SYNTHESIS, MODIFICATION, AND CHARACTERISATION OF FUNCTIONAL POLYURETHANE COATING SYSTEMS FROM CASTOR OIL

ADEBOYE, SAMUEL ADEPITAN (20PCC02309) B.Ed (Educational Management & Chemistry) University of Ibadan, Ibadan. M.Sc (Industrial Chemistry) University of Ibadan, Ibadan. MBA, University of Lagos, Lagos

SEPTEMBER, 2024

SYNTHESIS, MODIFICATION, AND CHARACTERISATION OF FUNCTIONAL POLYURETHANE COATING SYSTEMS FROM CASTOR OIL

BY

ADEBOYE, SAMUEL ADEPITAN (20PCC02309) B.Ed (Educational Management & Chemistry) University of Ibadan, Ibadan. M.Sc (Industrial Chemistry) University of Ibadan, Ibadan. MBA, University of Lagos, Lagos

A THESIS SUBMITTED TO THE SCHOOL OF POSTGRADUATE STUDIES IN PARTIAL FULIFILMENT OF THE REQUIREMENTS FOR THE AWARD OF DOCTOR OF PHILOSOPHY (PhD) DEGREE IN CHEMISTRY IN THE DEPARTMENT OF CHEMISTRY, COLLEGE OF SCIENCE AND TECHNOLOGY, COVENANT UNIVERSITY, OTA, OGUN STATE, NIGERIA

SEPTEMBER, 2024

ACCEPTANCE

This is to attest that this thesis is accepted in partial fulfilment of the requirements for the award of the degree of Doctor of Philosophy in Industrial Chemistry in the Department of Chemistry, College of Science and Technology, Covenant University, Ota, Nigeria.

Miss Adefunke F. Oyinloye (Secretary, School of Postgraduate Studies)

Signature and Date

Prof. Akan B. Williams (Dean, School of Postgraduate Studies)

Signature and Date

DECLARATION

I, ADEBOYE, SAMUEL ADEPITAN (20PCC02309), declare that this research was carried out by me under the supervision of Prof. Kolawole O. Ajanaku and Dr. Tolutope O. Siyanbola of the Department of Chemistry, Landmark University and Department of Chemistry, College of Science and Technology, Covenant University, Ota respectively. I attest that this Thesis has not been presented either wholly or partially for the award of any degree elsewhere. All the sources of materials and scholarly publications used in this thesis have been duly acknowledged.

ADEBOYE, SAMUEL ADEPITAN

Signature and Date

CERTIFICATION

We certify that the Thesis titled SYNTHESIS, **MODIFICATION, AND CHARACTERISATION** OF FUNCTIONAL POLYURETHANE COATING SYSTEMS FROM CASTOR OIL is the original work carried out by ADEBOYE SAMUEL ADEPITAN (20PCC02309) in the Department of Chemistry, Covenant University, Ota, Ogun State, Nigeria under the supervision of Prof. Kolawole O. Ajanaku and Dr. Tolutope O. Siyanbola of the Department of Chemistry, Landmark University and Department of Chemistry, College of Science and Technology, Covenant University, Ota respectively. We have examined and found this work acceptable as part of the requirements for the award of the degree of Doctor of Philosophy in Industrial Chemistry.

Prof. Kolawole O. Ajanaku (Supervisor)

Dr. Tolutope O. Siyanbola (Co-Supervisor)

Dr. Cyril O. Ehi-Eromosele (Ag. Head of Department)

Prof. Cecilia Akintayo (External Examiner)

Prof. Akan B. Williams (Dean, School of Postgraduate Studies) Signature and Date

Signature and Date

Signature and Date

Signature and Date

Signature and Date

DEDICATION

I dedicate this work to my darling wife, Olufunke Asake Adeboye, a faithful friend and an unflinching support in this journey.

