
Received 1 November 2022, accepted 12 December 2022, date of publication 22 December 2022,
date of current version 29 December 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3231622

FEDARGOS-V1: A Monitoring Architecture for
Federated Cloud Computing Infrastructures

VINGI PATRICK NZANZU1,2,3, EMMANUEL ADETIBA 1,2,4, (Member, IEEE),

JOKE A. BADEJO 1,2, (Member, IEEE), MBASA JOAQUIM MOLO1,2,3,
MATTHEW BOLADELE AKANLE1,2, KALIMUMBALO DANIELLA MUGHOLE1,2,
VICTOR AKANDE2, OLUWADAMILOLA OSHIN1,2, (Member, IEEE),

VICTORIA OGUNTOSIN 1, CLAUDE TAKENGA2,3,5, MAISSA MBAYE6,7, (Member, IEEE),
DAME DIONGUE6,7, (Member, IEEE), AND EZEKIEL F. ADEBIYI2,8
1Department of Electrical and Information Engineering, College of Engineering, Covenant University, Ota 112104, Nigeria
2Covenant Applied Informatics and Communication African Center of Excellence, Covenant University, Ota 112104, Nigeria
3Département de Génie Electrique et Informatique, Faculté des Sciences et Technologie Appliquées, Université Libre des Pays des Grands Lacs, Goma 32000,
RD Congo
4HRA, Institute for Systems Science, Durban University of Technology, Durban 4001, South Africa
5Entreprise NTIC, Infokom GmbH, 17033 Neubrandenburg, Germany
6Laboratoire d’Analyse Numérique et d’Informatique, Département d’informatique, Université Gaston Berger, Saint-Louis 32001, Senegal
7Centre d’Excellence Africain en Mathématiques, informatique et TIC, Saint-Louis 32001, Senegal
8Department of Computer and Information Science, College of Science and Technology, Covenant University, Ota 112104, Nigeria

Corresponding author: Emmanuel Adetiba (emmanuel.adetiba@covenantuniversity.edu.ng)

This work was supported in part by the Covenant Applied Informatics and Communication Africa Centre of Excellence (CApIC-ACE)
Domiciled at Covenant University through the ACE Impact Grant from World Bank through the National University Commission, Nigeria
as well as the SEC-FEDGEN research grant from France Development Agency (AFD) through the Digital Science and Technology
Network (DSTN); It was also supported in part by the Covenant University Center for Research, Innovation and Discovery (CUCRID),
Covenant University, Ota, Nigeria.

ABSTRACT Resource management in cloud infrastructure is one of the key elements of quality of services
provided by the cloud service providers. Resource management has its taxonomy, which includes discovery
of resources, selection of resources, allocation of resources, pricing of resources, disaster management, and
monitoring of resources. Specifically, monitoring provides the means of knowing the status and availability
of the physical resources and services within the cloud infrastructure. This results in making ‘‘monitoring
of resources’’ one of the key aspects of the cloud resource management taxonomy. However, managing
the resources in a secure and scalable manner is not easy, particularly when considering a federated cloud
environment. A federated cloud is used and shared bymanymulti-cloud tenants and at various cloud software
stack levels. As a result, there is a need to reconcile all the tenants’ diverse monitoring requirements. To cover
all aspects relating to themonitoring of resources in a federated cloud environment, we present the FEDerated
Architecture for Resource manaGement and mOnitoring in cloudS Version 1.0 (FEDARGOS-V1), a cloud
resource monitoring architecture for federated cloud infrastructures. The architecture focuses mainly on the
ability to access information while monitoring services for early identification of resource constraints within
short time intervals in federated cloud platforms. The monitoring architecture was deployed in a real-time
OpenStack-based FEDerated GENomic (FEDGEN) cloud testbed. We present experimental results in order
to evaluate our design and compare it both qualitatively and quantitatively to a number of existing Cloud
monitoring systems that are similar to ours. The architecture provided here can be deployed in private or
public federated cloud infrastructures for faster and more scalable resource monitoring.

INDEX TERMS FEDARGOS, federated cloud computing, monitoring, OpenStack.

The associate editor coordinating the review of this manuscript and

approving it for publication was Rentao Gu .

