RESISTANCE TO PYRETHROIDS IN MOSQUITOES IN ADO-ODO OTA, OGUN STATE.

BALOGUN, DANIEL OLUWATOBILOBA (22PCQ02457) B.Sc. Microbiology, University of Lagos, Lagos State

AUGUST, 2024

i

RESISTANCE TO PYRETHROIDS IN MOSQUITOES IN ADO-ODO OTA, OGUN STATE

BY

BALOGUN, DANIEL OLUWATOBILOBA (22PCQ0247) B.Sc. Microbiology, University of Lagos, Lagos State

A DISSERTATION SUBMITTED TO THE SCHOOL OF POSTGRADUATE STUDIES IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE AWARD OF THE MASTER OF SCIENCE (M.Sc) DEGREE IN MICROBIOLOGY IN THE DEPARTMENT OF BIOLOGICAL SCIENCES, COLLEGE OF SCIENCE AND TECHNOLOGY, COVENANT UNIVERSITY, OTA, OGUN STATE, NIGERIA

AUGUST, 2024

ACCEPTANCE

This is to attest that this dissertation is accepted in partial fulfilment of the requirements for the award of the degree of Master of Science (M.Sc) in Microbiology in the Department of Biological Sciences, College of Science and Technology, Covenant University, Ota, Nigeria.

Miss. Adefunke F. Oyinloye (Secretary, School of Postgraduate Studies)

Signature and Date

Prof. Akan B. Williams (Dean, School of Postgraduate Studies)

Signature and Date

DECLARATION

I, BALOGUN, DANIEL OLUWATOBILOBA (22PCQ02457), declare that this research was carried out by me under the supervision of Professor Obinna C. Nwinyi of the Department of Biological Sciences, College of Science and Technology, Covenant University, Ota, Nigeria. I attest that this dissertation has not been presented either wholly or partially for the award of any degree elsewhere. All sources of data and scholarly information used in this dissertation are duly acknowledged.

BALOGUN DANIEL OLUWATOBILOBA

Signature and Date

CERTIFICATION

We certify that this dissertation titled "**RESISTANCE TO PYRETHROIDS IN MOSQUITOES IN ADO-ODO OTA, OGUN STATE**" is an original research work carried out by **BALOGUN, DANIEL OLUWATOBILOBA** in the Department of Biological Sciences, College of Science and Technology, Covenant University, Ota, Ogun State, Nigeria under the supervision of Prof. Obinna C. Nwinyi. We have examined and found this work acceptable as part of the requirements for the award of Master of Science in Microbiology.

Prof. Obinna C. Nwinyi (Supervisor)

Dr. Isaac O. Ayanda (Head of Department)

Prof. Anthonia O. Oladuro (External Examiner)

Prof. Akan B. Williams (Dean, School of Postgraduate Studies) Signature and Date

Signature and Date

Signature and Date

Signature and Date

DEDICATION

This research work is dedicated to God ALMIGHTY for His grace and favour throughout the duration of carrying out this research.

ACKNOWLEDGMENTS

My gratitude goes firstly to God Almighty for His daily benefits that I enjoy.

My sincere appreciation goes to the Chancellor, Covenant University, Dr. David O. Oyedepo, whose words constantly remind me that anything is possible and achievable. Thank you very much, sir. Also, to the Vice-Chancellor, Prof. Abiodun Adebayo; the Deputy Vice-Chancellor, Prof. Olujide Adekeye; the Dean of School of Postgraduate Studies, Prof. Akan Williams; the subDean of School of Postgraduate Studies, Dr. Hezekiah O. Falola, the Head of Department of Biological Sciences, Dr Isaac Ayanda. May God Almighty immensely reward all your efforts.

My deep appreciation goes to my supervisor, Prof. Obinna C. Nwinyi, for his support, mentorship, and advice, which he gave me through the stages of this research work and enabled me to complete it in time. I also appreciate the Late Professor Grace I. Olasehinde's support in making this degree a success and Professor Olubanke O. Ogunlana's use of the insectary laboratory during this research. Thank you, Ma, and God bless you.

I also want to appreciate deeply my colleagues: Aririguzoh Victoria-Grace, Ademolu Daniel, Ajao, Omonigbehin Comfort Adedeoyin, and Kwarpo Zeendi Silas, to name a few, whose contributions were invaluable throughout my postgraduate studies. God bless you all and reward you abundantly.

