PREVALENCE OF *HISTIDINE-RICH PROTEIN II* GENE DELETION IN *Plasmodium falciparum* ISOLATES FROM SUBJECTS IN ADO-OTA, OGUN STATE

KWARPO, ZEENDI SILAS

(22PCQ02458)

BSc Microbiology, University of Jos, Plateau State

AUGUST 2024

PREVALENCE OF *HISTIDINE-RICH PROTEIN II* GENE DELETION IN *PLASMODIUM FALCIPARUM* AMONG SUBJECTS IN ADO-OTA, OGUN STATE

BY

Kwarpo, Zeendi Silas (22PCQ02458) BSc. Microbiology University of Jos, Jos, Plateau State

A DISSERTATION SUBMITTED TO THE SCHOOL OF POSTGRADUATE STUDIES IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE AWARD OF MASTER OF SCIENCE (M.Sc) DEGREE IN MICROBIOLOGY IN THE DEPARTMENT OF BIOLOGICAL SCIENCES, COLLEGE OF SCIENCE AND TECHNOLOGY, COVENANT UNIVERSITY, OTA, OGUN STATE, NIGERIA

AUGUST 2024

ACCEPTANCE

This is to attest that this dissertation is accepted in partial fulfilment of the requirements for the award of the degree of Master of Science in Microbiology in the Department of Biological Sciences, College of Science and Technology, Covenant University, Ota, Nigeria

Miss Adefunke F. Oyinloye (Secretary, School of Postgraduate Studies)

Signature and Date

Prof. Akan B. Williams (Dean, School of Postgraduate Studies)

Signature and Date

DECLARATIONS

It is hereby declared that this research work titled "PREVALENCE OF HISTIDINE-RICH PROTEIN II GENE DELETION IN *Plasmodium falciparum* AMONG SUBJECTS IN ADO-OTA, OGUN STATE" was undertaken by KWARPO, ZEENDI SILAS. It is based on the original study in the Department of Biological Sciences and Technology, Covenant University Ota, under Professor Olayemi O. Akinnola's supervision. The ideas and views of other researchers have been duly expressed and acknowledged.

KWARPO, ZEENDI SILAS (Student)

Signature and Date

CERTIFICATION

We certify that this dissertation titled "PREVALENCE OF HISTIDINE-RICH PROTEIN II GENE DELETION IN *Plasmodium falciparum* AMONG SUBJECTS IN ADO-OTA, OGUN STATE" is an original research work carried out by KWARPO, ZEENDI SILAS in the Department of Biological Sciences, College of Science and Technology, Covenant University, Ota, Ogun State, Nigeria under the supervision of Professor Olayemi O. Akinnola We have examined and found this work acceptable as part of the requirements for the award of Master of Science in Microbiology.

Professor Olayemi O. Akinnola (Supervisor)

Dr Opeyemi I. Ayanda (Head of Department)

Prof. Segun I. Oyedeji (External Examiner)

Prof. Akan B. Williams (Dean, School of Postgraduate Studies) **Signature and Date**

Signature and Date

Signature and Date

Signature and Date

DEDICATION

This work is dedicated to the Almighty GOD, the Father of all light and giver of good and perfect gifts, who was the source of strength and inspiration for this research.

ACKNOWLEDGEMENT

I am most grateful to Almighty God for the strength that carried me through my study programme and my parents and the Kwarpo family for their support. I am also deeply thankful to my mentor and supervisor, Professor Olayemi O. Akinnola, for her intuition and guidance throughout my project.

My gratitude goes to my HOD and great lecturers in the Biological Sciences department, particularly Professor Conrad Omonhimmin, who have contributed to the quality of the project. Also, my late supervisor, Professor Grace I. Olasheinde, who inspired this project, and her impact will not be forgotten.

I also want to thank Mr Olabode Onile-Ere for his invaluable contributions to this work. I also appreciate Katchey Laboratories' assistance. I also acknowledge my classmates and schoolmates, Comfort Adedoyin, Dare Oluwatobi, Nike Onabote, Tobi Obadire and Udeme Christopher, who supported me during my benchwork.

Without fail, I must appreciate CApIC-ACE, to whom I am hugely indebted, for their immense financial support and encouragement throughout my research.

TABLE OF CONTENTS

CONTENT	PAGES
COVER PAGE	i
TITLE PAGE	ii
ACCEPTANCE	iii
DECLARATIONS	iv
CERTIFICATION	v
DEDICATION	vi
ACKNOWLEDGEMENT	vii
TABLE OF CONTENTS	viii
LIST OF FIGURES	xi
ABSTRACT	xii
CHAPTER ONE	1
INTRODUCTION	1
1.0 Background of Study	1
1.1 Statement of the Research Problem	2
1.2 Research Questions	2
1.3 Aim and Objectives	2
1.4 Justification for the Study	3
1.5 Scope of Study	3
CHAPTER TWO	5
LITERATURE REVIEW	5
2.1 Overview of Malaria	5
2.2 At-Risk Population	8
2.3 Causative Agent of Malaria	8
2.4 Life Cycle of <i>Plasmodium falciparum</i>	9
2.5 Pathophysiology of <i>Plasmodium falciparum</i>	9
2.6 Clinical Manifestations	12
2.7 Diagnosis of Malaria	14
2.8 Malaria Biomarkers	17
2.9 Histidine-Rich Protein II	20
2.10 Histidine-Rich Protein 2 Gene	25
2.11 Histidine-Rich Protein 2 Gene Deletion	27
2.12 Genetic Diversity of Plasmodium falciparum	36
2.13 Protocol for Identifying HRP2 Gene Deletion	39
2.14 Implications of HRP2 Gene Deletion on Public Health	43
2.15 Genomic Surveillance as an Intervention Tool for Malaria Elimination	43
2.16 WHO Resolutions for Surveillance for HRP2 Gene Deletion	44
2.17 Prospects of Other Diagnostic Tools for Malaria Diagnosis	44
CHAPTER THREE	48
MATERIALS AND METHODS	48
3.1 Materials	48