I. INTRODUCTION

Cloud computing has become a common and critical concept
in the field of Information Technology (IT) [1]. At this point,

VOLUME 10, 2022
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 133557



V. P. Nzanzu et al.: FEDARGOS-V1: A Monitoring Architecture for Federated Cloud Computing Infrastructures

all one can do is speculate on how technology will evolve
in response to new paradigms and which applications will
migrate to them. The economic, social, ethical, and legal ram-
ifications of technology are likely to evolve, requiring users
to rely on enormous data center infrastructure while storing
their private data and software on decentralized platforms [2].
Several types of IT-based systems have demonstrated

in the last two decades that the trend in cloud comput-
ing has moved from a single service provider paradigm
to Interconnected Cloud Computing Environment (ICCE)
paradigm, with several distributed public and private cloud
platforms [3]. Cloud computing is likely to benefit and sup-
port science and engineering applications, data mining, IoT,
computer finance, gaming, and social networking, as well as
many other high-performance computing and data-intensive
activities. In addition, a broad range of data, from high-energy
physics experiments and various computations, financial or
organizational data management to personal data such as
images, addresses, videos, and movies, can be stored in the
Cloud [2], [4], [5].
ICCE paradigm is essentially the use of capabilities from

many cloud platforms from multiple suppliers or Cloud
Service Providers (CSPs) to manage, optimize, and expand
operations. Several CSPs combine their resources under
this paradigm to suit the needs of customers. In the ICCE
paradigm, CSPs share their resources via regulated federa-
tion. Inter-cloud, federated cloud, multi-cloud, and intercon-
nected cloud infrastructures are called ICCE paradigm [6].
In any cloud paradigm, CSPs are in charge of managing

computational resources (hardware, CPU, storage, applica-
tions, etc.) [7]. Management of resources is a crucial aspect
of any human-made system because it impacts the three
fundamental factors for assessing it: functionality, perfor-
mance, and cost [2], [8], [9], [10]. Inefficient management
of resources has a clear and direct significant negative influ-
ence on efficiency and cost, and an implicit impact on the
system operations. Due to poor efficiency, certain functions
can become extremely costly or even ignored. However, apart
from the intrinsic advantages that accompany the federation
of CSPs, management of the pool of resources becomes
challenging.
In a federated cloud architecture, the resource management

taxonomy consists of pricing and billing, discovery and provi-
sioning, selection and policy, monitoring and metering, allo-
cation, disaster management, optimization, federation man-
agement, Service Level Agreement (SLA) management, and
security and identity management.
A cloud-based IT infrastructure’s operational workflow

can be reviewed, monitored, and managed through the cloud
monitoring process [12]. The cloud resource monitoring
function provides broad monitoring services and infrastruc-
ture information and data, such as access control, service
elasticity, service billing, and management of the Service
Level Agreement (SLA), etc. [13]. Cloud resource moni-
toring contributes in addressing features such as scalability,
openness, accuracy, and flexibility [14].

A federated cloud is characterized by the fact that resources
are shared in a highly dynamic environment with unpre-
dictable loads. In addition, the setting may often change
because of several policies related to the heterogeneity of
the environment. Also, different middleware stacks are in
use by various CSPs to facilitate different characteristics
and capabilities of each node. A group of nodes could be
optimized for CPU-intensive computation while others will
be optimized for Input/Output throughput. Consequently,
a cloud monitoring system should be aware of logical and
physical groups of resources and should organize monitored
resources according to certain criteria to separate and locate
the monitoring functions. Another issue is related to the scal-
ability of the system in terms of processing and bandwidth
overhead. The plethora of Virtual Machines (VMs) forming
the cloud environment is equipped with several physical and
logical sensors collectingmonitoring data. These components
can eventually generate a considerable amount of network
traffic that consumes precious network bandwidth. Hence, the
monitoring support should be as least intrusive as possible
by adopting lightweight processing and communication solu-
tions that limit the additional overhead. It also must assure
timely monitoring of data delivery.

This paper presents an enhanced monitoring architec-
ture that extends the existing Distributed Architecture for
Resource management and mOnitoring in cloudS (DAR-
GOS) in the literature [15], Notably, DARGOS monitoring
solution has a huge potential to fit in a federated cloud
infrastructure because it is a flexible and robust monitoring
solution for cloud environment based on publish/subscribe
paradigm. Moreover, DARGOS uses the Data Distribution
Service (DDS) standard to focus on data representation and
communication aspects. In addition, DARGOS organizes
monitoring among cloud nodes and interested peers in a fully
distributed manner, enabling timely, flexible, and reliable
monitoring in highly dynamic and multi-tenant cloud pro-
visioning scenarios [15]. DARGOS allows the consumer to
have the versatility of controlling granularity according to
his/her requirements. However, DARGOS does not fit well
into federated cloud platforms in addition to other limitation
that listed here:

i. Quality of Service (QoS) is not its main priority.
ii. There are no specific measures taken to guarantee low

latency.
iii. System scalability in terms of processing and band-

width overhead is another crucial issue. For instance,
medium-sized Cloud data centers frequently have
hundreds of physical hosts and thousands of virtual
machines (VMs); at worst, large ones can quickly have
more than a thousand physical hosts with multiple
VMs that are each outfitted with a number of physical
and logical sensors that collect monitoring data. These
frameworks have the potential to eventually produce a
significant volume of network traffic, using up valuable
network bandwidth.

