A NOVEL ALGORITHM FOR IMPROVED TRACTABILITY AND EXPLAINABILITY OF INFERENCES ON HIGH-DIMENSIONAL DATA USING CONDITIONED ATTENTION MECHANISM

ASHUZA KUDERHA RIFIN (22PCG02636) B.Sc Computer Science, Université Catholique de Bukavu, Bukavu, DR Congo

AUGUST, 2024

A NOVEL ALGORITHM FOR IMPROVED TRACTABILITY AND EXPLAINABILITY OF INFERENCES ON HIGH-DIMENSIONAL DATA USING CONDITIONED ATTENTION MECHANISM

BY

ASHUZA KUDERHA RIFIN (22PCG02636) B.Sc. Computer Science, Université Catholique de Bukavu, Bukavu, DR Congo

A DISSERTATION SUBMITTED TO THE SCHOOL OF POSTGRADUATE STUDIES IN PARTIAL FULFILMENT OF THE REQUIREMENT FOR THE AWARD OF MASTER OF SCIENCE (M.Sc.) DEGREE IN COMPUTER SCIENCE IN THE DEPARTMENT OF COMPUTER AND INFORMATION SCIENCES, COVENANT UNIVERSITY, OTA, OGUN STATE

AUGUST, 2024

ACCEPTANCE

This is to attest that this dissertation is accepted in partial fulfillment of the requirements for the award of the degree of Master of Science in Computer Science in the Department of Computer and Information Sciences, College of Science and Technology, Covenant University, Ota, Ogun State, Nigeria.

Miss Adefunke F. Oyinloye (Secretary, School of Postgraduate Studies)

Signature and Date

Prof. Akan B. Williams (Dean, School of Postgraduate Studies)

Signature and Date

DECLARATION

I, ASHUZA KUDERHA Rifin (22PCG02636) declare that the research entitled "A NOVEL ALGORITHM FOR IMPROVED TRACTABILITY AND EXPLAINABILITY OF INFERENCES ON HIGH-DIMENSIONAL DATA USING CONDITIONED ATTENTION MECHANISM" was carried out by me under the supervision of Dr. Iheanetu Olamma of the Department of Computer and Information Sciences, Covenant University, Ota, Nigeria. I attest that this dissertation has not been submitted either wholly or partially for the award of any degree elsewhere. All data and scholarly information used in this dissertation are duly acknowledged.

ASHUZA KUDERHA Rifin

Signature and Date

CERTIFICATION

This is to certify that this dissertation titled "A NOVEL ALGORITHM FOR IMPROVED TRACTABILITY AND EXPLAINABILITY OF INFERENCES ON HIGH-DIMENSIONAL DATA USING CONDITIONED ATTENTION MECHANISM" is original research carried out by ASHUZA KUDERHA Rifin (22PCG02636) in the Department of Computer and Information Sciences, College of Science and Technology, Covenant University, Ota, Ogun State, Nigeria under the supervision of Dr. Iheanetu Olamma. We have examined and founded this work acceptable as part of the requirements for the award of Master of Science (M.Sc.) in Computer Science.

Dr. Iheanetu Olamma (Supervisor)

Prof. Olufunke Oladipupo (Head of Department)

Prof. Afolashade O. Kuyoro (External Examiner)

Prof. Akan B. Williams (Dean, School of Postgraduate Studies) **Signature and Date**

Signature and Date

Signature and Date

Signature and Date

DEDICATION

I dedicate this work to all the healthcare workers who dedicated their lives to save the lives others. May this work help to measure their contributions.

ACKNOWLEDGEMENTS

I would like to express my gratitude to God who made this journey in Nigeria possible. To my family, I say thank you for the support.

To all my lectures, I say thank you for the training. Especially, I thank my Supervisor, Dr. Iheanetu Olamma, for her guidance and support.

I am also grateful for the support from CApIC-ACE to help me pursue my dreams. I appreciate the work of Prof. Emeka E.J.Iweala, Prof. E. Adetiba, Prof. Ezekiel Adebiyi, Prof. Olubanke Ogulana and Ms. Helen Jevwegaga.

To all my fellows, I say thank you for the support during this Master's Program.

