EXPERIMENTAL AND COMPUTATIONAL ASSESSMENT OF Discorea bulbifera DERIVED BIOCHAR AND HYDROCHAR FOR IBUPROFEN RELEASE

NNAJI PRECIOUS CHINYERE (22PCP02386) B.Sc, Biochemistry, Alex Ekwueme Federal University, Ndufu-Alike

AUGUST, 2024

EXPERIMENTAL AND COMPUTATIONAL ASSESSMENT OF Discorea bulbifera DERIVED BIOCHAR AND HYDROCHAR FOR IBUPROFEN RELEASE

BY

NNAJI PRECIOUS CHINYERE (22PCP02386) B.Sc, Biochemistry, Alex Ekwueme Federal University, Ndufu-Alike

A DISSERTATION SUBMITTED TO THE SCHOOL OF POST GRADUATE STUDIES IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE AWARD OF THE DEGREE OF MASTER OF SCIENCE (M.Sc) IN BIOCHEMISTRY IN THE DEPARTMENT OF BIOCHEMISTRY, COLLEGE OF SCIENCE AND TECHNOLOGY, COVENANT UNIVERSITY, OTA, OGUN STATE, NIGERIA

ACCEPTANCE

This is to attest that this dissertation is accepted in partial fulfillment of the requirements for the award of a Master of Science (M.Sc.) in Biochemistry in the Department of Biochemistry, college of Science and Technology, Covenant University, Ota, Nigeria.

Miss Adefunke F. Oyinloye (Secretary, School of Postgraduate Studies)

Signature and Date

Prof. Akan B. Williams (Dean, School of Postgraduate Studies)

Signature and Date

DECLARATION

I, NNAJI, PRECIOUS CHINYERE (22PCP02386) hereby declare that this research work was carried out by me under the supervision of Prof. Olubanke O. Ogunlana (Supervisor) of the Department of Biochemistry, College of Science and Technology, Covenant University, Ota, Ogun State. I attest the dissertation has not been presented either wholly or partially for the award of any degree elsewhere. All sources of data and scholarly information used in this dissertation were duly acknowledged.

NNAJI, PRECIOUS CHINYERE

Signature and Date

CERTIFICATION

We certify the dissertation titled "EXPERIMENTAL AND COMPUTATIONAL ASSESSMENT OF *Discorea bulbifera* DERIVED BIOCHAR AND HYDROCHAR FOR IBUPROFEN RELEASE" is an original work carried out by NNAJI PRECIOUS CHINYERE (22PCP02386) in the Department of Biochemistry, College of Science and Technology, Covenant University, Ota, Ogun State, Nigeria under the supervision of Prof. Olubanke O. Ogunlana. We have examined and found this work acceptable as part of the requirement for the award of Master of Science (M.Sc.) degree in Biochemistry.

Prof. Olubanke O. Ogunlana (Supervisor)

Prof. Solomon O. Rotimi (Head of Department)

Prof. Joseph O. Adebayo (External Examiner)

Prof. Akan B. Williams (Dean, School of Postgraduate Studies) **Signature and Date**

Signature and Date

Signature and Date

Signature and Date

DEDICATION

This dissertation is dedicated to God Almighty, who granted me grace among the living, intellectual and physical strength to complete this work. I also dedicate this work to my beautiful daughter Nnaji Goodtidings Nwaihe and my Darling Husband Dr. Nnaji, Nnaemeka Joshua who single handedly sponsored me to school and also gave me maximum encouragements.

ACKNOWLEDGEMENTS

I would love to take this moment to express my heartfelt gratitude to God "the owner and giver of life". The unwavering assistance and encouragement been invaluable making this accomplishment possible, to all those who have been instrumental in guiding and supporting me throughout the journey of completing this work

My gratitude goes to the Biochemistry Department, particularly Prof. Solomon O. Rotimi, Head of Department, Dr. Titilope Dokunmu, Dr. Joel O. Cleanclay, Mr. Adeyemi for their leadership responsibilities.

I extend my sincere thanks to my dedicated Supervisor, Prof. Olubanke O. Ogunlana for the exceptional guidance, expertise, and mentorship throughout my dissertation. The insights and encouragement have shaped my research and writing process, contributing significantly to the successful completion of this work.