I also want to thank Dr Tolu Oyeniyi from the Nigeria Institute of Medical Research, Yaba, Lagos, for his support and contributions towards completing this research work. God bless you and reward you abundantly.

My heartfelt and profound appreciation goes to my parents, Mr. Samuel T. & Mrs. Regina O. Balogun, who have always been there for me and stood in prayer. Words cannot express how indebted I am to you. I pray you will live long enough to reap the benefits of the seeds you have sown in my life and that of my siblings. I love you, and God bless you.

Finally, I acknowledge the Covenant Applied Informatics and Communication Africa Centre of Excellence (CapIC-ACE), Covenant University, and World Bank for funding this research. I'm grateful for this privilege. Thank you very much, and God bless you all.

TABLE OF CONTENTS

CONTENTS	PAGES
ACCEPTANCE	iii
DECLARATION	iv
CERTIFICATION	v
DEDICATION	vi
ACKNOWLEDGMENTS	vii
TABLE OF CONTENTS	viii
LIST OF FIGURES	X
LIST OF TABLES	xi
LIST OF PLATES	xii
LIST OF ABBREVIATIONS	xiii
ABSTRACT	xiv
CHAPTER ONE	1
INTRODUCTION	1
1.1 Background of Study	1
Statement of the Problem	2
Aims and Objectives of the Study	2
Research Questions	3
Justification of Study	3
Scope of the Study	4
CHAPTER TWO	5
LITERATURE REVIEW	5
2.0	5
2.1 The Malaria Parasites	5
2.2 The Malaria Vectors	7
2.3 Vector Control	9
2.4 Insecticides Used In Vector Control	13
2.5 Mode Of Action Of Insecticides	14
2.5.1 Organophosphates And Carbamates	14
2.5.2 Organochlorines	15
2.6 Insecticide Resistance	15
2.6.1 Mechanisms Of Insecticide Resistance	15
2.7 Pyrethroids As Insecticides For Malaria Control	18
2.7.1 Mechanism Of Action Of Pyrethroids	20
2.7.2 Pyrethroids As An Insecticide	21
2.8 Spread Of Pyrethroid Resistance	23
2.8.1 Resistance To Pyrethroids By Mosquitoes	23
2.8.2 Cross-Resistance In Malaria Vectors	24
2.8.3 Pyrethroid Resistance In Africa	25
2.8.4 The Impact Of Pyrethroid Resistance On Malaria Control	25
2.9 Research Gaps	27

CHAPTER THREE				
MATE	ERIALS AND METHODS	28		
3.1	Study Site	28		
3.2	Study Design	28		
3.3	Sample Size Determination	28		
3.4	Ethical Consideration	30		
3.5	Mosquito Collection Methods	30		
3.5.1 Mosquito Sampling And Morphological Identification 3.5.2 Cdc Light Traps				
				3.5.3 Insecticide Susceptibility Assays
3.6	Species Complex Identification By Pcr	31		
3.7	Detection Of Sporozoites In The Head-Thorax Region	32		
3.8	Insecticide Susceptibility Testing	33		
3.9	Polymerase Chain Reaction For Knockdown Resistance Genes	33		
3.10	Statistical Analysis	34		
СНАР	TER FOUR	35		
RESU	LTS	35		
4.1	Mosquito Species Composition	35		
4.2	Identification Of Anopheles Gambiae Molecular Forms	41		
4.3	Sporozoite Rates	43		
4.4	Insecticide Susceptibility Tests	45		
4.5	Polymerase Chain Reaction For Knockdown Resistance Genes	47		
СНАР	TER FIVE	51		
DISCU	USSION	51		
5.1	Mosquito Species Composition	51		
5.	1.2 Mosquito Abundance And Distribution	51		
5.	1.3 Spatial Distribution	52		
5.1.4 Species-Specific Identification				
5.2	Sporozoite Rate	54		
5.3	Insecticide Susceptibility Tests	54		
5.4	Knockdown Resistance Genes	55		
СНАР	TER SIX	57		
CONC	CLUSION	57		
6.1	Summary	57		
6.2	Conclusion	57		
6.3	Contributions To Knowledge	57		
6.4	Recommendations	58		
REFE	RENCES	59		
APPENDIX				