133558 VOLUME 10, 2022



V. P. Nzanzu et al.: FEDARGOS-V1: A Monitoring Architecture for Federated Cloud Computing Infrastructures

Thus, our proposed architecture named FEDerated Architec-
ture for Resource manaGement and mOnitoring in cloudS
(FEDARGOS-V1) is specifically designed for federated
cloud monitoring needs, in order to overcome some of the
limitations in the existing DARGOS. To overcome these
shortcomings:

i. Through the use of minimally-invasive processing and
communication techniques, FEDARGOS-V1 aims to
be as unobtrusive as feasible.

ii. FEDARGOS-V1 must guarantee the prompt distribu-
tion of monitoring data.

iii. FEDARGOS-V1 must also confirm certain require-
ments in terms of information granularity, correctness,
and update frequency for multi-tenant implementa-
tions. Consider the possibility of unmanageable over-
load if each interested node had a different update rate.

The remainder of this paper is organized as follows. Section II
presents the major requirements and design parameters for
a cloud monitoring architecture and provides an overview
of a comprehensive selection of related research initiatives
in the subject area. The proposed architecture and its basic
features are described in section III. Section IV delves into
the presentation of visualizing the monitored data followed
by the experimental results that allow the assessment of the
developed architecture. Finally, Section Vwraps up the paper
by presenting the conclusion and outlining future research
prospects.

II. LITERATURE REVIEW

Cloud computing is one of the modern computational tech-
nologies that may help to solve problems associated with
dynamic growth of data, increasing computing resources
requests, and the need for extended storage space. Cloud
computing provides much storage, compute resources, net-
working, hardware, and software applications as services, and
all of that on-demand [16]. In contrast, one of the significant
disadvantages of cloud computing is that small CSPs do not
have sufficient capacity to cope with peak demand. Maintain-
ing resources to meet high demand may serve as a palliative
function and contributes to wasting energy and resources,
thereby raising costs and likely decreasing resources over
their life cycles [17]. With time, several CSPs started pool-
ing resources to build the federated cloud to address these
limitations.

A. CLOUD COMPUTING

Cloud computing has gotten a lot of attentions for its capacity
to provide affordability, sustainability, flexibility, reliability,
and scalability. Pay-per-use, the cloud’s cornerstone concept,
has enticed not just individuals but also organizations to
take advantage of the new form of income [18]. However,
besides the advantages of cloud computing, the model’s com-
plexity and underlying technology have raised management
and security issues. The complexity of management issues
increases as the number of involved aspects such as network,

APIs, hardware, and architectures in the cloud paradigm
grows [19].

The service-based paradigm has been established as a
cloud computing standard by the National Institute of Stan-
dards and Technology (NIST). Infrastructure-as-a-Service
(IaaS), Platform-as-a-Service (PaaS), and Software-as-a-
Service (SaaS) are the three major models that NIST uses to
define all IT sharable resources like software, hardware, and
networks [20]. Moreover, NIST has given essential enabling
service characteristics of cloud technology, which include:

i. On-demand self-service: Calculation of processing
resource, network, storage, and server utilization can
be automatically done for the client, with no human
interaction required.

ii. Broad network access: All services are available over
the network and can be accessed from a variety of
devices, including PCs, Personal Digital Assistant
(PDA), and mobile phones.

iii. Resource pooling: A multi-tenancy solution serves
numerous clients while pooling resources and allo-
cating virtual and physical resources on a client-by-
client basis. These resources have ambivalent locations,
which means the client doesn’t have control over or
knowledge of the specific location of the resources in
question.

iv. Rapid elasticity: Services can be delivered promptly
and in a variety of ways. The resources providing the
required services to the client are frequently uncon-
trollable and can be acquired in large quantities at any
moment. Moreover, in some cases, scaling can be done
automatically.

v. Virtualization: Abstraction of building a computer that
allows for resource splitting in the cloud infrastruc-
ture. Sharing resources is possible with the use of a
Virtual Machine (VM) and a file called image, which
can be created by users or obtained from outside
sources.

vi Cloud Management Platform (CMP): Virtual servers,
computers, and infrastructure aremanaged by the CMP.
It also oversees their execution, operation, and proce-
dures. In addition, CMP oversees both the software
and the back-end hardware. The CMP’s functionality,
on the other hand, varies depending on the virtual envi-
ronment and cloud services in use.

Even though technology giants like Google, Microsoft, and
IBM strive to give the best solutions to consumers, each
has its own proprietary CMP. They offer public cloud ser-
vices to users who, unfortunately, do not have complete
control over application access. Hence the growing inter-
est in various open-source CMPs. Open-source CMPs such
as OpenStack, Eucalyptus, OpenNebula, CloudStack, and
others are becoming increasingly popular these days since
they enable the creation of a private cloud in a quick and
cost-effective manner while giving end users complete access
control.

