ENSEMBLE MACHINE LEARNING APPROACH FOR IDENTIFYING THREATS IN SECURITY OPERATIONS CENTER

FEMI-OYEWOLE, FAVOUR OLASUNBO (17PCH01659) B.Sc Computer Science, Olabisi Onabanjo University, Ago-Iwoye M.Sc Computer Science, University of Nigeria, Nsukka, M.Sc Information Technology, University of Liverpool, United Kingdom

ENSEMBLE MACHINE LEARNING APPROACH FOR IDENTIFYING THREATS IN SECURITY OPERATIONS CENTER

BY

FEMI-OYEWOLE, FAVOUR OLASUNBO (17PCH01659) B.Sc Computer Science, Olabisi Onabanjo University, Ago-Iwoye M.Sc Computer Science, University of Nigeria, Nsukka, M.Sc Information Technology, University of Liverpool, United Kingdom

A THESIS SUBMITTED TO THE SCHOOL OF POSTGRADUATE STUDIES IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE AWARD OF DOCTOR OF PHILOSOPHY (Ph.D) DEGREE IN COMPUTER SCIENCE, DEPARTMENT OF COMPUTER AND INFORMATION SCIENCES, COLLEGE OF SCIENCE AND TECHNOLOGY, COVENANT UNIVERSITY, OTA, OGUN STATE, NIGERIA

AUGUST, 2024

ACCEPTANCE

This is to attest that this thesis is accepted in partial fulfilment of the requirements for the award of the degree of Doctor of Philosophy in Computer Science in the Department of Computer and Information Sciences, College of Science and Technology, Covenant University, Ota, Ogun State, Nigeria.

Miss Adefunke F. Oyinloye (Secretary, School of Postgraduate Studies)

Signature and Date

Prof. Akan B. Williams (Dean, School of Postgraduate Studies)

Signature and Date

DECLARATION

I, FEMI-OYEWOLE, FAVOUR OLASUNBO (17PCH01659), hereby declare that this research was carried out by me under the supervision of Prof. Victor C. Osamor of the Department of Computer and Information Sciences, Covenant University, Ota and Prof. Okunbor Daniel of the Department of Computer and Information Sciences, Covenant University, Ota. I attest that the thesis has not been presented either wholly or partly for the award of any degree elsewhere. All sources of data and scholarly information used in this thesis are duly acknowledged.

FEMI-OYEWOLE, FAVOUR OLASUNBO

Signature and Date

v

CERTIFICATION

This is to certify that the research work titled "ENSEMBLE MACHINE LEARNING APPROACH FOR IDENTIFYING THREATS IN SECURITY OPERATIONS CENTER" is an original research work carried out by FEMI-OYEWOLE, FAVOUR OLASUNBO (17PCH01659), in the Department of Computer and Information Sciences, Covenant University, Ota, Ogun State, Nigeria, under the supervision of Prof. Victor C. Osamor and Prof. Okunbor Daniel. We have examined and found the work acceptable for its contribution to knowledge and literary presentation.

Prof. Victor C. Osamor (Supervisor)

Prof. Okunbor Daniel (Co-Supervisor)

Prof. Olufunke Oladipupo (Head of Department)

Prof. Olusegun Folorunso (External Examiner)

Prof. Akan B. Williams (Dean, School of Post-Graduate Studies) Signature and Date

Signature and Date

Signature and Date

Signature and Date

Signature and Date

DEDICATION

This work is dedicated, firstly to Almighty God, the one in whom I move, live and have my being. Then, I dedicate this thesis to my family, whose unwavering support and encouragement have been instrumental in my academic journey. Their love and belief in my abilities have inspired me to pursue excellence in the field of Cyber Security. I am deeply grateful for their constant presence and sacrifices, which have made this achievement possible.

ACKNOWLEDGMENTS

I am humbly grateful to my heavenly Father, God, whose blessings, grace, and guidance have been the foundation of my academic journey. I acknowledge His unwavering presence, divine wisdom, and unconditional love, which have sustained me throughout the process. With deep gratitude, I recognize that every accomplishment and opportunity is a result of His divine favour. I offer my heartfelt thanks to my God for His constant support and blessings on this path of knowledge and growth.