ACKNOWLEDGMENTS

My wholehearted appreciation goes to the Almighty God for the gift of life. He is my sustainer and my source of strength. This research could not have become a reality without His grace, wisdom, strength, and divine provisions. To God alone is all the glory eternally. I sincerely appreciate the visioner and Chancellor of this great institution, Covenant University, Ota, Bishop David O. Oyedepo, who is more than just the Chancellor but a father to me. He gave me a platform that made pursuing this Ph.D a comfortable and memorable journey. I acknowledge the Covenant University Management team for allowing me to accomplish this programme. The Vice-Chancellor, Prof. Abiodun H. Adebayo, the Deputy Vice-Chancellor, Prof. Olujide A. Adekeye, and the Registrar, Mrs. Regina A. Tobi-David. I acknowledge the Dean, School of Postgraduate Studies, Prof. Akan B. Williams; the Sub-Dean, School of Postgraduate Studies, Dr. Hezekiah O. Falola. I also appreciate the Dean of the College of Science and Technology, Prof. Timothy A. Anake. I am grateful to my supervisor, Prof. Kolawole O. Ajanaku, and co-supervisor, Dr. Tolutope O. Siyanbola, for their patience, encouragement, advice, and wisdom transferred throughout this programme. Despite your busy schedules, I am forever grateful for the sacrifice and the time you made for me. My earnest appreciation goes to the Head of Chemistry Department, Dr. Cyril O. Ehi-Eromosele, for his positive impact, support, and motivation, which started from the interview day and continued throughout the Ph.D programme. I must not fail to appreciate Dr. Anuoluwa A. Akinsiku, the Departmental PG Coordinator, for her support and motherly role during this programme. My profound gratitude goes to Prof. Olayinka O. Ajani, who was always ready to explain Organic Chemistry principles even without prior notice. Prof. J. A. Olugbuyiro, Dr Joseph Adekoya, the late Prof. Grace Olasehinde and her entire family, Dr. Olabisi Ademosun, and Dr. Gbolahan Oduselu, thank you all for your kind support and encouragement during this programme. I cannot forget to thank the technologists who helped at various times during this work: Mr. Bamidele Durodola, Mrs. Hassana Jonathan, Mrs. Taiwo Owoeye, Miss Grace Ibiwoye, Mr Tunde Ogunleye, and Mr Gbenga Taiwo (Microbiology lab).

I profoundly thank Professor Omobola Okoh of the Department of Chemistry, University of Fort Hare, South Africa, for her assistance in procuring some scarce chemicals from South Africa and Mr. Jeff Lawrence, Senior Technician (Materials) at Teesside University, Middlesbrough, UK, who went beyond the call of duty to help with the analyses. I want to thank my colleagues and co-travellers along this Ph.D journey, Mrs Tolu-Bolaji, Mrs Omokehinde Taiwo, Mrs. Anike Jenbola, Miss Oluwadunni Elebiju, Miss Temitope Ogunnupebi, and Dr. Augustina Dada. I want to thank Adedamola Adebowale and Oluwafayokunmi Adebamiro, who are part of the oleochemistry team, for their invaluable roles.

I must not forget to thank Prof. F.A. Dawodu, my M.Sc. supervisor at the University of Ibadan in the 1989/90 session, who laid a solid foundation for me in the world of Chemistry and practically demonstrated the chemistry of love to me through generosity that is beyond description. My gratitude goes to my children and my grandchild, Tioluwanimi, for their endurance, love, and support throughout the programme. I appreciate my brothers and sisters for their support. I want to thank my loving wife, sister, and friend, Prof. Olufunke A. Adeboye, for bearing the brunt of my absence from home while pursuing this programme. Thank you so much for your patience and understanding. May the good Lord reward your sacrifice in multiple ways.

