ASSOCIATION BETWEEN CYP17A1 AND HSD3B1 GENE POLYMORPHISMS AND TESTOSTERONE LEVELS IN NIGERIAN PROSTATE CANCER PATIENTS

EKENWANEZE, CHRISTOGONUS CHICHEBE (22PCP02381)

B.Sc Biochemistry, Abia State University, Uturu, Abia State.

AUGUST, 2024

ASSOCIATION BETWEEN CYP17A1 AND HSD3B1 GENE POLYMORPHISMS AND TESTOSTERONE LEVELS IN NIGERIAN PROSTATE CANCER PATIENTS

BY

EKENWANEZE, CHRISTOGONUS CHICHEBE 22PCP02381

B.Sc Biochemistry, Abia State University, Uturu, Abia State.

A DISSERTATION SUBMITTED TO THE SCHOOL OF POSTGRADUATE STUDIES IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE AWARD OF MASTER OF SCIENCE, (M.Sc) IN BIOCHEMISTRY IN THE DEPARTMENT OF BIOCHEMISTRY, COLLEGE OF SCIENCE AND TECHNOLOGY, COVENANT UNIVERSITY, OTA, NIGERIA

AUGUST, 2024

ACCEPTANCE

This is to attest that this thesis is accepted in partial fulfilment of the requirements for the
award of the degree of Master of Science (M.Sc) in Biochemistry in the Department of
Biochemistry, College of Science and Technology, Covenant University, Ota, Nigeria.

Miss Adefunke F. Oyinloye (Secretary School of Postgraduate Studies)

Signature and Date

Prof. Akan B. Williams (Dean, School of Postgraduate Studies)

Signature and Date

DECLARATION

I, EKENWANEZE, CHRISTOGONUS CHICHEBE, (22PCP02381), declare that this research is an original work carried out by me under the supervision of Professor O.O. Ogunlana in the Department of Biochemistry, College of Science and Technology, Covenant University, Ota Nigeria. I attest that the thesis has not been presented wholly or partially for the award of any degree elsewhere. All sources of materials and scholarly publications used in the thesis have been duly acknowledged.

EKENWANEZE, CHRISTOGONUS CHICHEBE

Signature and Date

CERTIFICATION

This is to certify that the research work titled "ASSOCIATION BETWEEN CYP17A1 AND HSD3B1 GENE POLYMORPHISMS AND TESTOSTERONE LEVELS IN NIGERIAN PROSTATE CANCER PATIENTS" is an original work carried out by EKENWANEZE, CHRISTOGONUS CHICHEBE (22PCP02381) meets the requirements and regulations governing the award of Master of Science degree (M.Sc) in Biochemistry from the Department of Biochemistry, College of Science and Technology, Covenant University, Ota, Ogun State, Nigeria. It is approved for its contribution to knowledge and literary presentation.

Prof. Olubanke O. Ogunlana (Supervisor)

Signature and Date

Prof. Solomon O. Rotimi (Head of Department)

Signature and Date

Prof. Oluwatosin B. Adu (External Supervisor)

Signature and Date

Prof. Akan B. Williams (Dean, School of Postgraduate Studies)

Signature and Date

DEDICATION

This dissertation is dedicated to the Almighty God for His love and guidance throughout the cause of this project.

ACKNOWLEDGEMENT

I thank the Covenant Applied Informatics and Communication Africa Centre of Excellence (CApIC-ACE) for their invaluable support in funding my research. I am genuinely grateful for their belief in my work. Additionally, I wish to extend my deepest gratitude to my parents, Mr and Mrs A.E. Nwaigwe, my siblings Gaemezu, Zobam and Chijioke and nephew and nieces for their unwavering prayers, encouragement and generous financial support, which have been instrumental in making this journey possible. Thank you, Rev. Fr. Bartholomew Chukwu, for your spiritual and moral support.

I also want to thank all my lecturers, especially my supervisor, Prof. O.O. Ogunlana, for her enormous support and guidance throughout my project work. I especially appreciate the HOD and Cancer Genomic group coordinator, Prof. S. Rotimi, and CApIC_ACE Center Director, Professor E. Iweala, for their guidance and support towards my project.

To all members of Accountability Hub and Kingdom Professionals using Barr. Ngunan and Obinna and Mr Chukwunoso and Kenechukwu as points of contact, respectively; I am grateful for all the spiritual support, mentorship and encouragement.