I wish to express my deep sense of gratitude and thanks to the Chancellor and Chairman, Board of Regents, Covenant University, Dr. David O. Oyedepo, for the academic and spiritual platform created. I sincerely thank the Vice-Chancellor, Prof. Abiodun H. Adebayo, the Deputy Vice-Chancellor, Prof. Olujide A. Adekeye, and the management team of Covenant University for running the vision. My special appreciation goes to the Dean, School of Postgraduate Studies, Prof. Akan B. Williams, for his dedication to creating an enabling research environment and producing world-class researchers. I also applaud the Sub-Dean, School of Postgraduate Studies, Dr. Hezekiah Falola, for his steadfast counsel throughout my programme.

I express my heartfelt gratitude to the following individuals who have played significant roles in the completion of this project. I am sincerely thankful to Prof. Olufunke Oladipupo, the Head of the Department, and Dr. Itunuoluwa Isewon (The Postgraduate Coordinator), for their guidance and support throughout my research journey. My deepest appreciation goes to my esteemed supervisors, Prof. Victor Osamor and Prof. Daniel Okunbor, whose expertise, valuable insights, and continuous encouragement have been invaluable. Also, I acknowledge the members of the Intelligent System Cluster, for their contributions and fruitful discussions. Lastly, I extend my gratitude to all the senior faculty members in the Department of Computer and Information Sciences for their knowledge-sharing and assistance. Their collective efforts have greatly enriched my academic experience.

TABLE OF CONTENTS

CONTENTS	PAGES
COVER PAGE	i
TITLE PAGE	ii
ACCEPTANCE	iii
DECLARATION	iv
CERTIFICATION	V
DEDICATION	vi
ACKNOWLEDGMENTS	vii
LIST OF FIGURES	viii
LIST OF TABLES	xiv
LIST OF ABBREVIATIONS	xvi
ABSTRACT	xix

CHAPTER ONE: INTRODUCTION

1
4
6
6
7
8

9

CHAPTER TWO: LITERATURE REVIEW

2.1	Pream	eamble	
2.2 Concept of Security Operation Centers		10	
	2.2.1	Architecture of Security Operation Centers	18
	2.2.2	Guidelines and Standards for Implementing SOC	19
	2.2.3	Maturity Assessment and Security Audit in SOC	20
	2.2.4	Top Security Threats	21
	2.2.6	Challenges in Detecting Security Threats	33
	2.2.7	Performance Measures and Metrics in SOC:	36
	2.2.8	Responsibilities of Security Operation Centers	38
	2.2.9	Advantages of Security Operation Centers	39

	2.2.10	Existing Security Operation Centers Variations and Report	42
2.3	Advan	ced SOC Techniques and Strategies	51
	2.3.1	Benefits and Drawbacks of Intrusion Detection and Intrusion Prevention	
		Systems	52
	2.3.2	Security Information and Event Management in SOC	52
2.4	Applic	ations of Machine Learning in Cybersecurity	54
2.5	Impact	t of Artificial Intelligence in Security Operation Centers	55
2.6	Machi	ne Learning Approaches in Cyberattack Detection	58
	2.6.1	Artificial Neural Network for Cyberattack Detection	59
	2.6.2	Ensemble Model for Cyberattack Detection	60
	2.6.3	Support Vector for Cyberattack Detection	61
	2.6.4	Principal Component Analysis for Cyberattack Detection	63
2.7	Machi	Machine Learning Approaches in Intrusion Detection Systems	
	2.7.1.	Supervised ML for intrusion detection:	74
	2.7.2.	Unsupervised ML for intrusion detection:	79
	2.7.3	DL based intrusion detection system:	81
	2.7.4.	Ensemble based intrusion detection system:	89
2.8	Relate	d Works	91
	2.8.1	Gaps Identified in Literature	98
	2.8.2	Bridging the Identified Gaps	99
CHA	PTER 1	THREE: METHODOLOGY	101
3.1	Pream	ble	101
3.2	Metho	dology Workflow	101
3.3	Propos	sed Framework	103
	3.3.1	Dataset Collection	105
	3.3.2	Data Preprocessing	108
	3.3.3	Feature Selection	110
	3.3.5	Designing the Machine Learning Model	111