My heartfelt appreciation to my Daughter (Nnaji Goodtidings Nwaihe), Father in-law (His Eminence Cornelius Nnaji) mother, (Mrs. Mary Umazi), mother in-law (Mrs. Mary Nnaji) and Siblings for their constant prayers, encouragement and unwavering belief in me has the driving force behind my dedication and perseverance. I am deeply thankful for their presence in my life.

Finally, I appreciate all my colleagues and friends who generously shared their time when needed and insights, enabling me to conduct meaningful research.

TABLE OF CONTENTS

	CONTENTS	PAGES
	COVER PAGE TITLE PAGE ACCEPTANCE DECLARATION CERTIFICATION DEDICATION ACKNOWLEGEMENT TABLE OF CONTENT LIST OF FIGURES LIST OF TABLES LIST OF TABLES LIST OF ABREVIATIO ABSTRACT xii	I AGES I I I I I V I V I V I I X X X
CH	APTER ONE: INTRODUCTION	
1.1	Background of the study	1
1.2	Statement of Problem	4
1.3	Research Questions	5
1.4	Aim and Objective of study	6
1.5	Justification for the study	6
1.6	Scope of the study	7
СН	APTER TWO: LITERATURE REVIEW	
2.1	Review of relevant literature	8
2.2	Ibuprofen as an NSAID and its mechanism	10

2.3	Biochemistry of inflammation	12
2.4	The signaling routes of inflammation through cells	14
2.5	The mediators of inflammation	17
2.6	Biomass applications in Biomedical Sciences	19

2.6	Anti-bacterial Fiber	19
2.7	Properties of hydrochar and Biochar	17
2.7.	1 Hydrochar as drug delivery Agents	18
2.7.	2 Biochar as a drug delivery agent	22
2.7.	Benefits of 3D printing composite fiber made from biomass	23
СН	IAPTER THREE: MATERIALS AND METHOD	
3.1	Materials and equipment	26
3.2	Plant collection and char preparation	26
3.3	Hydrochar preparation	26
3.4	Biochar preparation	26
3.5	Human red blood cell (HRBC) collection	26
3.6	Protein Albumin Denaturation Assay	27
3.7	Hypotonic solution induced hemolysis stabilizing assay	28
3.8	Heat induced hemolysis stabilizing assay	28
3.9	Preparation of Hydrochloric Acid Solution	29
3.10	0 Ibuprofen adsorption	29
3.11	1 Adsorption mechanism	30
3.12	2 Statistical analyses	30
3.13	3 Quantum Chemical Calculations	31
3.14	4 Molecular Docking	31
3.15	5 Graphical Plots	33
3.16	6 Fourier transformed infrared (FTIR)	33
3.17	7 Surface chemistry of biochar and hydrochar	33
3.18	8 Boehm titration	33
3.19	9 pH of zero-point charge (pH _{zpc})	34
3.20	0 Preparation of ibuprofen solutions for calibration curve	34
3.21	1 Determination of ibuprofen loading capacity of the chars	35
3.22	2 In-vitro ibuprofen release studies	35
		35

CHAPTER FOUR: RESULTS AND DISCUSSION

4.1	Characterizations	36
4.2	Thermogravimetric analyses	36
4.3	X-ray diffraction analyses	37
4.4	Zero-point charge pH (pH _{zpc})	39
4.5	Infrared spectra analyses	40
4.6	SEM/EDX	41
4.7	Anti-inflammatory studies	44
4.8	In-vitro Anti0inflammatory Egg Albumin Denaturation Assay	44
4.9	Heat Induced Hemolysis Stabilizing Assay	45
4.10	Theoretical accounts of anti-inflammatory activities	46
4.11	Hypotonic Solution Induced Hemolysis Stabilizing Assay	48
4.12	Preparation of ibuprofen solutions for calibration curve	50
4.13	Ibuprofen loading capacity and encapsulation efficiency	51
4.14	Ibuprofen loading capacity	51
4.15	Ibuprofen encapsulation	53
4.16	Ibuprofen adsorption	53
4.17	Equilibrium studies	56
4.18	Effect of adsorption and kinetics studies	56
4.19	Theoretical accounts of ibuprofen adsorption	59

