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ABSTRACT 

Prostate cancer (PCa) is estimated to cause over 375,000 deaths and nearly 1.4 million new 

cases globally. Several factors contribute to PCa heterogeneity, consequently, the stage of the 

disease decides the strategy employed in  combating the disease.  The problem of missing data 

frequently plagues clinical research. The primary treatment outcomes in the TCGA prostate 

cancer phenotypic dataset had 120 (19.26%) missing values.  Treatment strategies could be 

negatively impacted by limited care giver experience, “trial and error” approaches to treatment, 

and the genetic makeup of an individual.  To the best of our knowledge, using Machine 

Learning (ML) to forecast treatment response among PCa patients had not been investigated.  

The aim of this study is to develop a classifier (that acts as a decision support system) from 

multi-omics datasets for predicting treatment response in PCa patients. RNAseq, miRNAseq, 

reverse phase protein array (RPPA), copy number variation (CNV) were used in the study. 

This study employed R programming to preprocess the data. Differential expression analysis 

for the RNAseq and miRNAseq conducted using the DESeq2 library. Python programming 

was used to implement the ML algorithms which include XGBoost, Adaboost, multilayer 

perceptron, decision tree, logistic regression, support vector machine, gradient boosting 

classifier,  Random forests, naive bayes, and K -nearest neighbors. The performance metrics 

used include macro f1 score, macro recall, macro precision, weighted f1 score, weighted recall, 

weighted precision, specificity, sensitivity, accuracy, and area under the receiver operator 

curve.  It was discovered that tree-based models were better for the task than probability and 

kernel-based models. This study computationally demonstrated that muti-omics strategies are 

generally superior to single-omics strategies, but  the adoption of such strategy isn’t a foolproof 

solution. A classifier capable of predicting treatment outcomes amongst PCa patients was built 

and the predicted labels for patients with missing phenotypic values in the TCGA dataset was 

provided. 

 

Keywords:  Prostate cancer, Precision  Oncology,   Multi-omics, Machine Learning 

Treatment response.