	3.3.6	Hyperparameter Tuning	117
	3.3.7	Proposed Ensemble Model	119
3.4	Model	Evaluation Metrics	121

3.5Exploratory Data Analysis121

3.6	Design of the IDS Application Programming Interface for Intelligent Security		
	Inform	nation within SOC	130
	3.6.1	ntegrating the Proposed Model into the Application Programming Interface	e 131
	3.6.2	Capturing the Network Traffic for Real-Time Threat Monitoring	133
	3.6.3	Design of the Front-End Interface	134
	3.6.4	Integrating the Application Programming Interface Server with the Securi	ty
		Operations Center	136
	3.6.5	Connecting to the Application Programming Interface Server	137
	3.6.6	Anaconda on Ubuntu Virtual Environment	138
	3.6.7	Creating a Conda Environment to Install the Dependencies	139
	3.6.8	Installing Dependencies for the Application Programming Interface	139
3.7	Imple	mentation of Real-Time Threat Monitoring and System Evaluation	140
3.8	Evalu	ating the Proposed Intrusion Detection Model with Real-World Network	
	Traffi	e Data	142
СНА	PTER I	FOUR: RESULTS AND DISCUSSION	149
4.1	Pream	ble	149
4.2	Result	of the Ensemble Model	149
	4.2.1	Result of Different Ensembles	152
	4.2.4	Result of the Ensemble Model Based on LSTM, HMM and XGBoost	
		on the Generated Dataset	157
	4.2.5	Result of the Ensemble Model Based on LSTM, Random Forest and	
		XGBoost on the Generated Dataset	158
4.3	Enviro	onmental Setup of the Testing and Evaluation in Controlled and Real-World	1
	Enviro	onments	160
	4.3.1	Results of System Effectiveness for Mean Time to Detect (MTTD)	
		and Mean Time to Respond (MTTR)	162
4.4	Resea	rch Challenges and Threats to Developed Model Validity	167
СНА	PTER I	FIVE: SUMMARY, CONCLUSION AND RECOMMENDATIONS	170
5.1	Summ	ary	170
5.3	Contri	bution to Knowledge	172
REFI	ERENC	Ε	173
APPI	ENDEX	Α	191

APPENDIX B

LIST OF FIGURES

FIGURES	TITLE OF FIGURES	PAGES
2.1:	SOC Architecture	11
2. 2:	Roles of Personnel in SOC Architecture	13
2. 3:	Procedures in SOC Architecture	14
2. 4:	SOC Incident Response	15
2. 5:	Restricted Boltzmann Machine	66
2. 6:	Restricted Boltzmann Machine	67
2. 7:	DBN within a Real-World Organization SOC	69
2. 8:	General CNN Architecture	70
2. 9:	Three Step Process to Create an Intrusion Detection using a CNN	71
2. 10:	RNN Model Architecture	72
2. 11:	RNN, DNN & Logistic Regression Ensemble Model	72
3. 1:	Proposed Methodology Workflow	102
3. 2:	Structure of the Proposed Model	105
3. 3:	Attack Stages in the Cybersecurity Kill Chain	115
3. 4:	Overview of the Raw Dataset	122
3. 5:	Summary of the Dataset	123
3. 6:	Range and Distribution of the Dataset	124
3. 7:	Overview of the Null Values in the Dataset	124
3. 8:	Column with Infinity Value	125
3. 9:	Numerical Columns	125
3. 10:	Class Distribution of the Raw Dataset	126
3. 11:	Feature Importance Plot	127
3. 12:	Histogram of the Selected Features	128
3. 13:	Correlation Matrix of the Selected Features	129
3. 14:	API Root Folder	131
3. 15:	API Endpoints	133
3. 16:	Capturing Network Traffic	134
3. 17:	HTML Template Folder	134
3. 18:	Implementation of the Home Page Interface	135
3. 19:	Implementation of the Intelligent Threat Monitoring Interface	136

3. 20:	API Server with the Security Operations Center	137
3. 21:	Connecting to the API Server Via SSH	138
3. 22:	Conda Environment	139
3. 23:	Dependencies for the Trained Models and the API	140
3. 24:	Network Capturing	143
3. 25:	Converting PCAP File to CSV	143
3. 26:	Evaluating Brute Force Attack Based on TTD and MTTD	144
3. 27:	MTTD Calculation for Five Consecutive TTD Values	145
3. 28:	Custom Mean Function	145
3. 29:	Firewall Deny Rule	146
3.30:	Brute Force IP Detection Based on MTTR Calculation	146
3.31:	Firewall Deny Rule and Calculating TTR	147
3. 32:	MTTR Calculation for Consecutive Five TTR values	148
4.1:	Confusion Matrix of the Stacking Blending Ensemble Model	150
4. 2:	Confusion Matrix of the Simple Average Ensemble of LSTM and XGBoost	
	on the Thursday-WorkingHours-Morning-WebAttacks Dataset	152
4. 3:	Confusion Matrix of Feeding the LSTM Predictions to XGBoost Ensemble	153
4.4:	AUC-ROC Score of the Proposed Model	156
4. 5:	Cross-Validation of the Proposed Model	157
4. 6:	The Linux Attacker PC	161
4. 7:	Conducting Brute Force Attack	161
4. 8:	Real-Time Detection for Brute Force Attacks	162
4. 9:	A TTD Value Captured from the Frontend	163
4. 10:	A TTD Value Captured from the Frontend	163
4.11:	A TTD Value Captured within the Backend Console	164
4. 12:	MTTD Calculation from the Frontend	164
4. 13:	A TTR Value Captured in the Frontend	165
4. 14:	A TTD Value Captured within the Backend Console	165
4. 15:	MTTR Calculation from the Frontend	166
4. 16:	Reputation Check for Blocked IP (113.21.232.39)	166