LIST OF FIGURES

FIGURES	LIST OF FIGURES	PAGES
Figure 2.1:	The Plasmodium falciparum lifecycle	7
Figure 2.2:	Classes of Insecticides	14
Figure 2.3:	Mechanism of action of pyrethroids	21
Figure 3.1:	Location of Ado-Odo Ota local government area	29
Figure 4.1:	Changes in mosquito densities represented in a bar chart	36
Figure 4.2: Knockdown and Mortality percentages of mosquitoes to permethrin and deltamethrin represented in a box plot 46		

LIST OF TABLES

TABLES	LIST OF TABLES	PAGES
Table 2.1: In	nsecticide used in screening vector resistance	16
Table 2.2: C	chemical Structures of pyrethroids	18
Table 2.3: C	chemical Structures of Type 2 pyrethroids	19
Table 2.4: V	WHO-approved insecticides for the treatment of mosquito nets	22
Table 4.1: S	pecies and number of adult mosquitoes sampled from three tow	ns in Ado-Odo Ota
	local government	36
Table 4.2:	Differences in the mosquito abundance of the three towns in A	do-Odo Ota local
	government area	38
Table 4. 3 : S	porozoite detection using circumsporozoite enzyme-linked imn	nunosorbent assay 44
Table 4.4 :	Frequency of knockdown resistance mutation in Anopheles gam	biae s.l. in Ado Ota
		48

LIST OF PLATES

PLATES	PAGES
Plate 4. 1: Micrograph of PCR Identification of the molecular form in Anopheles	coluzzi 42
Plate 4.2: Micrograph of PCR Identification for kdr-west	49
Plate 4. 3: Micrograph of PCR Identification for kdr-east	50

LIST OF ABBREVIATIONS

AChE	Acetylcholinesterase
BHC	Benzene hexachloride
DDT	Dichlorodiphenyltrichloroethane
ELISA	Enzyme-linked immunosorbent assay
GSTs	Glutathione S-transferases
IRS	Indoor residual spraying
ITNs	Insecticide-treated nets
IVM	Ivermectin
KDR	Knockdown resistance
LLIN	Long-lasting insecticidal nets
VGSC	Voltage-gated sodium channel gene

WHO World Health Organization

ABSTRACT

The spread of malaria can be controlled through long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS) using pyrethroids. However, the increasing resistance to pyrethroids poses a significant challenge to effective vector control in Africa. This study assessed mosquito species composition in Ado Odo Ota, Ogun state, and evaluated the resistance levels to pyrethroids. A 6month longitudinal entomological survey was carried out using light trap and larval sampling. Mosquitoes were collected from various selected towns in Ado Odo Ota, and Anopheles species were identified through morphological and molecular analyses. The susceptibility status of Anopheles gambiae sensu lato to permethrin (0.75%) and deltamethrin (0.05%) was assessed using the World Health Organization insecticide susceptibility test. Additionally, the species were screened for knockdown (kdr) target site resistance alleles. Five hundred seventy-nine (579) adult mosquitoes were collected and morphologically identified using Coetzee's taxonomic keys. Twothirds (376/579) of the mosquitoes were identified as *Culex spp.*, constituting the most abundant species in Ado Ota local government. Molecular identification using intentional mismatch primers confirmed Anopheles coluzzi's presence as the communities' main species. Thirty percent 30% (22.5 - 37.5) of the Anopheles gambiae mosquitoes were susceptible to permethrin after 24 hours, while 98% (95.7 -100) of the vectors were susceptible to deltamethrin. Sporozoite detection using circumsporozoite ELISA showed none (0/40) of the tested blood-fed female Anopheles gambiae were positive for sporozoites, and the West African and East African knockdown resistance genes were detected in very high frequencies among the sampled population (L1014F - 64% [0.36 -0.83], L1014S – 60% [0.30 - 0.77]. This study revealed *that Anopheles coluzzi* (99%) is the predominant species in Ado Odo Ota local government area. Deltamethrin is still effective in several communities; however, the high knockdown resistance of both the east and west alleles calls for urgent implementation of integrated vector control in Ogun state.

Keywords: Insecticide testing, Malaria, Mosquitoes, Pyrethroids, Species composition.