3.2 Methods	48
3.3 Analysis of Data	53
CHAPTER FOUR	54
RESULTS	54
4.1 Prevalence of Malaria among Subjects	54
4.2 Prevalence of Histidine-Rich Protein II among Clinical Isolates Genotyped	57
4.3 Frequency of Merozoite Surface Protein1 alleles and its genetic diversity	63
CHAPTER FIVE	67
DISCUSSION	67
CHAPTER SIX	69
CONCLUSION AND RECOMMENDATIONS	69
6.1 Summary	69
6.2 Conclusion	69
6.3 Contributions to Knowledge	69
6.4 Recommendations	70
REFERENCES	71
APPENDIX	89

LIST OF TABLES

TABLES	LIST OF TABLES		PAGES
Table 2.1: Commonly use	ed malaria Biomarkers		19
Table 2.2: Guidelines f	for investigating and communicating	HRP2/HRP3 ger	ne deletion in
Plasmodium falciparum			40
Table 4.1: Prevalence of A	Plasmodium falciparum infection amon	g clinical isolates	55
Table 4.2: Prevalence of A	Plasmodium falciparum infection based	on gender	56
Table 4.3: Distribution of	Plasmodium falciparum infection base	l on age groups	56
Table 4.4 Prevalence of H	Irp-2 Gene Deletion in Ado-Odo/Ota, C	gun State	57
Table 4.5: Interpretation	of Plasmodium falciparum HRP2 gene	deletion and sing	gle-copy genes
MSP1 and MSP2 amplifi	ed		59
Table 4.6: Merozoite surf	ace protein 1 allelic frequency		63
Table 4.7: Genetic diversi	ty of MSP1 among <i>Plasmodium falcipa</i>	rum isolates from (Ota Ogun State
			64

LIST OF FIGURES

FIGURES	LIST OF FIGURES	PAGES
Figure 2.1: Asexual and se	exual lifecycle of Plasmodium falciparum	10
Figure 2.2: Micrograph of	a thin smear of Plasmodium falciparum using 100x objective	e lens 15
Figure 2.3: Rapid Diagnos	tic Kits	16
Figure 2.4: An illustration	of the principle of RDTs	20
Figure 2.5: The number of	RDTs sold by manufacturers and distributed by NMPs for use	e in testing
suspected malaria cases be	tween 2018–2020	24
Figure 2.6: Location and a	rrangement of amino acid repeats in the Plasmodium falcipar	rum HRP2
gene		26
Plate 4.1 A-B: Amplification	on of HRP2 gene	58
Plate 4.2: Amplification of	MSP2 gene	60
Plate 4.3: Negative Agaro	se Gel-electrophoresis results of MSP2	61
Plate 4.4: Amplification of	MSP2 gene	62
Plate 4.5: Amplification of	MSP1 gene.	65
Plate 4.6: Amplification o	f MSP-1 gene.	66
		92

ABSTRACT

The key to reducing malaria-related deaths in areas with high transmission rates is prompt diagnosis and appropriate treatment. Malaria Rapid diagnostic tests (RDTs or mRDT) that utilize histidine-rich protein 2 (PfHRP2) as a biomarker are essential for quickly and accurately diagnosing P. falciparum infections in endemic regions like Nigeria. However, PfHRP2 gene deletion and the variability of amino acids threaten the mRDT test sensitivity. This study was carried out to investigate the prevalence of HRP2 gene deletion in Plasmodium falciparum among symptomatic subjects in Ota. Ethical clearance from the Covenant Health Ethics Review Committee (CHREC) was obtained. Three-hundred and ninety-six samples were collected from subjects visiting four healthcare facilities in Ota, Ogun State, Nigeria and tested for malaria using HRP2-based RDT. The presence of parasites in RDT false negative cases and microscopy positive cases were validated using nested Polymerase Chain Reaction (PCR). Thereafter, exon 2 of PfHRP2 was amplified, and Sanger sequenced. The prevalence of malaria was recorded at 57.07%, with the age group below 5 years showing the highest prevalence of 49.15%. Out of 50 samples, forty-seven were positive by 18sRNA quantitative PCR. Single-copy gene MSP1 showed an overall multiplicity of infection of 1.5. The MAD20 allele had the highest frequency (72.72%), the K1 allele (54.45%) and the RO33 allele recorded the lowest frequency (27.27%) among the samples that amplified the MSP1. The prevalence of HRP2 gene deletion was recorded at 15.4% (2/13) among samples with amplified single-copy genes using Nested PCR. More studies using larger sample sizes for genotyping and more sensitive techniques like digital droplet PCR are recommended to determine the full extent of *PfHRP2* gene deletion in Nigeria.

Keywords: HRP2 gene, HRP2 gene deletion, RDT, Malaria diagnosis