GREEN SYNTHESIS OF SILVER NANOPARTICLES USING Nymphaea nouchali (Burm.) LEAF EXTRACT: ANTIMICROBIAL AND ANTIDIABETIC EVALUATION

AKOMOLAFE, OLUWATOBI AYOBAMI (22PCC02439) B. Sc Chemistry Ekiti State University, Ado-Ekiti

AUGUST, 2024

GREEN SYNTHESIS OF SILVER NANOPARTICLES USING Nymphaea nouchali (Burm) LEAF EXTRACT: ANTIMICROBIAL AND ANTIDIABETIC EVALUATION

BY

AKOMOLAFE, OLUWATOBI AYOBAMI (22PCC02439) B. Sc Chemistry Ekiti State University, Ado-Ekiti

Α DISSERTATION SUBMITTED TO THE SCHOOL OF POSTGRADUATE STUDIES IN PARTIAL FULFILLMENT OF THE **REQUIREMENTS FOR THE AWARD OF MASTERS OF SCIENCE** IN INDUSTRIAL (M.Sc) DEGREE CHEMISTRY IN THE DEPARTMENT OF CHEMISTRY, COLLEGE OF SCIENCE AND TECHNOLOGY, COVENANT UNIVERSITY, OTA OGUN STATE, NIGERIA

AUGUST 2024

DECLARATION

I, AKOMOLAFE, OLUWATOBI AYOBAMI declare that this M.Sc. dissertation is based on my study in the Department of Chemistry, College of Science and Technology Covenant University, Ota, Ogun State. This project has not been submitted elsewhere for the award of a degree. All ideas and views expressed are products of personal research, and all sources of data and scholarly information used in this dissertation are duly acknowledged.

AKOMOLAFE, OLUWATOBI AYOBAMI

Signature and Date

ACCEPTANCE

This is to attest that this dissertation is accepted in partial fulfilment of the requirements for the award of the degree of Master of Science (M.Sc.) in Industrial Chemistry in the Department of Chemistry, College of Science and Technology Covenant University, Ota, Ogun State, Nigeria.

Miss Adefunke F. Oyinloye (Secretary, School of Postgraduate Studies)

Signature and Date

Prof. Akan B. Williams (Dean, School of Postgraduate Studies)

Signature and Date

v

Prof. Akan B. Williams (Dean, School of Postgraduate Studies)

We certify that the Dissertation titled "GREEN SYNTHESIS OF SILVER NANOPARTICLES USING *Nymphaea nouchali* (Burm) LEAF EXTRACT: ANTIMICROBIAL AND ANTIDIABETIC EVALUATION" is original research carried out by AKOMOLAFE, OLUWATOBI AYOBAMI (22PCC02439), in the Department of Chemistry, College of Science and Technology, Covenant University, Ota, Ogun State, Nigeria, under the supervision of Dr. Akinsiku A. A. We have examined and found the work acceptable as part of the requirements for the award of Masters of Science (M.Sc) in Industrial Chemistry.

CERTIFICATION

Dr. Anuoluwa A. Akinsiku (Supervisor)

Dr. Cyril O. Ehi-Eromosele (Head of Department)

Prof. Olajide S. Lawal (External Examiner)

Signature and Date

Signature and Date

Signature and Date

Signature and Date

DEDICATION

This work is dedicated to the pursuit of knowledge and the advancement of science, with the hope that it contributes to our understanding and brings positive change to the field.

ACKNOWLEDGEMENTS

I am most grateful to God Almighty for providing the courage, strength, wisdom, insight, and resources needed to conduct this research. We extend grateful appreciation to Chancellor Dr. David O. Oyedepo, the founder of this university, and the entire Board of Regents at Covenant University. I would like to recognize the efforts of Vice-Chancellor Professor Abiodun H. Adebayo and the rest of the management team in striving for excellence. I am profoundly grateful to my supervisor, Dr. Anuoluwa Akinsiku, whose invaluable guidance, support, and encouragement have been instrumental in the completion of this research. Special thanks go to Prof. J.A. Olugbuyiro, whose expertise and collaborative spirit greatly enriched my research experience. His contributions were pivotal in shaping the direction of this study. I would like to extend my sincere appreciation to the other staff members who provided invaluable assistance during my research work. My heartfelt thanks go to Mrs. Ademosun Olabisi and Dr. Ernest Agwaamba for their support and contributions, which were crucial to the progress of my research.