TABLE OF CONTENTS

ACCEPTANCE	III
DECLARATION	IV
CERTIFICATION	V
DEDICATION	VI
ACKNOWLEDGMENTS	VII
TABLE OF CONTENTS	IX
LIST OF TABLES	XIII
LIST OF FIGURES	XIV
LIST OF ACRONYMS AND ABBREVIATIONS	XVII
ABSTRACT	XIX

CHAPTER ONE	1
INTRODUCTION	1
1.1 Background to the Study	1
1.2 Statement of the Research Problem	3
1.3 Research Questions	5
1.4 Aim and Objectives	5
1.5 Research Objectives	6
1.6 Justification for the Study	6
1.7 Scope of the Study	8

CHAPTER TWO	9
LITERATURE REVIEW	9
2.1 Introduction	9
2.2 Organic Coatings	9
2.2.1 Functional organic coatings	11
2.2.2 Industrial applications of functional organic coatings	12
2.3 Plants and Seed Oils	14
2.3.1 Palm oil	16
2.3.2 Linseed oil	19
2.3.3 Poison nut	21
2.3.4 Yellow oleander	23
2.3.5 Castor oil	27
2.4 Fatty Acids Properties	31
2.4.1 Chain length	32
2.4.2 Number of alkene groups present in fatty acids	32
2.4.3 Positions of the alkene groups	33
2.5 Extraction of Oils	34
2.5.1 The traditional method	34
2.5.2 The mechanical method	35
2.5.3 Solvent extraction method	36
2.5.4 Microwave-assisted extraction method	37
2.6 Vegetable Oil Derivatives	37
2.6.1 10-Undecenoic acid (UA)	38
2.6.2 Glycerol	39
2.7 Polyurethane	40
2.7.1 Urethane chemistry	40

2.7.2 Urethane reaction mechanism	41
2.7.3 Polyurethane's uses in various industries	43
2.7.4 The Petrochemical contribution	44
2.7.5 Renewable materials	45
2.8 Polyurethane Components	48
2.8.1 Diisocyanates	48
2.8.2 Polyols	52
2.9 Nanoscale Materials	60
2.9.1 Definition of nano terminologies	60
2.9.2. Sources of nanoparticles	61
2.9.3 Types of nanomaterials	62
2.9.4 Some examples of nanomaterials	64
2.9.5 Synthesis of nanoparticles	65
2.9.6 Uniqueness of nanomaterials	66
2.9.7 Modification of nanomaterials	66
2.9.8 Incorporating modified nanomaterials into coatings	71
2.10 Summary of Previous Works	73
2.11 Noticeable Gaps	77

CHAPTER THREE	81
MATERIALS AND METHODS	81
3.1 Materials	81
3.1.1 Sample collection and preparation	81
3.2 Methods	81
3.2.1 Extraction of oils	81
3.3 Physico-chemical Analysis	82
3.3.1 Determination of percentage moisture content	83
3.3.2 Determination of the specific gravity	83
3.3.3 Determination of iodine value	84
3.3.4 Determination of acid value.	84
3.3.5 Determination of viscosity	85
3.3.6 Determination of refractive index.	85
3.3.7 Determination of saponification value (SV)	86
3.3.8 Solubility test	86
3.4 Synthesis of Polyurethanes using Renewable Materials	87
3.4.1 Hybrid polyurethane coatings using bisphenol A as an extender	87
3.4.2 Hybridising polyurethane coatings with APTMS-modified silica	87
3.4.3 Hybridising Polyurethane Coatings with Graphene Oxide	87
3.5 Spectroscopic Analyses	89
3.5.1 Nuclear magnetic resonance (NMR) analysis	89
3.5.2 Attenuated total reflectance-Fourier transform infrared (ATR-FTIR)	89
3.6 Morphological Analyses	90
3.6.1 Scanning electron microscopy (SEM)	90
3.6.2 X-ray diffraction (XRD)	90
3.7 Thermal Analyses	92
3.7.1 Thermogravimetric analysis	92
3.8 Antimicrobial Activity	92
3.9 Anti-corrosion Activity	93
3.9.1 Potentiometer test	93