Dear Dr Gwen Okeke, thank you for your unwavering support until your demise, and may your soul continue to rest in peace. Amen

Finally, I appreciate all my colleagues and friends I worked with and assisted each other, enabling me to conduct insightful research.

TABLE OF CONTENTS

CONTENTS	PAGES
COVER PAGE	i
TITLE PAGE	ii
ACCEPTANCE	iii
DECLARATION	iv
CERTIFICATION	V
DEDICATION	vi
ACKNOWLEDGEMENT	vii
TABLE OF CONTENTS	viii
LIST OF FIGURES	xi
LIST OF TABLES	xiii
ABSTRACT	xiv
CHAPTER ONE	1
INTRODUCTION	1
1.1 Background of the Study	1
1.2 Statement of Research Problem	2
1.3 Research Questions	4
1.4 Aim and Objective	4
1.5 Research Justification	4
CHAPTER TWO	7
LITERATURE REVIEW	7
2.1 Prostate Cancer	7
2.2 Development of Prostate Cancer	8
`2.2.1 Androgen Receptors	8
2.2.2 Testosterone	9
2.3 Single Nucleotide Polymorphism in Prostate C	Cancer 10
2.3.1 <i>CYP17A1</i> Polymorphisms and Prostate Can	icer Risk 11
2.3.2 <i>HSD3B1</i> Polymorphisms and Prostate Canc	eer Risk 13
2.4 Prostate Cancer Therapies	17
2.4.1 Immunotherapy	17
2.4.2 Hormonal Therapy (Androgen Deprivation	Therapy) 21
2.4.3 Chemotherapy	23
2.4.4 Radiotherapy	24

CHAPTER THREE	25
MATERIALS AND METHODS	25
3.1 Materials	25
3.1.1 Equipment and Hardware	25
3.2.2 Reagents	25
3.2 Methodology	25
3.2.1 Study Population	25
3.2.2 Study Site	25
3.2.3 Inclusion and Exclusion Criteria	25
3.2.4 Sampling Technique	26
3.2.5 Ethics Approval	26
3.2.6 Blood Collection	26
3.3 Genotyping	26
3.3.1 DNA Extraction and Quantification	26
3.3.2 <i>CYP17A1</i> Genotyping	26
3.3.3 <i>HSD3B1</i> Genotyping	27
3.4 ELISA Analysis:	27
3.4.1 Quantification of Testosterone	27
3.4.2 Quantification of Androgen Receptors	27
3.5 Data Analysis	28
CHAPTER FOUR	29
RESULTS	29
4.1 Genotyping Result for <i>CYP17A1</i>	29
4.1.1 Distribution of <i>CYP17A1</i> Genotypes	29
4.1.2 Distribution of <i>CYP17A1</i> Genotype among Groups	30
4.2 Genotyping Result for <i>HSD3B1</i>	31
4.2.1 Distribution of <i>HSD3B1</i> Genotypes	31
4.2.2 Distribution of <i>HSD3B1</i> Genotype among Groups	32
4.3 Levels of Hormone and Protein	33
4.3.1 Levels of Testosterone	33
4.3.2 Levels of Androgen Receptor	34

24

2.4.5 Cryotherapy

4.3.3	Testosterone and AR Levels				35
	association of between CYP17A1 and Receptor	and HSD3B1	Genotypes,	Testosterone	and
4.4.1	CYP17A1 and Testosterone				36
4.4.2	CYP17A1 and Androgen Receptor				36
4.4.3	HSD3B1 and Testosterone				37
4.4.3	HSD3B1 and Androgen Receptor				37
СНАРТЕБ	R FIVE				38
DISCUSSIO	ON				38
СНАРТЕР	RSIX				42
CONCLUS	ION AND RECOMMENDATION				42
6.1 S	ummary				42
6.2 C	Conclusion				42
6.3 C	ontribution to Knowledge				42
6.4 R	ecommendation				43
REFEREN	ICES				44

