GENAPP: A WEB APPLICATION FOR PREDICTING PLASMODIUM FALCIPARUM RESISTANCE TO SELECTED ANTIMALARIA DRUGS

AKINWALE, MERCY OJOCHENWUMI (22PBF02392) B.Sc Physiology, University of Ibadan, Ibadan

AUGUST, 2024

GENAPP: A WEB APPLICATION FOR PREDICTING PLASMODIUM FALCIPARUM RESISTANCE TO SELECTED ANTIMALARIA DRUGS

BY

AKINWALE, MERCY OJOCHENWUMI (22PBF02392) B.Sc Physiology, University of Ibadan, Ibadan

A DISSERTATION SUBMITTED TO THE SCHOOL OF POSTGRADUATE STUDIES IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE AWARD OF THE MASTER OF SCIENCE (M.Sc) DEGREE IN BIOINFORMATICS IN THE DEPARTMENT OF COMPUTER AND INFORMATION SCIENCES, COLLEGE OF SCIENCE AND TECHNOLOGY, COVENANT UNIVERSITY, OTA, OGUN STATE, NIGERIA

AUGUST, 2024

ACCEPTANCE

This is to attest that this dissertation is accepted in partial fulfilment of the requirements for the award of the degree of Master of Sciences in Bioinformatics in the Department of Computer and Information Sciences, College of Science and Technology, Covenant University, Ota, Nigeria.

Miss Adefunke F. Oyinloye (Secretary, School of Postgraduate Studies)

Signature and Date

Prof. Akan B. Williams (Dean, School of Postgraduate Studies)

Signature and Date

DECLARATION

I, AKINWALE MERCY OJOCHENWUMI (22PBF02392), declare conducted this research entitled "GENAPP: A WEB APPLICATION FOR PREDICTING *PLASMODIUM FACLIPARUM* RESISTANCE TO SELECTED ANTIMALARIA

DRUGS". It was carried out under the supervision of Prof. Jelili O. Oyelade. Concepts of this research project are the results of the research carried out by Akinwale Mercy Ojochenwumi, and other researchers' ideas have been fully recognized.

AKINWALE, MERCY OJOCHENWUMI

Signature and Date

DEDICATION

I dedicate this project to God Almighty for His grace, wisdom and knowledge given to me throughout my Master's Degree Programme. Also, I thank my family and friends for their unending love and support.

CERTIFICATION

This is to certify that this dissertation titled "A WEB APPLICATION FOR PREDICTING PLASMODIUM FACLIPARUM RESISTANCE TO SELECTED ANTIMALARIA DRUGS" is original research carried out by AKINWALE, MERCY OJOCHENWUMI (2PBF02392) in the Department of Computer and Information Sciences, College of Science and Technology, Covenant University, Ota, Ogun State, Nigeria under the supervision of Prof. Jelili O. Oyelade. We have examined and found this work acceptable as part of the requirements for the award of Master of Science (M.Sc.) in Computer Science.

Prof. Jelili O. Oyelade (Supervisor)

Signature and Date

Prof. Olufunke Oladipupo (Head of Department)

Prof. Zacchaeus O. Omogbadegun (External Examiner)

Prof. Akan B. Williams (Dean, School of Postgraduate Studies) **Signature and Date**

Signature and Date

Signature and Date

ACKNOWLEDGEMENTS

I give all thanks to the almighty God for the supply of grace, strength, wisdom and helps through different stages of the project. I want to express my heartfelt gratitude to my supervisor Prof. Jelili O. Oyelade, my research supervisor, for his guidance and support through the project, thank you for being a father. Thank you to the PG coordinator Dr. Itunuola Isewon for your selfless commitment in giving invaluable guidance during the research, grateful for the investment of your time, resource and every input you had in this project. I thank the management of Covenant University, Capic-ACE for the funding and support for this work. A profound thank you to the HOD, Professor Oladipupo Grace and other faculty of computer and information Science department for their academic supports and contributions.

I am incredibly grateful to my lovely husband – Mr Zacchaeus Akinwale for his love, understanding, unwavering support, prayers and the sacrifices he had to make through the course of my studies. I deeply appreciate my parents Pastor and Pastor Mrs Akowe and my siblings-Salem Akowe and Prince Akowe for their love, prayers, support and encouragements through this journey. Thank you to my father, mother, sisters and brothers In-laws for their support and understanding through this phase of my life.

Finally, I want to extend my gratitude to my friends, Racheal O, Chidimma Moghalu, senior colleagues Dr Emmanuel Jerry Dauda and Toba Emmanuel, and co-research assistants -Ashuza Kuderha Rifin, Onyemeachi Promise, Ndifon Naomi for their support and helps at different stages of the project. I am deeply grateful for the collective contributions of everyone who has helped me complete this research work, whether directly or indirectly. God bless you all.