TABLE OF CONTENTS

CONT	DNTENTS		PAGES	
TITLI COVE ACCE DECL CERT DEDI ACKN TABL LIST LIST ABST	E PAGE ER PAG EPTANC ARATI TIFICAT CATION NOWLE E OF C OF FIG OF TAB RACT	E CE ON TION N DGEMENTS ONTENTS URES ELES	I II IV V V VI VII VII XII XII XII XIV	
CHAF	PTER O	NE: INTRODUCTION	1	
1.1	Backg	ground to the Study	1	
1.2	Staten	nent of the Research Problem	5	
1.3	Resea	rch Questions	7	
1.4	Aim a	nd Objectives of the Study	8	
1.5	Resea	rch Hypotheses	8	
1.6	Justifi	cation for the study	9	
1.7	Scope	of the study	9	
1.8	Defini	ition of Terms	9	
СНАН	PTER T	WO: LITERATURE REVIEW	10	
2.1	Pream	ble	10	
2.2	Conce	eptual Review	10	
	2.2.1	Data Representation Format	10	
	2.2.2	Knowledge Representation	12	
	2.2.3	Inference	14	
2.3	Theor	etical Review	15	
	2.3.1	Knowledge Representation and Reasoning	15	
	2.3.2	Decision Rule Learning	15	
	2.3.4	Attention Mechanism	16	

2.4	Empir	rical Review	18
	2.4.1	Existing Attention Mechanisms	18
	2.4.2	Existing Methods for Decision Rule Learning under Predictive Data	
		Mining	25
2.5	Challe	enges with the Existing Methods	34
2.6	Gaps	in Literature	35
СНАР	TER T	HREE: METHODOLOGY	36
3.1	Pream	able	36
3.2	Metho	ods and Methodology	37
	3.2.1	Data Preprocessing	37
	3.2.2	Learning of the Representation	38
	3.2.3	Extraction of Decision Rules from the Learned Representation	42
3.3	Algor	ithms	49
	3.3.1	Pseudocode	49
3.4	Comp	lexity Analysis	52
	3.4.1	Learning of the Representation	53
	3.4.2	Extraction of Decision Rules	53
3.5	Parallelization of the Computation		53
3.6	Bench	nmark	54
	3.6.1	Rule Extraction and Classification Performance	54
	3.6.2	Configuration	55
	3.6.3	Performance Evaluation Metrics	55
	3.6.4	Signification Analysis of the Results	57
	3.6.5	Evaluation of Execution Time and Memory Footprint	57
3.7	Imple	mentation	58
	3.7.1	Data Structure	58
	3.7.2	Modularity	59
	3.7.3	Object Oriented Programming	59
	3.7.3	Visualization of Attribute-value Pairs' importance	60
	3.7.4	Visualization of Decision Rules	60

	3.7.5	Inference for New Samples	60
	3.7.6	Integration of the Datasets	61
	3.7.7	Deployment of the Package	61
	3.7.8	Extensive Validation of the Approach on High-dimensional RNA-	
		Sequencing Data	61
3.8	Learn	ing the Representation of Gene Expressions and Different Cancer Types	62
	3.8.1	Visualization of Cancer-gene Expression Relationships	62
	3.8.2	Extraction of Decision Rules	62
	3.8.3	Benchmarking of our Approach on RNA-Seq Gene Expression	
		Classification	62
3.9	Ablat	ion Study	64
	3.9.1	Ablation of the Column-wise and/or Row-wise Normalization Step	64
	3.9.2	Compression of the Embedding Vectors	65
СНАР	TER F	OUR: RESULTS AND DISCUSSION	66
4.1	Pream	ıble	66
4.2	Prese	ntation of Results and Analysis	66
	4.2.1	Results of the Benchmarking	66
	4.2.2	Time Complexity	74
	4.2.3	Results of RNA-Seq Analysis for Cancer Classification	75
	4.2.4	Hyperparameter Tuning	75
	4.2.5	Performance on the Classification Task	77
	4.2.6	Results of the Ablation Study	78
4.3	Discu	ssion of Results	80
	4.3.1	The Learning of the Representation	80
	4.3.2	Representation Power of the Approach	80
	4.3.3	Generalization Capacity of the Models	81
	4.3.4	Robustness of the Predictions	81
	4.3.5	Robustness of the Architecture	81
	4.3.6	Explainability Capacity	81
4.4	Implic	cations of Findings (Theoretical and Empirical Findings)	82

	4.4.1	Development of a Novel Attention Mechanism for Tabular Data	82
	4.4.2	2 Integration of the Proposed Novel Attention Mechanism in the Extractio	
		of Decision Rules	82
	4.4.3	Efficient Learning of Decision Rules and Inference Processes on High-	
		dimensional Data	82
	4.4.4	Development of a Visualization Tool that Assess the Contribution of	
		Different Features on a Decision selected by the AI algorithm	82
	4.4.5	Formalization of Decision Rule Learning as Energy-based Modeling	83
	4.4.6	Reduction of the Gap between Explainability and Performance	83
СНАР	TER FI	IVE: CONCLUSION	84
5.1	Pream	ble	84

5.2	Summary	84
5.3	Conclusion	84
5.4	Contribution(s) to Knowledge	85
5.5	Limitations of the Study	85
5.6	Areas for Further Research	86