3.9.3 Water contact angle	94
CHAPTER FOUR	95
RESULTS	95
4.1 Characterisation of oil castor seed oil	95
4.1.1 Physico-chemical tests	95
4.1.2 Solubility test	96
4.1.3 Nuclear magnetic resonance (NMR) of castor oil	97
4.1.4 Fourier transform infra-red (FTIR) of castor oil	98
4.2 Synthesis of Polyurethane Coating using Bisphenol A as an extender	99
4.2.1 Nuclear magnetic resonance of PU with BPA	101
4.2.2 Fourier transform infra-red of PU with BPA	103
4.2.3 X-Ray diffraction of PU with BPA	104
4.2.4 Thermogravimetric analysis of PU with BPA	107
4.2.5 Scanning electron microscopy of PU with BPA	109
4.2.6 Tafel plot of PU with BPA	110
4.2.7 Salt spray test of PU with BPA	111
4.2.8 Antimicrobial tests of PU with BPA	113
4.3 Hybridising polyurethane coatings with APTMS-modified silica	114
4.3.1 Nuclear magnetic resonance of PU with APTMS-modified silica	117
4.3.2 Fourier transform infra-red of PU with APTMS-modified silica	118
4.3.3 X-Ray diffraction of PU with APTMS-modified silica	120
4.3.4 Thermogravimetric analysis of PU with APTMS-modified silica	121
4.3.5 Scanning electron microscopy of PU with APTMS-modified silica	122
4.3.6 Tafel plot of PU with APTMS-modified silica	123
4.3.7 Salt spray test of PU with APTMS-modified silica	125
4.3.8 Water contact angle of PU with APTMS-modified silica	126
4.3.9 Antimicrobial tests of PU with APTMS-modified silica	127
4.4 Hybridising Polyurethane Coatings with Graphene Oxide	127
4.4.1 Nuclear magnetic resonance of PU with Graphene Oxide	131
4.4.2 Fourier transform infra-red of PU with Graphene Oxide	132
4.4.3 X-Ray diffraction of PU with Graphene Oxide	133
4.4.4 Thermogravimetric analysis of PU with Graphene Oxide	134
4.4.5 Scanning electron microscope of PU with Graphene Oxide	137
4.4.6 Tafel plot of PU with Graphene Oxide	138
4.4.7 Salt spray test of PU with Graphene Oxide	139
4.4.8 Water contact angle of PU with Graphene Oxide	140
4.4.9 Antimicrobial tests of PU with Graphene Oxide	141

CHAPTER FIVE	142
DISCUSSION	142
5.1 Physicochemical characteristics of castor oil	142
5.1.1 Iodine value	142
5.1.2 Acid value	143
5.1.3 Refractive index	144
5.1.4 Specific gravity	144
5.1.5 Viscosity	145

94

5.1.6 Saponification value	145
5.1.7 NMR of Castor seed (Ricinus communis) Oil	146
5.1.8 FTIR spectrum analysis of castor seed (Ricinus communis) Oil	146
5.2 Synthesis of Polyurethane Coating using Bisphenol A as an extender	147
5.2.1 Introduction and physical properties of PU with BPA	147
5.2.2 Structural elucidation of PU with BPA	147
5.2.3 Mechanical properties of PU with BPA	150
5.2.4 Morphological properties of PU with BPA	151
5.2.5 Anti-corrosion properties of PU with BPA	151
5.2.6 Antimicrobial Properties of PU with BPA	153
5.3 Hybridising polyurethane coatings with APTMS-modified silica	153
5.3.1 Physical properties of PU with APTMS-modified silica	153
5.3.2 Structural elucidation of PU with APTMS-modified silica	154
5.3.3 Mechanical properties of PU with APTMS-modified silica	156
5.3.4 Morphological properties of PU with APTMS-modified silica	157
5.3.5 Anti-corrosion properties of PU with APTMS-modified silica	158
5.3.6 Antimicrobial properties of PU with APTMS-modified silica	160
5.4 Hybridising Polyurethane Coatings with Graphene Oxide	160
5.4.1 Physical properties of PU with Graphene Oxide	160
5.4.2 Structural elucidation of PU with Graphene Oxide	160
5.4.3 Mechanical properties of PU with Graphene Oxide	163
5.4.4 Morphological properties of PU with Graphene Oxide	164
5.4.5 Anti-corrosion properties of PU with Graphene Oxide	165
5.4.6 Antimicrobial properties of PU with Graphene Oxide	167