VOLUME 10, 2022 133559



V. P. Nzanzu et al.: FEDARGOS-V1: A Monitoring Architecture for Federated Cloud Computing Infrastructures

B. FEDERATED CLOUD APPROACHES

A federated cloud (also called cloud federation) is the deploy-
ment and management of multiple external and internal cloud
computing services to match the business needs of two or
several CSPswho pool their resources together. The federated
cloud infrastructure operated by a federated cloud broker
provides a single mechanism for managing different clouds.
In sharing their resources with the federated ecosystem, each
cloud participant makes an agreement with the federated
broker [26]. This arrangement covers all technological and
financial implications of the cloud federation. A federated
cloud enhances the essential characteristics that define cloud
computing. These characteristics include the on-demand self-
service, broad network access, resource pooling, limited scal-
ability and elasticity, the measured services, and the lack of
interoperability among CSPs.
There have been a number of works providing various

architectures of cloud federation. The authors in [27] pre-
sented the Dynamic Collaborative Cloud (DCC), with the
particularity of federating several CSPs without the use of
any intermediate component. DCC’s functioning principle is
based on picking one of the collaborating CSPs as the primary
cloud, and the remaining clouds work together to improve the
availability of the resources in the primary cloud.
The RESERVOIR was presented in [28]. RESERVOIR

is a federated cloud system without resource provisioning
facilitator agents. In RESERVOIR, the resources of all partic-
ipating CSPs are partitioned to support numerous application
components that are processed independently of one another.
For their execution, each component of a given application
uses the required resources from anywhere in the resource
pool of the federation.
In [29] and [30], the authors presented the InterCloud

infrastructure. To organize all the CSPs in the federation,
InterCloud uses a central third-party component called ‘‘bro-
ker.’’ The broker distributes the federated resources to a
second-level broker, which in turn supplies users with the
resources. On the other hand, authors in [31] came up with
a different configuration of InterCloud. The principle here
is to keep a global resource availability information repos-
itory in all clouds. Replicas of this repository, provided to
brokers selected by various stakeholders, facilitate media-
tion across clouds and the distribution of resources to con-
sumers. In [32], the authors provide a simple prototype of
cloud federation architecture. They outlined how the whole
platform was developed by providing different methods for
implementing the basic modules of the infrastructure. They
concentrated on the implementation of metering and billing
modules that are very reliable and effective. Experiments
were carried out with the help of two CSPs using Open-
Stack and CloudStack, respectively. The experimental results
revealed that the prototype successfully federates the two
providers. Furthermore, to meet their technological needs
and the associated price, consumers also have a choice of
selecting the best service. Each CSP in the federation does not
require customers to register separately. However, the com-

munication gap between CSPs, dynamic resource allocation,
cost changes, policy regarding multiple customers seeking to
reach a single instance, security issues, and policies relating
to cloud-based membership within a federation are some
important aspects which must be addressed in production
scenarios.

Besides well-defined architectures, there are various soft-
ware systems that facilitate cloud federation and multi-cloud.
In [33] and [34], the authors introduced the ‘‘Contrail’’
approach for cloud federation. Contrail is a core federated
cloud-building software entity and acts as a bridge between
the cloud environment and its users. The Contrail operating
principle lies in its ability to monitor all cloud operations in
the federation, giving each cloud a distinct identity.

OPTIMUS is a toolset presented in [35]. It facilitates the
implementation of both cloud federation and multi-cloud.
This toolkit has two components, one is necessary to acquire
resources for applications and the other is important to the
cloud to allow interoperability and resource provisioning.

Federated Cloud Management (FCM) builds cloud federa-
tion infrastructures by deploying all the clouds region of the
federation with a software component to facilitate resource
distribution and other administrative operations [36].

mOSAIC [37] and STRATOS [38] are open-source APIs
for building cloud federation and multi-cloud setups.

C. CLOUD MONITORING ARCHITECTURES

Cloud computing is becoming the de-facto method of build-
ing Internet-scale systems day after day. The progress of
cloud computing, and by extension cloud monitoring, which
is an essential component of resource management, is conse-
quently critical to the development of the next Internet-based
services. Cloud computing has its own set of characteristics,
which makes monitoring even more difficult [39]. Effective
monitoring aids system engineers in making an informed
decision about how to enhance their systems by addressing
performance bottlenecks and security vulnerabilities. System
design, debugging, troubleshooting, maintenance, billing,
cost forecasting, intrusion detection, compliance, testing, and
more can all be linked with monitoring [40].