REFERENCES	87
APPENDICES	100

LIST OF FIGURES

FIGURES	TITLE OF FIGURES	PAGES
3. 1: Framework of the proposed	CAHDRL approach	37
3. 2: Summarized version of the C	CAHDRL	38
3. 3: Model optimization 1		46
3. 4: Model optimization 2		47
4. 1: Comparison of the standard	deviation of inference with the for different mode	ls
(part 1)		73
4. 2: Comparison of the standard	deviation of inference with the for different mode	ls
(part 2)		74
4. 3: Significance analysis of the	results with Wilcoxon Two-tailed Signed-Rank Te	st 75
4. 4: Analysis of the execution tin	ne	76
4. 5: Ablative analysis of the norm	nalization component	79
4. 6: Ablative analysis of the dime	ension compression.	80

LIST OF TABLES

TABI	LE TITLE OF TABLES	PAGES
2. 1:	Attention techniques	18
2. 2:	Decision rule learning methods	27
3.1:	Presentation of the first 8 datasets	55
3. 2:	Presentation of the RNA-Seq datasets	63
3.3:	Existing methods for cancer types classification	64
4.1:	Evaluation results for support-count for the 8 datasets (Part 1)	68
4. 2:	Evaluation results for support-count for the 8 datasets (Part 2)	69
4.3:	Evaluation results of the length of the rules for the 8 datasets (Part 1)	70
4.4:	Evaluation results of the length of the rules for the 8 datasets (Part 2)	70
4. 5:	Evaluation results for the accuracy on a classification task (Part 1)	72
4. 6:	Evaluation results for the accuracy on a classification task (Part 2)	72
4. 7:	Hyperparameters for the RNA-Seq datasets	76
4. 8:	Quality of decision rules for the dataset RNA-Seq-2086	78
4. 9:	Quality of decision rules for the dataset RNA-Seq-801	78
4. 10:	Performance for classification task on the dataset RNA-Seq-2086	78
4. 11:	Performance for classification task on the dataset RNA-Seq-801	79

ABSTRACT

The availability of a large amount of data that can be mined is a challenge for data mining techniques that cannot keep up with the exponentially increasing quantity of data. Most of the classical techniques have been reported inefficient to handle large amount of data. The aim of this work is to develop a novel attention mechanism for high-dimensional tabular data understanding for knowledge representation that can enhance tractability of decision rule learning. The conditioning theory was mathematically formalized as an attention mechanism that models an unconditioned response (or reflex response) to unconditioned stimulus by pairing conditioned stimulus with unconditioned stimulus. The formalization of the conditioning theory built was translated into an algorithm presented as conditioned attention mechanism and applied on input tabular dataset producing vector embeddings of attribute-value pairs. The learned representation of attribute-value pairs as vector embeddings are then exploited to build decision rules using a developed novel Coupling-Sorting-Branching technique (CoSoBra), formalized as energy-based model optimization. A Python-based compression algorithm was developed to reduce the dimension of the resulting very large vector embeddings while maintaining the quality of the attribute-value pairs representations. The developed novel Conditioned Attention High Dimensional Rule Learning (CAHDRL) algorithm, which captures both CoSoBra algorithm and Condition Attention mechanism was benchmarked against existing approaches for decision rule learning on ten datasets from six different domains. The efficacy of the CAHDRL approach was evaluated with respect to the effectiveness of the extracted decision rules and its efficiency during data processing. An ablation study was carried out to assess the efficiency CAHDRL. Results of the evaluation on the 8 first datasets showed that CADHRL had higher accuracy of 0.85 in average against 0.8175 in average for the EAV-60 model, equal length of decision rule of 2.125 in average against 2.125 in average for the reduct-alpha-0.1 model and a better support of 392.5263 in average against 350.2663 in average for the reductalpha-0.1. t-distributed Stochastic Neighborhood Embedding (t-SNE) was used to visualize the embeddings on a 2D manifold. The results support literature findings on Mushroom dataset that "odor=creosote" pair is a good descriptor of the poisonous mushroom. The second visualization results using "Adult" dataset showed that USA natives are more likely to earn \$50,000.00 and above. Wilcoxon test of significance of efficacy results for CAHDRL validated its relatively superior performance against existing approaches, yielding values of p-values inferior to 0.05 for accuracy (3 of the seven comparisons), length of decision rules (6 of the seven comparisons) and support (4 of the five comparisons) respectively. CAHDRL can effectively find embedding vectors of attribute-value pairs and efficiently extract decision rules from diverse datasets for classification tasks, with a higher tractability and inherent explainability. CAHDRL also demonstrates a great scalability feature that allows for the efficient processing very high dimensional datasets by the parallelizable nature of CAHDRL.

Keywords: attention mechanism, decision rule, explainability, tractability, machine learning