I am particularly grateful to Dr. C.O. Ehi-Eromosele, the Head of Department, for his exemplary leadership and for fostering an environment conducive to academic excellence and research innovation. Additionally, I would like to express my sincere gratitude to Prof. Ajani for his profound teachings and friendly assistance, which greatly enhanced my academic growth and understanding. More so, I thank Mr Adeyemi Department of Biochemistry for his assistance and thorough kindness through the biochemical phase of this research work.

Finally, I deeply appreciate the unwavering support and love from my family. My deepest gratitude goes to my parents, Pa Akomolafe and Evangelist Mrs Akomolafe, and my brothers. Their constant prayers, love, and encouragement have been a source of immense strength and motivation throughout this journey. I owe my deepest thanks to my beloved wife, Victoria, for her unwavering support, patience, and understanding. Her love, encouragement, and belief in me have been my greatest source of inspiration and strength.

TABLE OF CONTENTS

TITLE PAGE	
COVER PAGE	ii
ACCEPTANCE	iii
DECLARATION	iv
CERTIFICATION	v
DEDICATION	vi
ACKNOWLEDGEMENTS	viii
LIST OF TABLES	xii
LIST OF FIGURES	xii
LIST OF PLATES	xiii
LIST OF SCHEME	xii
ABSTRACT	xvi
CHAPTER ONE	1
INTRODUCTION	1
1.1 Background to the Study	1
1.2 Methods of Synthesis of Nanoparticles	2
1.2.1 Physical Methods	3
1.2.2 Chemical Method	4
1.2.3 Biological Methods	4
1.3 Characterisation of Nanoparticles	6
1.4 Statement of the Research Problem	7
1.5 Research Questions	8
1.6 Aim and Objectives of the Study	8
1.7 Justification for the Study	8
1.8 Scope of the Study	9
CHAPTER TWO	10
LITERATURE REVIEW	10
2.1 Diabetes	10
2.2 Prevalence of Diabetes in Africa	10
2.3 Recent Advances in the Treatment	12
2.4 Nanotechnology and Diabetes	12
2.4.2. Possible Mechanisms Involved in Nanoparticle Synthesis	17

2.5 Anticancer Activity of Nanoparticles	
CHAPTER THREE	
MATERIALS AND METHODS	21
3.1 MATERIALS	21
3.1.1 .Apparatus/ Glassware	21
3.1.2. Equipment	21
3.1.3 Standard Drugs, Chemicals, Reagents and Enzymes	21
3.2 Methods	22
3.2.1 Plant Collection	22
3.3 Extraction and Concentration of <i>N. nouchali</i> Extract	22
3.3.1 N. nouchali Yield	22
3.4 Qualitative Phytochemical Screening	22
3.5 Preparation of Aqueous Leaf Extract of N. nouchali for Silver Nanoparticle	
Synthesis	25
3.5.1 Characterisation of AgNPs	25
3.6 TLC Assay	27
3.6.1 Isolation of Compounds by Flash Column Chromatography	27
3.7 Antimicrobial Assay	28
3.7.1 Well plate agar diffusion	28
3.8 In Vitro Antidiabetic Assay	28
3.9 Method of Statistical Analysis	
3.10 Ethical Approval	30
CHAPTER FOUR	
RESULT	31
4.1 Phytochemical Analysis	31
4.2 Extract yield of <i>N. nouchali</i>	33
4.3 Characterisation of the biogenic AgNPs	35
4.3.1 UV-visible Analysis	35
4.3.2 FTIR Analysis	36
4.3.3 X-ray Diffraction Analysis	38
4.3.4 Scanning Electron Energy Dispersive X-ray Analysis	39
4.3.5 X-ray Fluorescence Analysis	40
4.3.6: Gas Chromatography-Mass Spectroscopy (GC-MS) Analysis	42
4.4: Antimicrobial Assay	49
4.4.1: Sensitivity testing of the NLE extracts, AgNPs, and control	49