Monitoring, at its most basic level, is a three-step process:
collecting relevant data, analyzing the aggregated data, and
making decisions as a result of the analysis. Simple programs
that probe system states, such as the UNIX utilities (i.e. df,
uptime, or top) are the most basic monitoring tools [41].
These tools are utilized by a user who analyzes the current
status of the system and decides what action to take. As a
result, the user (not software) performs the vast bulk of the
monitoring process. As computer systems expand in size
and complexity, there is a growing demand for automated
monitoring solutions that decreases or eliminate the need for
human intervention. All or part of the three stages monitoring
procedure should be implemented by these systems. How-
ever, each of these stages has its own set of problems, particu-
larly in terms of federated cloud computing [42]. Some of the
existing cloud monitoring solutions are hereafter presented.

133560 VOLUME 10, 2022



V. P. Nzanzu et al.: FEDARGOS-V1: A Monitoring Architecture for Federated Cloud Computing Infrastructures

The rapid rise in cloud use brings with it some significant
challenges. One of the problems with the metric data config-
uration is the lack of details. The shortage of virtualization-
based security tools is another problem. The problems,
as described above, are dealt with in [43], which introduced
an adaptive Monitoring Platform-as-a-Service (MonPaaS).
MonPaaS is an open-source, online and implementable tool.
The author suggested two separate monitoring modes: mon-
itoring of cloud providers and monitoring of users. Also,
Nagios with OpenStack were integrated [44]. MonPaaS’s
strength is its ability to intercept OpenStack’s message queue
and use messages to update VM information. The MonPaaS
module is provided to both cloud providers and users in the
form of an API. This creates a separate Monitoring VM
(MVM) for each new cloud user to perform the monitoring
function. MonPaaS tracks physical and virtual resources as
well as updates any physical or virtual infrastructure changes.
It performs agentless monitoring, which guarantees a high
level of consumer safety. MonPaaS’ drawback lies in its
method when building separate MVM; it requires additional
physical resources. MonPaaS is an advanced IaaSMon ver-
sion [45].
Nagios is a well-known standard monitoring tool that mon-

itors various deployments of servers. It is an open-source tool
that, in its simplest configurations built upon a two-tier hier-
archical architecture [46]. The monitoring server is populated
with a configuration file that details all the monitored servers
with their services. In the process of monitoring, Nagios
generates a schedule, then probes all the servers and examines
each service according to the schedule. Nagios doesn’t suit
perfectly with cloud monitoring. A large amount of manual
configuration is needed, including adjusting configuration
when controlled VMs are instantiated and terminated.
Zabbix was firstly introduced in Tader’s work [47] as a

cluster monitoring tool. The monitoring solution Zabbix is
built for server/agent architecture. The Zabbix server operates
on a separate machine so that data sent by Zabbix agents can
be collected and aggregated. The Zabbix solution supports
a warning system that activates when predefined events and
conditions occur, such as whenmemory consumption reaches
80%. These warnings are helpful in that the stimuli activate
preparations for adaptation, such as measures for elasticity.
SQL databases store calculated measurements, and data is
accessed via a Web front-end and an API Iqbal et al. [48]
proposed an extension of Zabbix to meet the needs of cloud
monitoring.
The monitoring of a private cloud is a problem since most

commercial cloud solutions are extremely expensive [42].
An open-source architecture has been proposed for cloud
monitoring in [59] to tackle this issue. The architecture pro-
posed is split into three layers: (i) infrastructure, (ii) inte-
gration, and (iii) view. The infrastructure layer addresses
the appropriate hardware, software, and operating system.
Alternatively, the virtualization system and hypervisors are
dealt with in an abstraction layer. The monitoring interface
is the responsibility of the view layer (it is known as the

Dashboard). Depending on their needs, this interface can have
different perspectives for different users. A Private Cloud
Monitoring System (PCMONS) was implemented based on
this architecture.

In clouds, a large-scale distributed virtualized system’s
multi-tenancy and sophistication present new problems when
considering cloud monitoring. In terms of data repre-
sentation, storage, processing, and delivery, cloud moni-
toring faces problems. A cloud monitoring method has
been suggested in Tovarnñák & Pitner (2012) to focus on
data collected from cloud monitoring VMs. This empha-
sizes the basics of the data monitoring producer and has
addressed data representation, storage, transmission, and
delivery monitoring issues. A conceptual solution called
New-Generation-MONitoring (NGMON) was introduced as
a proof of concept. The data collection feature of NGMON
is defined as logs, warnings, and business operations on an
event-based framework and stored as a specified structure in
typed data form. In the next stage, the data are encoded as an
event object in JavaScript Object Notation (JSON) format.
The Access Control List (ACL) is used to ensure security-
based authentication. Query evaluator is used to query/react
to track user details once the link has been established. The
publish/subscribe program is employed for customer-specific
monitoring demand. In order to present a system protocol
based on TCP, a hybrid communication model was used.
NGMON also provides support for Secured Socket Layer
(SSL) encryption.

