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ABSTRACT  

Large Language Models (LLMs) demonstrate impressive reasoning abilities, yet their 

performance can falter when dealing with extensive context lengths. Techniques like 

Retrieval Augmented Generation (RAG) and Chain-of-Thought prompting seek to 

bridge this gap, but they face limitations when applied to large code-based contexts due 

to the complexity of representing inter-object relationships. Monte Carlo Tree Search 

(MCTS), a heuristic search algorithm, offers a potential solution by aiding LLMs in 

identifying crucial code repository aspects, thus facilitating downstream tasks. This 

research focuses on applying MCTS to enhance the performance of "Compact LLMs" - 

models small enough to run inference on consumer-grade GPUs. Our findings confirm 

that MCTS indeed boosts performance compared to the baseline Compact LLM. 

However, these compact models, even with MCTS, still lag behind larger models in 

performance.  

  

Keywords: large language model, compact LLM, chain-of-thought, monte carlo tree 
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