4.5: In Vitro Antidiabetic Activity Assay	51
4.5.1: α -Amylase Inhibition Assay of Nymphaea nouchali ethyl acetate ext	ract (NLE),
AgNPs and control	51
CHAPTER FIVE	54
DISCUSSION	54
CHAPTER SIX	60
CONCLUSION AND RECOMMENDATIONS	60
6.1 Summary	60
6.2 Conclusion	61
6.3 Contributions To Knowledge	62
6.4. Recommendations	62
REFERENCES	63

LIST OF TABLES

TABLES	LIST OF TABLES	PAGES
Table 2.1:	Estimated number of people living in Africa with diabetes	11
Table 2.2: Top five countries in Africa with diabetes		11
Table 2.3: Antidiabetic activity of AgNPs synthesised from biological resources		15
Table 4.1: Qualitative phytochemical screening of Nymphaea nouchali leaf extract		31
Table 4.2: Extract yield after each successive extraction		33
Table 4.3:	TLC profiling of Nymphaea nouchali leaves in ethyl acetate (NLE)	34
Table 4.4:	Flash Column Chromatography of NLE	35
Table 4.5: FTIR of the extract and AgNPs		37
Table 4.6: XRF compounds profile in the AgNPs		41
Table 4.7:	GC-MS of N. nouchali hexane extract (NLH)	42
Table 4.8:	GC-MS compounds profile of ethyl acetate extract of Nymphaea nouchali	44
Table 4.9:	GC-MS compounds profile of methanol extract of Nymphaea nouchali (N	LM) 46
Table 4.10	: Sensitivity testing: Zones of inhibition (mm)	50

LIST OF FIGURES

FIGURES LIST OF FIGURES PA	AGES
Figure 1.1: Methods used for the synthesis of nanoparticles	3
Figure 1.2: Plant-mediated green production of silver nanoparticles	5
Figure 1.3: Proposed mechanism of AgNPs formation using plant	6
Figure 2.1: Synthesis of silver nanoparticles and associated biochemical protocols	18
Figure 2.2: Potential mechanisms underlying metallic nanoparticles' anticancer activity	19
Plate 4.1: TLC spotting of Nymphaea nouchali ethyl acetate leaf extract	34
Figure 4.1: (a) Colour formation before and (b) final dispersion after reduction	36
Figure 4.2: Time resolved UV visible absorption spectra	36
Figure 4.3: FTIR spectra of Nymphaea nouchali: (a) ethyl acetate extract, (b) methanol	
extract, and (c) biosynthesised AgNPs	37
Scheme 4.1: Proposed phytoreduction of Ag^+ to Ag^0 by the Octadecenal in the metabol	ite 38
Figure 4.4a: Representative pXRD pattern of the N. nouchali based AgNPs	38
Figure 4.4b: XRD pattern of the chlorargyrite phase of N. nouchali based AgNPs	39
Figure 4.5a: (a) EDAX of the biosynthesised AgNPs	39
Figure 4.5b: (b) SEM images of biosynthesised AgNPs	40
Figure 4.6: XRF Analysis of biosynthesised AgNPs	41
Figure 4.7: Sensitivity testing showing zones of inhibition by the extracts, AgNPs, and	the
control	50
Figure 4.8: Percentage (%) inhibition of α -amylase activity	52
Figure 4.9: Dose-response curves of inhibition of α -amylase activity	53