LIST OF TABLES

TABLES	S TITLE OF TABLES	PAGES
2. 1:	Multiple Personnel Roles in SOC Architecture	13
2. 2:	Standards of SOC Domain	20
2. 3:	Logs and Information Categories	48
2. 4:	Basic features of individual TCP connections	49
2. 5:	Content Features within a Connection Suggested by Domain Knowledge	50
2. 6:	Traffic Features Computed using a Two-Second Time Window	50
2. 7:	Performance of XGBoost and Other ML Models for the NSL KDD Dataset	65
2. 8:	AUC And S.D For DBN & Other ML Models Against Symantec's Internal	
	Security Logs Data	68
2. 9:	Survey Results of Machine Learning Models for Cyber Threat Detection	73
2. 10:	Supervised ML based IDS.	78
2. 11:	Unsupervised ML based IDS	81
2. 12:	Supervised DL based IDS.	84
2. 13:	Unsupervised DL based IDS	87
2. 14:	Comparison of Ensemble based IDS	90
3. 1:	Objectives and Methodology Mapping	103
3. 2:	Dataset Information	106
3. 3:	Dataset Description	107
4. 1:	Classification Report of the Stacking Blending Model on the Thursday-	
	WorkingHours-Morning-WebAttacks Dataset	150
4. 2:	Classification Report of the Simple Average Ensemble Model on the	
	Thursday-WorkingHours-Morning-WebAttacks Dataset	152
4. 3:	Classification Report of the Feeding the LSTM Predictions to XGBoost	
	Ensemble on the Thursday-WorkingHours-Morning-WebAttacks Dataset	153
4. 4:	Classification Report of the Ensemble Model Based in LSTM, Random	
	Forest and XGBoost for the Binary Classification on the Balanced Thursday	у
	Morning Dataset	154
4. 5:	Classification Report of the Ensemble Model Based in LSTM, Random Fore	st
	and XGBoost for the Binary Classification on the Balanced Thursday Morni	ng
	Dataset	155

4. 6: Classification Report of the Developed Ensemble Model Based on LSTM,		
	HMM and XGBoost on the Generated Dataset	158
4. 7:	Classification Report of the Proposed Ensemble Model Based on LSTM,	
	Random Forest and XGBoost on the Generated Dataset	159
4. 8:	Benchmarking of the Proposed Model with Existing Models	160

LIST OF ABBREVIATIONS

AdaBoost	Adaptive Boosting
APTs	Advanced Persistent Threats
API	Application Programming Interface
AUC	Area Under the Curve
AI	Artificial Intelligence
ANN	Artificial Neural Network
BPTT	Backpropagation through Time
BYOD	Bring Your Own Device
CPAs	Certified Public Accountants
CIO	Chief Information Officer
CISO	Chief Information Security Officer
CASB	Cloud Access Security Brokers
CSPM	Cloud Security Posture Management
CWPP	Cloud Workload Protection Platform
CSIRT	Computer Security Incident Response Team
CIA	Confidentiality, Integrity and Availability
CDN	Content Delivery Network
CNNs	Convolutional Neural Networks
CSRF	Cross Site Request Forgery
XSS	Cross Site Scripting
CDC	Cyber Defence Centers
CFC	Cyber Fusion Centers
CSIRT	Cyber Security Incident Response Teams
CSOC	Cyber Security Operation Centers
CICIDS2017	Cybersecurity Intrusion Detection System 2017
CRMRP	Cybersecurity Risk Management Reporting Framework
DLP	Data Leakage Monitoring
DNNs	Deep Neural Networks
DoS	Denial of Service
IDS	Intrusion Detection Systems
DDoS	Distributed Denial of Service
DGAs	Domain Generation Algorithms
	$m{arphi}$