TABLE OF CONTENTS

CONTENTS

PAGES

6

TITLE PAGE	i
COVER PAGE	ii
ACCEPTANCE	iii
DECLARATION	iv
DEDICATION	V
CERTIFICATION	vi
ACKNOWLEDGEMENT	vii
TABLE OF CONTENT	viii
LIST OF FIGURES	xi
LIST OF TABLES	xii
LIST OF ABBREVIATIONS	xiii
ABSTRACT	xiv

CHAPTER ONE		
Background Of Study	1	
Statement of Research Problem	3	
Aim and Objectives of the Study	4	
Research Methodology	4	
Significance of the Study	5	
Scope of the study	5	
Contribution to Knowledge.	6	
Organization of the dissertation	6	
	TER ONE Background Of Study Statement of Research Problem Aim and Objectives of the Study Research Methodology Significance of the Study Scope of the study Contribution to Knowledge. Organization of the dissertation	

CHAPTER TWO

2.1	Introduction	7
2.2 Antimalaria Drugs and development of drug resistance		
2.3	Parasite lifecycle	8
2.3.	1 The liver stage	9
2.3.	2 Erythrocytic (Blood) stage	9
2.3.	3 Mosquito Sexual Stage	10
2.3.	4 Plasmodium Drug Resistance	10
2.4	Antimalaria Drugs and their Mechanisms of Action	11
2.5 Antimalaria drug Resistance Mechanism in <i>P.falciparum</i> 20		
2.6 Artemisinin-based combination therapies drugs		
2.7	Genomic Approaches to Drug Resistance in Malaria	22
2.7.	1 Genome-wide association studies (GWAS)	23

2.7	7.2 Genetic crosses and linkage analyse	s 23
2.7	7.3 In vitro drug selection and whole-ge	mome sequencing 23
2.8	Machine learning	24
2.8	8.1 Ensemble learning algorithms	25
2.8	3.2 Random Forest	25
2.8	3.3 Gradient Boost	25
2.8	3.4 Deep Learning	26
2.8	8.5 Support Vector Machine (SVM)	26
2.9	Related Works	27
CHAP'	TER THREE	30
3.1	Introduction	30
3.2	Work Flow	30
3.3	Data	31
3.3	B.1 Data Pre-processing	31
3.3	B.2Quality control and Assessment	31
3.3	3.3 SNIPPY: Variant calling	32
3.3	3.4 Genome Assembly	32
3.4	Data Encoding and class label curation	33
3.5	Model Selection	34
3.6	Methods	34
3.6	Ensemble Machine Learning Metho	ds 34
3.6	5.2 Bagging Approach	35
3.6	5.3 Boosting Approach	35
3.6	6.4 Random Forest Models	36
3.6	6.5 Gradient Boosting Machine	37
3.7	Support vector machine (SVM)	38
3.8	Cross-Validation	38
3.9	Variable Importance	39
3.10	Performance Evaluation	39
3.11	Deployment of the classifiers on a Web App	lication 40
3.12	Conclusion	41
CHAP	TER FOUR	41

4.1	Data Exploration and Preprocessing	41
4.2	Quality Control Results	43

4.3	4.3.1. Chloroquine Resistance		46
4.3	3.2.	Halofantrine Resistance	47
4.3	3.3.	Dihydroartemisin Resistance	48
4.3	3.4.	Lumefantrine Resistance	49
4.3.5.		Quinine Resistance	49
4.3	8.6.	Piperaquine (PIQ)	50
4.4.	Vai	iable Importance	51
4.4	4.1.	Important Features for Chloroquine Resistance	51
4.4	1.2.	Important Features for DihydroArtemisinin (DHA) Resistance	52
4.3	3.2.	Important Features for Lumefantrine Resistance	53
4.3	3.3.	Important Features for Halofantrine Resistance	53
4.2	2.4	Important Features for Quinine Resistance	61
4.2	2.5	Important Features for Piperaquine Resistance	62
4.3	We	b Application deployment	63
4.4	Ber	nchmarking of GenApp best performing Algorithm with existing works	64
СНАР	TER	FIVE	66
5.1.	Su	nmary	66
5.2.	2. Conclusion		67