The sophistication of cloud systems raises problems when
proffering inefficient monitoring approaches for large dis-
tributed infrastructures Montes et al. (2013) proposed a lay-
ered cloud monitoring architecture called GMonE (Global
Monitoring systEm) to solve these problems. The architecture
of GMonE consists of four main components: GMonEmon,
GMonEDB, GMonEAccess, and monitoring plug-ins. In the
cloud, GMonEMon collects and sends metric information
to GMonEDB. Monitoring plug-ins in the form of appli-
cations for monitoring execution are part of GMonEMon.
As a database, GMonEDB is responsible for collecting and
handling GMonE monitoring data. The GMonEAccess is a
user interface that allows a user to easily access the data.
To prove their theory, they used OpenNebula to test GMonE
on Grid’5000 [51]. Results have shown that it has lim-
ited overhead control regarding the consumption level of
computing and communication services. The research sug-
gested using a publish/subscribe model for exchanging mes-
sages. Publish/subscribe, however, faces issues, including
rigid semantic relation and message transmission problems
that affect the factor of trustworthiness [52].

Cloud administrators establish policy provisions based
on full awareness of the infrastructure’s physical resources
and facilities. A robust and up-to-date cloud infrastruc-
ture awareness is challenging if multi-tenant and complex
cloud middleware stacks are considered. To fix this issue,
Povedano-Molina et al [15] developed the Distributed Archi-
tecture for Resource manaGement and mOnitoring in cloudS

VOLUME 10, 2022 133561



V. P. Nzanzu et al.: FEDARGOS-V1: A Monitoring Architecture for Federated Cloud Computing Infrastructures

(DARGOS). DARGOS allows the consumer to have the ver-
satility of controlling granularity according to his/her require-
ments. DARGOS was introduced in Povedano-Molina et al.
[15] as a project on OpenStack.
A cloud user’s satisfaction level toward the negotiated

Service Level Agreement (SLA) plays a critical role in cloud
usage and CSP partnerships. Currently, most cloud moni-
toring systems devote little interest to the aforementioned
parameter’s user-side computation. Authors have addressed
this issue in [53] by proposing a monitoring architecture
called Monitoring SLA for Restful Services (MonSLAR).
Thework is a long-term project aiming at buildingMonSLAR
as an actual working method. The authors predicted two
control rates in the proposed architecture: the consumer one
and the CSP’s. MonSLAR provides users with details about
the accepted level of service based on SLA, which is either
reached or not. MonSLAR offers a benchmark for customer
satisfaction for the service provider by collecting Quality of
Experience (QoE), which the cloud service provider uses as
a crucial performance monitoring metric to meet SLA. The
study focused primarily on fulfilling the SLA criterion. The
analysis, however, ignored the metrics information and it
didn’t explain why their program should determine the SLA
breach based on what metrics.
Cloud monitoring applications find cloud environments

where Virtual Machines (VMs) and containers are essen-
tially not part of the cloud operating system. Containers and
VMs are generated and killed in a cloud environment with
remarkable amount of time. Suneja et al. (2016) proposed
a brand-new Cloud monitoring paradigm called Near Field
Monitoring (NFM) to deal with this problem. The moni-
toring agent does not interfere with or install within the
host VM to offer monitoring and operational and analytical
services; thus, this is a new type of tracking. Because it
does not execute any additional application or resource in the
VM/container, a user/host can opt-in and opt-out in NFM.
Using NFM, a cloud provider can get a wide view of its
resources and VMs. The authors used data from the kernel
to obtain monitoring metrics. They also tested more than
1000 Linux flavors for NFM, and it performed well without
any modification.

III. FEDARGOS-V1 FOR FEDERATED CLOUD

INFRASTRUCTURE

DARGOS is comprised of 3 major engines: the configuration
engine, the statistics engine, and the query engine. These
engines operate to assure the collection, storage, and analysis
of the monitoring data in order to provide a full suite of
monitoring functionality. The coordination service, provided
by the configuration engine, which is the foundation upon
which the other services work, offers a method for the com-
ponents to communicate as well as VM registration, con-
figuration storage, and decision-making. In order to provide
a monitoring architecture that satisfies the need to monitor
a federated cloud infrastructure, the study at hand extends
the configuration engine and adds an alarm engine, which

will be in charge of handling different alerts and notifica-
tions. In addition, an interface is built to provide CSPs or
cloud tenants with an easy-to-read monitoring console.The
extended DARGOS is thus named FEDerated Architecture
for Resource manaGement andmOnitoring in cloudSVersion
1.0 (FEDARGOS-V1).