DNS	Domain Name System
DHCP	Dynamic Host Configuration Protocol
EDR	Endpoint Detection and Response
EM	Expectation-Maximization
XGBoost	Extreme Gradient Boosting
FN	False Negatives
FP	False Positives
GDPR	General Data Protection Regulation
HMM	Hidden Markov Models
IOCs	Indicators of Compromise
ICMP	Internet Control Message Protocol
IQR	Interquartile Range
IPS	Intrusion Prevention Systems
JOC	Joint Operations Centers
k-NN	k-Nearest Neighbours
KPIs	Key Performance Indicators
LLMs	Large Language Models
LR	Logistic Regression
LSTM	Long Short-Term Memory
ML	Machine Learning
MSSP	Managed Security Service Provider
MDI	Mean Decrease Impurity
MTTD	Mean Time to Detect
MTTR	Mean Time to Recover
NLP	Natural Language Processing
OSINT	Open-Source Intelligence
PCI DSS	Payment Card Industry Data Security Standard
PMCs	Protective Management Controls
QP	Quadratic Programming
RNNs	Recurrent Neural Networks
Rsh	Remote Shell
SEL	Security Event Logs
SEM	Security Event Management
SIEM	Security Information and Event Management

SIM	Security Information Management
SMBs	Small and Medium-Sized Businesses
SMOTE	Synthetic Minority Over-sampling Technique
SOC	System and Organization Controls
SOCs	Security Operations Centers
SOAR	Security Orchestration, Automation and Response
SFM	Select from Model
SQL	Structured Query Language
SVM	Support Vector Machine
ТСР	Transmission Control Protocol
TIPs	Threat Intelligence Platforms
TN	True Negatives
ТР	True Positives
UEBA	User Entity Behaviour Analytics
WAFs	Web Application Firewalls

ABSTRACT

Cyberattacks can be prevented by identifying threats before they cause damage, requiring robust cybersecurity measures. However, recent years have seen an increase in cyber threats and data breaches, often exploiting infrastructure weaknesses. These attacks lead to significant financial losses and compromised personal information, necessitating proactive defence strategies. Traditionally, detecting threats involves laborious log analysis, but machine learning can automate this process in intrusion detection systems (IDS). This study aims to implement a blended ensemble approach for cyberattack detection in security operation centers, combining predictions from base classifiers like Random Forest, XGBoost, HMM, and LSTM, Feature selection was performed by aggregating importance scores from these classifiers, with selected features used to improve the model's performance. A web application interface was developed using the Python Flask framework. The integration of trained models into the application programming interface (API) facilitated model training and dependency management. The testing and evaluation were performed on both real production network traffic flows and the testing set of the CICIDS2017 Thursday-WorkingHours-Morning.pcap ISCX.csv dataset, as well as the generated real-time network traffic dataset. Real web attacks were intentionally executed on the server where the API/Intrusion Detection System was implemented, and these unlabelled attack network flows were accurately labelled by the IDS. To implement the ensemble model, the "Thursday-WorkingHours-Morning-WebAttacks.pcap ISCX.csv" was extracted from the renowned CICIDS2017 Thursday Morning Hours Dataset was utilized to train the model. To enhance the diversity of network traffic patterns and potential security incidents, real-time network traffic was generated using Sqlite, Zenmap Nmap, ID2T, and Python. The generated real-time network traffic was also used to train the model to detect unseen attacks. The proposed model performed well on the balanced Thursday Morning Dataset. With precision, recall, and F1-score all at 0.99, the model achieved an overall accuracy of 99% across the binary classification task, highlighting its robustness and effectiveness in handling real-time malicious traffic. These findings validate the model's ability to detect real-time network traffic patterns, particularly in the context of potential security incidents. The proposed model demonstrated high performance on the generated dataset, achieving a precision of 1.00 for detecting malicious threats, thereby correctly identifying all instances without false positives. The recall of 1.00 further underscored its capability to detect all actual instances of malicious activity. An F1-score of 1.00 for legitimate traffic reflected the model's balanced precision and recall, ensuring reliable classification across categories. Additionally, the cross-validation results exhibited consistently high accuracy, with an average accuracy of approximately 0.999 across five folds. This outcome confirms the model's robustness and generalizability across various data subsets, highlighting its potential for reliable real-time threat detection and enhanced cybersecurity in practical applications.

Keywords: Cyberattack, Cybersecurity, Ensemble Model, Machine Learning