CHAPTER SIX	168
CONCLUSION AND RECOMMENDATIONS	168
6.1 Summary	168
6.2 Conclusion	169
6.3 Recommendations	169
6.4 Contributions to knowledge	170
6.5 Limitations to the study	170

REFERENCES	171
APPENDICES	199

LIST OF TABLES

TABLES LIST OF TABLES	PAGES
Table 2.1: Examples of some fatty acids.	16
Table 2.2: Some common fatty acids and their characteristics	32
Table 2.3: Selected reactivity rates of fatty acids	32
Table 2.4: Conjugated and non-conjugated bonds in fatty acids	33
Table 2.5: Table showing the length of conjugated bonds	34
Table 4.1: Physicochemical properties of castor oil	95
Table 4.2 CSO solubility test	96
Table 4.4: FTIR peaks and corresponding intensities in the PU polymers	103
Table 4.5: Crystallite properties of hybrid PU-BPAs	106
Table 4.6: Dissociation temperature PU-BPA hybrid coatings	108
Table 4.7: Electrochemical parameters	111
Table 4.8: Drying time and chemical resistance of PU-BPA hybrid composites	112
Table 4.9: Antimicrobial test results	113
Table 4.10: FTIR peaks and functional group's intensities in PU polymers	119
Table 4.11: Crystallite properties of PU-SNP coatings	121
Table 4. 13: Corrosion rates of PU-SNP coatings	124
Table 4.14: Drying time and chemical resistance of PU and its hybrid composites	126
Table 4.15: Antimicrobial test results	127
Table 4.16: Crystallite properties of GO-PU coatings	133
Table 4:17: Dissociation temperatures of PU-GO hybrid coatings	136
Table 4.18: Electrochemical parameters	138
Table 4.19: Drying time and chemical resistance of PU and its hybrid composites	139
Table 4.20: Antimicrobial activities	141

LIST OF FIGURES

FIGURES LIST OF FIGURES	PAGES
Figure 1.1: Examples of applications of surface coatings.	2
Figure 1.2: Impacts of crude petroleum processing	4
Figure 1.3: Going Green for Environmental Sustainability.	4
Figure 2.1: Structure of typical triglyceride	15
Figure 2.2: (A) Thevetia peruviana Plant and (B) Thevetia peruviana Dried kernels	24
Figure 2.3: Thevetia peruviana seeds	25
Figure 2.4: Schematic representation of Thevetia peruviana	26
Figure 2.5: Castor seeds	28
Figure 2.6: Ricinus communis oil	29
Figure 2.7: Ricinoleic acid	29
Figure 2.8: Traditional method of oil extraction	35
Figure 2.9: Oil expeller	36
Figure 2.10: Soxhlet Extractor	37
Figure 2.11: Preparation of 10-UDA and heptaldehyde from castor oil	38
Figure 2.12: Urethane structure	40
Figure 2.13: Reaction between diol and diisocyanate to form polyurethane	41
Figure 2.14: Urethane reaction mechanism	42
Figure 2.15: Base catalysed isocyanate/alcohol reaction mechanism	42
Figure 2.16: Acid catalysed isocyanate/alcohol reaction mechanism	43
Figure 2.17: Esterification reaction	47
Figure 2.18: Skeletal structure of isocyanic acid	48
Figure 2.19: Lewis and resonance structure of isocyanic acid.	48
Figure 2.20: Production of isocyanates from primary amines via phosgenation	49
Figure 2.21: Showing different types of diisocyanates.	50
Figure 2.22: Common Isocyanate Reactions	51
Figure 2.23: Epoxidation reaction processes	54
Figure 2.24: Partial glycerides formation route	55
Figure 2.25: Amidation route	55
Figure 2.26: Ozonolysis route	56
Figure 2.27: Hydroformylation route	57
Figure 2.28: Glycerol	58