LIST OF PLATES

PLATES LIST OF PLATES	PAGES
Plate 4.1 TLC spotting of Nymphaea nouchali ethyl acetate leaf extract	34
Plate 4.2: Plates showing zones of inhibition by the NLE extract, AgNPs and the contr	ol 51

LIST OF SCHEME

Scheme 4.1: Proposed phytoreduction of Ag^+ to Ag^0 by the Octadecanal in the metabolite 38

ABBREVIATION

AgNPs	Silver Nanoparticles
NLE	Nymphaea nouchali leaves in Ethylacetate
NLM	Nymphaea nouchali leaves in Methanol
NLH	Nymphaea nouchali leaves in Hexane
T2DM S	Type 2 Diabetes Mellitus
ROS	Reactive Oxygen Species
FTIR	Fourier Transform Infrared Spectroscopy
DLS	Dynamic Light Scattering
XPS	X-ray Photoelectron Spectroscopy
XRD	X-ray Diffraction Spectroscopy
SEM	Scanning Electron Microscopy
EDX	X-ray Spectroscopy
T1DM	Type 1 Diabetes Mellitus
GC-MS	Gas Chromatography-Mass Spectroscopy
DYg	Daylight Green
UVb	Ultra-violet Blue
UVo	Ultra-violet orange
UVr	Ultra-violet red
DYy	Daylight Yellow

ABSTRACT

The field of nanotechnology is gaining interest in science today; hence, there is a need to take this advantage in combating drug resistance by disease-causing microorganisms and finding alternative routes for antidiabetic treatment in humans. Moreover, the safety of the environment and humans has been an issue of concern as the method of producing nanoparticles poses a toxicity challenge. Thus, the green synthesis that engages sustainable biodiversity is considered a substitute, as the method produces less toxic nanoparticles especially for biomedical applications compared with the orthodox syntheses. This study evaluated the antimicrobial and antidiabetic potential of Nymphaea nouchali extract and its corresponding silver nanoparticles (AgNPs). Successive extraction was carried out on the plant via cold extraction method on a polarity scale using n-hexane, followed by ethyl acetate, and methanol yielding NLH, NLE, and NLM, respectively. Qualitative analysis was conducted to detect secondary metabolites in the leaf extract. In green chemistry, a hot maceration method was employed to prepare an aqueous extract of Nymphaea nouchali leaf, which was then used as a reducing agent in the synthesis of AgNPs. The UV-visible double spectrophotometer was used to monitor the reaction. FTIR, SEM-EDAX, XRD, XRF, and GC-MS techniques were used to analyze the nanoparticles that were prepared. Furthermore, the following test microorganisms were used for the antimicrobial assay: gram-negative bacteria- Escherichia coli, Pseudomonas aeruginosa, Salmonella sp.; gram-positive bacterium Staphlococcus aureus; Fungi-Candida albicans, and Aspergillus niger. An in-vitro assay targeting a-amylase activity was used for the antidiabetic evaluation. Noticeable colour change informed the nanoparticle formation, which was preliminarily confirmed with an appearance of surface plasmon resonance (SPR) around 450 nm using UV-visible spectrophotometer. The following peaks and functional groups were identified with FTIR, 3398 cm⁻¹ (O-H), 2925 cm⁻¹ and 2855 (C-H), 1703 cm⁻¹ (C=O), and 1043 cm⁻¹ (C-O). From the sensitivity testing, Nymphaea nouchali displayed the highest inhibition, even more than the control, against all the test organisms except Candida albicans. AgNPs inhibited the growth of E. coli, Salmonella sp., S. aureus, and A. niger. In the antidiabetic assay, N. nouchali and AgNPs inhibited α -amylase at IC₅₀ value 204.48 mg/mL and 408.67 mg/mL, respectively. Hence, from this study, both N. nouchali extract and AgNPs are potential antibacterial, antifungal, and antidiabetic drug candidates.

Keywords: Silver nanoparticles, N. nouchali, green chemistry, antimicrobial, antidiabetic, *a*-amylase