CHAPTER SIX: CONCLUSION AND RECOMMENDATION

6.1 Conclusion	61
6.2 Contribution to knowledge	62
6.3 Recommendations	63

REFERENCES

64

LIST OF FIGURES

FIGURES	LIST OF FIGURES	PAGES
Figure 1	Modern synthesis of Ibuprofen	11
Figure 2	Toll-like receptor-mediated intracellular signaling (TLRS). Developed in 2023 Using Bio render	16
Figure 3	Principal attributes of chars generated by hydrothermal carbonization and pyrolysis	21
Figure 4	Production of hydrochar from waste biomass: methods for preparation and a variety of uses for the sustainable use of resources	23
Figure 5	Structures of (a) biochar and (b) hydrochar, used for DFT calculations	32
Figure 6	pHzpc of NGUKAC	37
Figure 7	X-ray diffraction patterns of biochar and hydrochar.	38
Figure 8	pH _{zpc} of biochar and hydrochar	39
Figure 9	Infrared spectra of biochar and hydrochar	41
Figure 10	SEM of (a) biochar and (b) hydrochar	43
Figure 11	Dose-response curves for biochar, hydrochar and ibuprofen in albumin denaturation-induced hemolysis.	44
Figure 12	Effect of different biochar, hydrochar and ibuprofen concentrations on heat-induced hemolysis	45
Figure 13	Structures of (a) biochar and (b) hydrochar showing optimized forms by molecular mechanics (left), after successful docking onto 1HD2 protein (middle) and showing their interactions with 1HD2 (right).	47
Figure 14	Correlational studies of binding energies with (a) E_{HOMO} , (b) E_{LUMO} and (c) energy gap (ΔE).	48
Figure 15	Effect of different biochar, hydrochar and ibuprofen concentrations on hypotonic-solution induced hemolysis	50
Figure 16	Calibration curve of ibuprofen in 10% vol. methanol (water: methanol volume is 9:1).	51
Figure 17	Ibuprofen structure	53

Figure 18	Ibuprofen adsorption mechanisms for (a) biochar and (b) hydrochar	55
Figure 19	Comparing experimental kinetic data with tested kinetic models for (a) biochar and (b) hydrochar.	58
Figure 20	Adsorbed ibuprofen molecule onto (a) biochar and (b) hydrochar	60

LIST OF TABLES

TABLES	LIST OF TABLES	PAGES
Table 1	Surface chemistry values of biochar and hydrochar	39
Table 2	Elemental compositions of biochar and hydrochar from EDX measurements	42
Table 3	Theoretical parameters of biochar, hydrochar and ibuprofen calculated at B3LYP using $6-31G(d)$ level	46
Table 4	Hypotonic solution induced hemolysis inhibition results	49
Table 5	Loading capacity and encapsulation efficiency values of biochar and hydrochar using 50 mg/L ibuprofen concentration	52
Table 6	Isotherm parameters for ibuprofen adsorption onto studied chars	54
Table 7	Ibuprofen adsorption kinetics on the examined chars	56
Table 8	Energy values for biochar and hydrochar at semi-empirical level	59