Figure 2.29: Structures of ether polyol and ester polyol	58	
Figure 2.30: Some common epoxides	59	
Figure 2.31: Ring-opening reaction producing ether polyol	59	
Figure 2.32: Esterification reaction producing ester polyol	59	
Figure 2.33: Transesterification reaction producing ester polyol	60	
Figure 2.34: Types of nanoscale materials	63	
Figure 2.35: Processes for synthesising nanoparticles	65	
Figure 2.36: Nanoparticle modification with 3-methacryloxypropyl trimethoxysilane.	68	
Figure 2.37: Reaction scheme for the anchored PMAA on ZnO nanoparticles	69	
Figure 2.38: ATPMS-modified ZnO nanoparticles	69	
Figure 2.39: Schematic representation for the synthesis of hybrid PU-CNM	70	
Figure 2.40: Synthesis of TMP-modified titanium dioxide (TiO ₂)	71	
Figure 2.41: Hydrolysis reaction	72	
Figure 2.42: Condensation reaction	73	
Figure 3.1: Castor seed oil (CSO) extraction process	82	
Figure 3.2: The Siemens D5000 X-Ray Diffractometer.	91	
Figure 4.1 ¹ H NMR spectrum of CSO	97	
Figure 4.2 FTIR Spectrum of CSO	98	
Figure 4.3: Synthesis of the pristine PU with CSO and IPDI	99	
Figure 4.4: Synthesis of hybridised PU with BPA	100	
Figure 4.5: Picture of PU films	101	
Figure 4.6 The ¹ H NMR of the pristine film	101	
Figure 4.7 The ¹ H NMR of films with BPA	102	
Figure 4.8: FTIR spectral of the films	103	
Figure 4.9: XRD Spectra for PU and hybrid films	105	
Figure 4.10 TGA Thermogramms of the films.	107	
Figure 4.11: Combined TGA & DTG for the PU films	108	
Figure 4.12: SEM micrographs of PU films	109	
Figure 4.13: Tafel plot of PU films	110	
Figure 4.14: Salt spray test results of hybrid coatings in 3.5% NaCl solution,	112	
Figure 4.15: Synthesis of APTMS-modified SiO ₂ nanoparticles	114	
Figure 4.16: Synthesis of hybridised PU with APTMS-modified SiO ₂ nanoparticle		
Figure 4.17: Picture of PU films		
Figure 4.18 The ¹ H NMR of films with modified silica nanoparticle (SNP)	117	

Figure 4.19: FTIR spectra of the PU-SNP films	118
Figure 4.20: XRD Spectra for PU-SNP hybrid films	120
Figure 4.21: TGA Thermogramms of PU-SNP films.	121
Figure 4.22: Combined TGA & DTG for PU films	122
Figure 4.23: SEM micrographs of films	123
Figure 4.24: Tafel plots for PU-SNP films	124
Figure 4.25: Salt spray test results of hybrid coatings in 3.5% NaCl solution	125
Figure 4.26 Water contact angle test	126
Figure 4.27: Synthesis of graphene oxide	128
Figure 4.28: One-pot synthesis of hybrid PU-GO composite coating	129
Figure 4.29: Photographs showing the retention transparency test of coatings	130
Figure 4.30: The ¹ H NMR of films with modified GO	131
Figure 4.31: FTIR spectra of graphene and graphene oxide	132
Figure 4.32: FTIR overlay spectra of pristine and its composite films	132
Figure 4.33: X-ray diffraction patterns of PU and its hybrid polymers	133
Figure 4.34: Combined TGA of the PU samples	134
Figure 4.35: TGA and DTG plots	135
Figure 4.36: Combined TGA & DTG for PU films	136
Figure 4.37: SEM micrographs of films	137
Figure 4.38: Tafel plot for Pristine PU and PU-GO coatings	138
Figure 4.39: Salt spray test results of hybrid coatings in 3.5% NaCl solution	140
Figure 4.40: Water contact angle.	140

