevalent cancer in sub-Saharan Africa, with over 77,000 new cases annually, and Nigeria accounting for approximately 30,000 of these cases. The insulin-like growth factor (IGF) pathway, crucial for cellular proliferation and apoptosis, is implicated in cancer progression, including PCa. Elevated plasma IGF-1 levels are associated with PCa progression, whereas increased levels of IGF binding protein 3 (IGF-BP3) may reduce PCa risk. Genetic variations in IGF-1, such as the C-T haplotype, are linked to poorer survival in PCa patients with bone metastases. This study aims to examine single nucleotide polymorphisms (SNPs) in the IGF-1 and IGF-1R genes and their relationship to plasma levels of IGF-1, IGF-1R, and IGF-BP3, and the risk of PCa among men in Lagos State. The case-control study consisted of 75 PCa patients and 75 paired healthy controls. Plasma levels of IGF-1, IGF-1R, and IGF-BP3 were measured using enzyme-linked immunosorbent assay (ELISA), and SNP genotyping (IGF-1: rs6219, rs6220, rs5742694; IGF-1R: rs2229765) was performed using TaqMan assay. No overall statistical difference was found in plasma levels of IGF-1, IGF-BP3, and IGF-1R between cases and controls, although the IGF-1/IGF-BP3 molar ratio was higher in PCa patients (42.67) compared to controls (19.04), indicating increased level of bioavailable IGF-1 in PCa patients. Chi-square analysis revealed a strong positive association (OR: 9.1; p: 0.026) between the A/A genotype of IGF-1R SNP (rs2229765 (A/G)) and PCa, suggesting that individuals with this genotype are more likely to develop PCa. Significant differences in IGF-1R and IGF-1 levels were observed for specific genotypes of rs5742694 and rs2229765 SNPs. In conclusion, genetic polymorphisms in IGF-1R and IGF-1 are associated with differential protein levels in PCa cases versus controls, indicating potential risk and protective factors in Nigerian men.

Keywords: Prostate cancer, IGF-1, IGF-1R, IGF-BP3, SNPs, Genetic polymorphis