LIST OF FIGURES

FIGURES	LIST OF FIGURES P.	AGES
Figure 2.1: Incident and mor	tality rate of various cancers in men and prostate cancer	7
Figure 2.2: Prostrate shown i	in the male reproductive system	8
Figure 2.3: Pathway of testos	sterone	10
Figure 2.4: Androgen biosyn	thesis pathway in PCa	11
Figure 2.5: Forms of Structu	res of CYP17A1 steroidal ligands	12
Figure 2.6: Disorders related synthesis.	d to elevated CYP17A1 expression and enhance steroid ho	ormone 12
Figure 2.7: Pathway showing	g inhibition of CYP17A1 by abiraterone	13
Figure 2.8: Mechanism of H.	SD3B1 (rs1047303)	15
Figure 2.9: Mechanism of PO	Ca management after enzalutamide and abiraterone treatme	ent 16
Figure 2.10: Mechanism of s	econd-generation androgen synthesis inhibitors	16
Figure 2.11: Schematic repre	esentation of Checkpoint activities	18
Figure 2.12: Homologous de	livery of CAR-T therapy	19
Figure 2.13: Mechanism of s	ipuleucel-T on Immune System	20
Figure 4.1: Graph showing the	ne distribution of CYP17A1 genotypes in the population	29
Figure 4.2. Bar chart distribution groups of PCa in the population	oution showing the CYP17A1 genotype among control and	ad case
Figure 4.3: Graph showing the	ne distribution of <i>HSD3B1</i> Genotypes in the population	31
Figure 4.4: Bar chart showing groups	ng the distribution of HSD3B1 genotype among control an	nd case
Fig 4.5: Box plot illustratic control	ng testosterone levels distribution among prostate canc	er and

Figure 4.6: Box plot illustrating AR levels distribution among prostate cancer and control	34
Figure 4.7: Scatter plot illustrating testosterone and AR levels correlation among pros- cancer and control	tate
Figure 4.8: Box plot illustrating CYP17A1 and testosterone distribution among PCa control	and 36
Figure 4.9: Box plot illustrating CYP17A1 and AR distribution among PCa and controls	36
Figure 4.10: Box plot illustrating <i>HSD3B1</i> and testosterone distribution among PCa controls	and
Figure 4.9: Box plot illustrating <i>HSD3B1</i> and AR distribution among PCa and controls	37

LIST OF TABLES

TABLES	LIST OF TABLES	PAGES
Table 4.1. Frequency of Distrib	oution of CYP17A1 Allele and Genotype	30
Table 4.2. Frequency of Distrib	oution of CYP17A1 Allele and Genotype	32

ABSTRACT

Prostate cancer (PCa) represents a significant worldwide health challenge, being the second most diagnosed cancer and a top cause of cancer-related deaths among men. African men exhibit high PCa incidence and mortality rates. Genetic variation in androgen pathways is essential in PCa development and progression. The Cytochrome P450 17A1 (CYP17A1) gene encodes a critical metabolic enzyme involved in testosterone (TT) synthesis, as it converts cholesterol into androstenedione. Similarly, the 3β-hydroxysteroid dehydrogenase type 1 (HSD3B1) gene encodes an enzyme that catalyses the conversion of dehydroepiandrosterone (DHEA) to androstenedione, a critical precursor for TT production. This study aimed to evaluate the frequency of polymorphisms in the CYP17A1 and HSD3B1 genes among PCa patients from Southwest Nigeria and to investigate their association with testosterone levels and androgen receptor (AR). The case-control study was conducted on 40 PCa patients and 40 control groups of healthy males with matching ages. Detection of CYP17A1 and HSD3B1 polymorphisms was done using TaqMan real-time polymerase chain reaction (RT-PCR), and estimation of TT and AR levels in serum was done using the enzyme-linked immune-sorbent assay (ELISA) technique for all groups. This study identified AA, AG, and GG genotypes of the CYP17A1 and AA and CA genotypes of HSD3B1, and there was no significant association between PCa and control groups of the genes. Testosterone levels were higher in the control group than in the PCa group (p=0.0015). There was no association was found between CYP17A1 gene polymorphisms and TT and AR levels, similar to the HSD3B1 gene and TT. Conversely, an association was found between the HSD3B1 heterozygous adrenalrestrictive (CA) and AR, and no HSD3B1 adrenal-permissive homozygous genotype (CC) was found. The result of this study suggests that the HSD3B1 gene could be a suggestive prognostic and predictive biomarker of PCa. This would pave the way for future investigations that could influence diagnosis and personalised treatment of PCa.

Keywords: Prostate Cancer, Single nucleotide polymorphism, HSD3B1, CYP17A1, Testosterone