LIST OF ABBREVIATIONS

IBU	Ibuprofen
BC	Biochar
HC	Hydrochar
DFT	Density functional theoretical
R2	Coefficients of correlation
A _{IBU}	Concentration of untrapped ibuprofen.
T _{IBU}	Initial concentration of ibuprofen
Co	Initial Ibuprofen concentrations
Ce	Final Ibuprofen concentration
HRBC	Human red blood cell
ELUMO	Lowest unoccupied molecular orbital energy
ЕНОМО	Highest occupied molecular orbital energy
1HD2	Human Peroxiredoxin 5 protein
SEM	Scanning electron microscope
EDX	Energy dispersive X-ray analysis
pH _{zpc}	Zero-point charge pH
EA	Elemental analysis
TPD	Temperature programmed desorption
TPD XPS	Temperature programmed desorption X-ray photoelectron spectroscopy
XPS	X-ray photoelectron spectroscopy
XPS FTIR	X-ray photoelectron spectroscopy Fourier transformed infrared
XPS FTIR PAHs	X-ray photoelectron spectroscopy Fourier transformed infrared Polycyclic aromatic hydrocarbons
XPS FTIR PAHs MO	X-ray photoelectron spectroscopy Fourier transformed infrared Polycyclic aromatic hydrocarbons Determinant of moisture ash
XPS FTIR PAHs MO VM	X-ray photoelectron spectroscopy Fourier transformed infrared Polycyclic aromatic hydrocarbons Determinant of moisture ash Volatile matter
XPS FTIR PAHs MO VM FC	X-ray photoelectron spectroscopy Fourier transformed infrared Polycyclic aromatic hydrocarbons Determinant of moisture ash Volatile matter Fixed carbon
XPS FTIR PAHs MO VM FC CS	X-ray photoelectron spectroscopy Fourier transformed infrared Polycyclic aromatic hydrocarbons Determinant of moisture ash Volatile matter Fixed carbon Carboxymethyl chitosan
XPS FTIR PAHs MO VM FC CS TLR	X-ray photoelectron spectroscopy Fourier transformed infrared Polycyclic aromatic hydrocarbons Determinant of moisture ash Volatile matter Fixed carbon Carboxymethyl chitosan Toll-like receptor
XPS FTIR PAHs MO VM FC CS TLR CLRs	X-ray photoelectron spectroscopy Fourier transformed infrared Polycyclic aromatic hydrocarbons Determinant of moisture ash Volatile matter Fixed carbon Carboxymethyl chitosan Toll-like receptor C-type lecithin receptors
XPS FTIR PAHs MO VM FC CS TLR CLRs PRRs	X-ray photoelectron spectroscopy Fourier transformed infrared Polycyclic aromatic hydrocarbons Determinant of moisture ash Volatile matter Fixed carbon Carboxymethyl chitosan Toll-like receptor C-type lecithin receptors Pattern-recognizing receptors

ABSTRACT

The efficacy of ibuprofen in inflammation management depends on efficient delivery to the targeted site. Utilising a delivery agent would involve ibuprofen adsorption and release for improved delivery. This work studies the utilisation of Discorea bulbifera derived biochar and hydrochar for ibuprofen release. The biochar was prepared in a muffle furnace at 300 °C for 90 min and the hydrochar was prepared in a hydrothermal autoclave at 200 °C for an hr. Characterisation of the chars was performed using several techniques such as Brunauer-Emmett-Teller (BET) analysis, Fourier transform infrared spectroscopy (FTIR), powder X-ray diffraction (XRD), electron dispersive X-ray (EDX), and scanning electron microscopy (SEM). The following biochemical assays were carried out; Protein albumin denaturation assay, hypotonic solution induced hemolysis stabilizing assay, Heat induced hemolysis stabilizing assay. Ibuprofen equilibrium adsorption was performed at 180 min adsorption time, using concentrations (5-200 mg L^{-1}). The equilibrium of adsorption was evaluated using the Freundlich, Temkin, and Langmuir isotherm models. Non-linear Freundlich adsorption isotherm gave the best descriptions of ibuprofen adsorptions onto the studied chars. Freundlich adsorption capacities of biochar and hydrochar are 21.977 and 19.921 mg. g⁻¹, respectively. Egg albumin denaturation inhibition anti–inflammatory results show that biochar (≈ 85 %) performed better than hydrochar (≈ 70 %). Similar trend was observed at lower concentrations of the chars for heat induced hemolysis inhibition studies and as concentration increased, the trend changed such that hydrochar (≈ 38 %) performed better than biochar (≈ 17 %). Ibuprofen equilibrium adsorption performed using initial ibuprofen concentrations (5–200 mg L^{-1}) was established in 2 hours, for biochar and hydrochar, and the highest ibuprofen removals occurred at pH 4. Density functional theoretical calculations gave results which are in excellent agreements with adsorption studies. Both biochar and hydrochar showed good performance as long-term adsorbents for the removal of ibuprofen and results from *in vitro* and computational studies indicate they have great promise for ibuprofen delivery.

KEYWORDS: Ibuprofen, Hydrochar, Biochar, Density Functional Theoretical