A. DARGOS CONFIGURATION, STATISTICS, AND QUERY

ENGINES

1) CONFIGURATION ENGINE

A very secure, scalable, and dependable part of DARGOS,
the configuration engine performs the duties of a highly
distributive system to make it possible to administer the cloud
infrastructure effectively and establishes the monitoring strat-
egy. A monitoring strategy identifies the variables and events
that should be watched, the tools that should be utilized,
the participants, and the actions that should be performed.
A monitoring strategy is thus a sociotechnical process that
includes both software and human agents. The configuration
engine also enabled the definition of several roles and views
for different user types with various access rights to moni-
toring data. Additionally, it gives users the option to define
metrics, which enables them to cover variables unique to a
particular setting.

2) STATISTICS ENGINE

The statical engine permits assessments of the dynamics of
the cloud infrastructure in typical circumstances, or when
anomalies do not alter the observations. The engine calculates
the total dynamics while taking into account how the infras-
tructure is used, displaying structural correlations, residual
dynamics, and measurement errors based on predetermined
criteria. The ability to view data on the usage of cloud
resources on a per-domain basis, as well as monitor server
health indicators, user actions, and connections, is provided
via automatically generated statistics.

3) QUERY ENGINE

The query engine is a component that runs queries to respond
to tenant requests on top of the configuration engine and
the statistic engine. The advantage is that the query engine
may be directed to the precise location of the data instead
of having to transport the data to various nodes in the cloud
infrastructure. The query engines offer the same capabilities
as data warehouses did, but they do so using a somewhat
different strategy that separates storage from computation
with a focus on elasticity and scalability.

The subsequent subsections present how the components
of DARGOS are extended to derive FEDARGOS-V1

B. THE CONFIGURATION ENGINE

The configuration engine is a robust and highly available
pool of configurations that additionally provides agreement,
storage configuration, communication paradigm, and failure
detection to the other components within DARGOS. It is

133562 VOLUME 10, 2022



V. P. Nzanzu et al.: FEDARGOS-V1: A Monitoring Architecture for Federated Cloud Computing Infrastructures

FIGURE 1. Cloud resource management taxonomy and features.

a self-contained service with no external dependencies, and
it is designed to keep running even when there are a lot
of failures. Every VM in the monitored infrastructure runs
a coordinator daemon, but the purpose of each coordinator
varies, ranging from participating in relevant agreements to
detecting network, storage, and image failures.
Configuring and coordinating components become a chal-

lenge when developing heterogeneous systems. The use of
an existing configuration engine as the foundation for a new
monitoring architecture has a number of drawbacks. Firstly,
such engines are frequently constructed on enormous stacks
that require a plethora of dependencies, resulting in a foot-
print far beyond what is necessary. Secondly, the current
configuration engine is intended to be used by a single cloud
service provider. As a result, a configuration engine failure,
loss of performance, or other issues would have an impact
on important applications and the monitoring service. Thus,
the monitoring tool is unavailable or impaired when it is
most needed. Therefore, this study presents a customized and
dedicated configuration engine that is designed to handle a
wide range of failure scenarios in many nodes from various
cloud service providers in the federation in order to simplify
overall monitoring.
To meet the demand for multi-tenancy awareness, DAR-

GOS, implements a publish/subscribe distributed architec-
ture based on Node Monitor Agents (NMAs) and Node
Supervisor Agents (NSAs) where NMAs are responsible for
gathering monitoring data and transmitting it to interested
parties, while NSAs are the user’s access points to the cloud
monitoring data. However, an adjustment in the placement of
the NMAs and NSAs is required. Accordingly, the NSA com-
ponent provides a versatile API that allows users to read local
monitoring data stored in each cloud infrastructure node.
To demonstrate multi-tenancy capability in a federated

cloud environment, each cloud service provider is referred to
as a region. Each tenant is assigned to a certain region so that
they can see the cloud in their own way. Each node (a node
representing a server or VM) is associated with one NMA,
but one NSA may be interested in collecting monitoring
information from each node, resulting in the association of
oneNSAwith each region. Finally, the broker node is coupled
with an NSA that unifies all regions.

FIGURE 2. Multi-tenancy Support Behavior of NSAs and NMAs
Communication Model in the Proposed FEDARGOS-V1.

FIGURE 3. Flowchart for Monitoring Agents Communication in
FEDARGOS-V1.

Figure 2 depicts the support of the multi-tenancy behavior
by the configuration engine.

Figure 2 shows the communication model handled by the
configuration engine in the federatedmonitoring architecture.
Each NMA is linked to a single node. Each tenant has an NSA
that receives monitoring data from multiple nodes, and the
broker node has an NSA that receives monitoring data from
all of the regions’ nodes.

Figure 3 shows the flowchart for the process of collecting
monitoring information by different NMAs and its transmis-
sion to NSAs of the interested parties.

