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ABSTRACT 

Cyberattacks can be prevented by identifying threats before they cause damage, requiring 
robust cybersecurity measures. However, recent years have seen an increase in cyber threats 
and data breaches, often exploiting infrastructure weaknesses. These attacks lead to significant 
financial losses and compromised personal information, necessitating proactive defence 
strategies. Traditionally, detecting threats involves laborious log analysis, but machine learning 
can automate this process in intrusion detection systems (IDS). This study aims to implement 
a blended ensemble approach for cyberattack detection in security operation centers, 
combining predictions from base classifiers like Random Forest, XGBoost, HMM, and LSTM, 
Feature selection was performed by aggregating importance scores from these classifiers, with 
selected features used to improve the model's performance. A web application interface was 
developed using the Python Flask framework. The integration of trained models into the 
application programming interface (API) facilitated model training and dependency 
management. The testing and evaluation were performed on both real production network 
traffic flows and the testing set of the CICIDS2017 Thursday-WorkingHours-
Morning.pcap_ISCX.csv dataset, as well as the generated real-time network traffic dataset. 
Real web attacks were intentionally executed on the server where the API/Intrusion Detection 
System was implemented, and these unlabelled attack network flows were accurately labelled 
by the IDS. To implement the ensemble model, the "Thursday-WorkingHours-Morning-
WebAttacks.pcap_ISCX.csv" was extracted from the renowned CICIDS2017 Thursday 
Morning Hours Dataset was utilized to train the model. To enhance the diversity of network 
traffic patterns and potential security incidents, real-time network traffic was generated using 
Sqlite, Zenmap Nmap, ID2T, and Python. The generated real-time network traffic was also 
used to train the model to detect unseen attacks. The proposed model performed well on the 
balanced Thursday Morning Dataset. With precision, recall, and F1-score all at 0.99, the model 
achieved an overall accuracy of 99% across the binary classification task, highlighting its 
robustness and effectiveness in handling real-time malicious traffic. These findings validate 
the model's ability to detect real-time network traffic patterns, particularly in the context of 
potential security incidents. The proposed model demonstrated high performance on the 
generated dataset, achieving a precision of 1.00 for detecting malicious threats, thereby 
correctly identifying all instances without false positives. The recall of 1.00 further underscored 
its capability to detect all actual instances of malicious activity. An F1-score of 1.00 for 
legitimate traffic reflected the model's balanced precision and recall, ensuring reliable 
classification across categories. Additionally, the cross-validation results exhibited consistently 
high accuracy, with an average accuracy of approximately 0.999 across five folds. This 
outcome confirms the model's robustness and generalizability across various data subsets, 
highlighting its potential for reliable real-time threat detection and enhanced cybersecurity in 
practical applications.  
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