LIST OF ACRONYMS AND ABBREVIATIONS

APTMS	Aminopropyltrimethoxysilane
AFM	Atomic Force Microscopy
ATR	Attenuated Total Reflectance
CSO	Castor Seed Oil
DSC	Differential Scanning Calorimetry
DTG	Differential Thermogravimetric Analysis
DMTA	Dynamic Mechanical Thermal Analysis
FESEM	Field Emission Scanning Electron Microscopy
FTIR	Fourier Transform Infrared Spectroscopy
FROCs	Functional Renewable Organic Coatings
GPC	Gel Permeation Chromatography
GO	Graphene Oxide
HDIT	Hexamethylene diisocyanate trimer
IPDI	Isophorone diisocyanate
JCO	Jatropha caucus Oil
MIBK	Methyl isobutyl ketone
NIPU	Non-isocyanate polyurethane
NMR	Nuclear Magnetic Resonance
PMAA	Polymethacrylic acid
PUs	Polyurethanes
RA	Ricinoleic Acid
RCSO	Ricinus communis Seed Oil
SEM	Scanning Electron Microscopy
TEOS	Tetraethoxysilane
TGA	Thermogravimetric Analysis

TPSO	Thevetia peruviana Seed Oil
TDI	Toluene diisocyanate
ТМР	Trimethylolpropane
UV	Ultraviolet
VOCs	Volatile Organic Compounds
WPUs	Waterborne Polyurethanes
XRD	X-ray Diffraction

ABSTRACT

Environmental challenges have driven production science towards using biodegradable and sustainable feedstocks for product development. Developing sustainable and high-performance coating materials to address the environmental concerns and technical demands of modern industries has become so critical that plant seed oils are considered viable renewable feedstocks capable of substituting petrochemical-based materials in polymeric material preparation. This study reports the synthesis and characterisation of functional organic polyurethane coatings from castor bean seed oil (CSO) (Ricinus communis seed oil). Graphene nanoparticles were modified into graphene oxide and incorporated within the polyurethane polymer matrix in a one-pot synthesis. Also, aminopropyltrimethoxysilane (APTMS) was used to alter silica nanoparticles and was incorporated into the polyurethane system. Bisphenol A and trimethylolpropane (TMP) were used as extenders, and their influences on the coating properties were also examined in the urethane systems. Physicochemical analysis of the feedstock and prepared coating formulations was conducted. Structural evaluation of synthesised materials was performed using proton nuclear magnetic resonance (^{1}H NMR) and attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy. Synthesised urethane coatings were cured on silicon resin mould and mild steel. Thermal stability and crystallinity of pristine and composite films were studied using thermogravimetric analysis (TGA) and X-ray diffraction (XRD). Scanning electron microscopy (SEM) was used to analyse surface morphology. Water contact angle analysis revealed the hydrophobicity of the synthesised urethane films. Solubility, anticorrosive, and antimicrobial properties of prepared materials were evaluated. Spectroscopic analysis confirmed the structure of modified nanomaterials, pristine, and composite films. Surface morphology and photographic images showed successful incorporation of nanomaterials (graphene oxide and hybrid APTMSmodified silica) within the polymer matrix. Thermal stability, anti-corrosive, and antimicrobial properties of the coating films were enhanced with increasing percentages of nanomaterials in the polyurethane systems. Coating films exhibited improved hydrophobicity with rising percentages of modified nanoparticles. Film photographic retention tests showed no particle agglomeration and high transparency at 0.5% graphene oxide composition (0.5% PU-GO). It also shows that the polymer with 0.5% PU-GO is the most thermally stable. Similarly, composite films of modified silica in CSO showed enhanced thermal stability, hydrophobicity, antimicrobial activity, and corrosion resistance. The polymer with 5% PU-SNP was the most thermally stable at high temperatures. It also has the highest water contact angle and lowest corrosion rate, hence the most hydrophobic and corrosion resistant. In conclusion, the 0.5% loading of modified graphene oxide (0.5% PU-GO) nanoparticles is the optimum loading in applications requiring low and high temperatures. At the same time, 5% loading is the optimum loading of APTMS-modified silica (5% PU-SNP) in applications that require high temperature. These results present a viable, sustainable alternative for various industrial applications.

Keywords: renewable polymers, castor oil, polyurethane, nanomaterial, coatings.