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Separation processes using adsorbents and membranes can be regulated by 

incorporating stimuli-responsive materials. A wide range of polymers demonstrates 

changes in characteristics and performance reacted to an external stimulus including 

pH, temperature, gases, or pressure. Among the stimuli, CO2 is a nontoxic and 

abundant stimulus that can also be easily added or removed from the separation 

processes. In this paper, the progress of CO2 responsive adsorbents and membranes 

was studied. The tertiary amine or amidine groups of the CO2-responsive polymers 

could be easily protonated by CO2 bubbling, causing characteristic changes to regulate 

the separation. The synthesis, characteristics, and separation performance were 

examined. Poly(diethyl-amino-ethyl methacrylate) (PDEAEMA) modified microparticles 

were used to adsorb protein, but protein recovery remained unclear. The grafting of 

PDEAAMA and poly(2-(di-methylamino)ethyl methacrylate) (PDMAEMA) on 

microparticles allowed the adsorption of heavy metals, but higher recovery was attained 

by PDMAEMA modified microparticles under CO2 bubbling. The CO2-responsive 

polymeric microparticles were successfully applied in forward osmosis, producing water 

from salt solution without high temperature or pressure. PDEAEMA modified 

membranes were extensively studied in the separation of oil and water mixture due to 

their switchable surface hydrophilicity. PDEAEMA and PDMAEMA modified membranes 

were also tested in nanofiltration since they exhibited changes in pore size and zeta 

potential to control pollutant rejection. Nevertheless, CO2-responsive membranes could 

be cleaned under CO2/N2 bubbling. 
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