5.3.	Contribution to Knowledge	66
5.4.	Limitation of study	67
5.5.	Recommendation	67

REFERENCES

68

LIST OF FIGURES

FIGURES	TITLE OF FIGURE	PAGES
Figure 2. 1: The life cy	cle of malaria and available treatment	8
Figure 2. 2: Antimalari	a resistance mechanism of P.falciparum	to some antimalaria drug
		21
Figure 2. 3: Deep learn	ing architecture	26
Figure 3. 1: Workflow	diagram	30
Figure 3. 2:Illustration	of (A)Bagging and (B) Boosting ensem	ble algorithms 36
Figure 3. 3: Schematic	diagram of a Random Forest Algorithm	n 37
Figure 4. 2: Bar plots of	of Phenotype expressions of the selected	l drugs 42
Figure 4. 3: Base sequ	ence quality report visualization before	trimming and cleanup43
Figure 4. 4 Base seque	ence quality report visualization before	trimming and cleanup44
Figure 4. 5: Base sequ	ence quality report visualization before	trimming and cleanup45
Figure 4. 6 Mean squa	re quality	46
Figure 4. 7: Performan	ce of the selected algorithm on Plasmod	ium falciparum resistance
to Chloroquine	C	50 Figure
4. 8: Performance of	the selected algorithm on Plasmodium	falciparum resistance to
Halofantrine.	8	50
Figure 4. 9: Bar chats	of performance metrics scores of models	s 51
Figure 4. 10: Perform	nance of the selected algorithm on	Plasmodium falciparum
resistance to Lumefran	tine	52
Figure 4. 11: Perform	nance of the selected algorithm on	Plasmodium falciparum
resistance to Quinine		53
Figure 4. 12: Perform	nance of the selected algorithm on	Plasmodium falciparum
resistance to Piperaqui	ne	54
Figure 4. 13: Identified	l coding gene regions on Chromosome	4 65
Figure 4. 14: Novel ge	ne identified with yet unknown function	n on Chromosome 11 65
Figure 4. 15: Novel ge	ne identified with yet unknown functior	n on Chromosome 11 65
Figure 4. 16: Identified	l genes with unknown function Associat	ted with resistance 63
Figure 4. 17: Frontend	view of GenApp	67

LIST OF TABLES

TABLES	TITLE OF TABLE	PAGES
Table 2. 1: antimalar	ial drugs used as monotherapy	14
Table 2. 2: artemisin	in-based combination treatments (acts)	22
Table 3. 1:organism	information	32
Table 3. 2: resistance	e threshold used for conversion of continuou	us to binary resistance
phenotype		35
Table 3. 3:selected pa	39	
Table 4. 1: summary	table of identified novel genes driving antim	alaria drugs resistance
56		Table
4. 2: summary table	of benchmarked results	68

ABBREVIATIONS

ABBREVIATION

MEANING

ACT	Artemisinin-based Combination Therapy
AMR	Antimalaria Resistance
CNV	Copy-Number Variation
CQ	Chloroquine
DHA	Dihydroartemisinin
LUM	Lumefantrine
PIQ	Piperaquine
HLF	Halofantrine
IC50	50% Inhibitory Concentration
GWAS	Genome- Wide Association Study
ENA	European Nucleotides Archive
DNA	Deoxyribonucleic Acid
ML	Machine Learning
NCBI	National Center for Biotechnology
	Information
EMBL-EBI	European Molecular Biology
	Laboratory-
	European Bioinformatics Institute
PFCRT	Plasmodium falciparum Chloroquine
	Resistance
WHO	World Health Organization
PFK13	Plasmodium falciparum K13-propeller
	domain.

ABSTRACT

Antimalarial drug resistance poses a significant challenge to global malaria control efforts, particularly in regions burdened by Plasmodium falciparum, the deadliest malaria parasite. The development and spread of resistance to widely used antimalarial drugs, such as chloroquine, Lumefantrine, Halofantrine, Quinine, Piperaquine and Dihydroartemisinin, have greatly impacted treatment efficacy and disease outcomes. This resistance is driven by various genetic mutations in *P. falciparum*, which confer the ability to survive drug exposure. This study explores the prediction of antimalarial drug resistance using machine learning algorithms Random Forest, Gradient Boosting Machine (GBM), and Support Vector Machine (SVM). Focusing on six key antimalarial drugs Chloroquine, Dihydroartemisinin, Lumefantrine, Quinine, Halofantrine, and Piperaquine the research aims to identify genetic markers that contribute to resistance and develop predictive models to enhance treatment strategies. To avoid model overfitting, 5-fold cross-validation was conducted on the training set to choose the optimal hyperparameter values. Regardless of the resistance mechanism, whether acquired resistance or point mutations in the chromosome, the accuracy (mean crossvalidation score) of Random Forest had an average of 83% across all drugs. The model significantly classified the resistant isolates from the sensitive isolates of the parasite and could be used as potential tools in antimalarial resistance surveillance and clinical studies. A number of genes associated with antimalaria drug resistance were identified. Novel genes and loci were also discovered, of interest are genes on chromosomes 1, 4, 7, 8, 9, 10, 11, 17 and 19.

Keywords: Machine learning, Antimalarial drug resistance, Plasmodium falciparum, genomic studies, phenotype prediction, malaria eradication