NMAs and NSAs are implemented in the configuration
engine as APIs with the goal to make the access to monitored
data easier. These APIs are built to be as expressive and flexi-
ble as possible in order to easily designate the nodes the NSA
wish to monitor, get the most recent measured value for a
specific resource as well as its latest historical measurements,

VOLUME 10, 2022 133563



V. P. Nzanzu et al.: FEDARGOS-V1: A Monitoring Architecture for Federated Cloud Computing Infrastructures

and verify the capacities of resources automatically detected
by querying about their status. Every compute service and
every nova component in the federation have NMAs attached
to them in order to collect data on physical node and hypervi-
sor statistics. Additionally, the monitoring solution can make
more flexible resource allocation decisions thanks to the
current DARGOS-based scheduler that employs the resource
statistics information gathered by the NSAs.

C. THE ALARM ENGINE

Alarms are typically used to notify users of anomalous pro-
cesses in an infrastructure’s operational procedures. They can
take the form of both audio and visual announcements. Noti-
fications are often triggered when a specific process variable
(measured by a dedicated sensor) surpasses a predetermined
limit or threshold. The alarm engine within the monitoring
architecture ensures alarming capabilities, and it requires
maintenance to maintain its optimal performance and full
functionality.
The alarm service in a monitoring architecture seeks to

provide a service that allows triggering actions based on
defined rules to be applied to monitor metrics or event data
acquired by monitoring agents. The alarm service’s respon-
sibilities include triggering alarms when gathered metering
or event data violates set rules, as well as inducing actions
of the notification handler, which selects when to fire alarms
and when to notify cloud tenants. The alarm Engine is made
of three major components, the Alarm Database, the Alarm
Generator, and the Notification Listener:

i. Alarm Database: The Alarms Database component is
a database that maintains a set of data that describes
an alarm raised by the fault detection mechanism. The
alarms database includes a finite number of groups by
which each alarm is categorized, in addition to keeping
track of the fault detection mechanism’s working his-
tory. The alarm engine searches the alarms database for
a similar alarm category before issuing an alarm to the
appropriate parties. This is important for reducing the
number of messages sent because multiple alerts can
be substituted with a single alarm that has a stronger
impact.

ii. Alarm Generator: The Alarms Generator is notably
made up of the Alarm Evaluator which determines the
severity of an alarm and the Alarm Notifier which is
responsible for sending notification to cloud tenants
and CSPs. Alarms are set using the alerting policy.
A cloud administrator’s alerting policy specifies the
circumstances in which he or she wants to be warned
and how he or she wants to be alerted. Metric-based
alerting policies or log-based alerting policies are two
types of alerting policies that are used to track the
metric data acquired by the monitoring architecture
[54]. However, metric-based alerting policies are used
in this work.

iii. Notification Listener: The Notification Listener is
responsible for polling monitoring data on a regular
basis and sending it to the monitoring architecture’s
NMA for processing, including converting messages to
events.

The alerting policy provides the ability to define criteria and
conditions, and these criteria are based on metrics. An alert-
ing policy condition can keep track of things like when a
metric reaches a certain value (threshold) or when it starts to
change rapidly. Metrics are linked to resources and measure
some aspect of that resource, such as average CPU utilization
across instances, the VMs in use, the overall storage, the
memory, the swap memory, and the networking.

The alarm engine can detect and provide different
alarms/alerts mechanisms including i) Anomaly Alarm, ii)
Intrusion Alarm, iii) Billing Alert, iv) SLA Alert, and etc.

The process for calculating the alarm severity level is
described in Algorithm 1. The Alarm Generator refers to the
Alarms Database to determine the severity level. A cloud
tenant of the federated cloud environment may interact with
the Alarm Generator to affect the process of determining the
alarm severity level. The tenant can estimate the significance
of an attack in comparison to others based on their compre-
hension by increasing the initial severity level. For example,
a cloud tenant may adjust the algorithm to favor a DoS attack
over a Portsweep assault.

Algorithm 1 Alarm Severity Level Detection in
FEDARGOS-V1
Input: nTraffic, opK[]
Output: severity[]

Start
function idsFrame(nTraffic)

while (nTraffic >= 1) do
frame = [identity_of_Frame, frame_element]

end
return frame

end function
function getSeverity (nTraffic, opK[])

var currentFrame = idsFrame (nTraffic)
for each element e in currentFrame do

if (hasAlarm(e)) then
var vType = classify (e)
var nAlarm [vType] ++

end if
end for
for each element e in nAlarm [] do

var severity [e] = k(nAlarm [e], opK [e])
end for
return severity []

end function
End

The first step in Algorithm 1 is to examine network traffic
(nTraffic) within a current frame provided by the fault detec-
tion system. This function looks for faults, classifies them

133564 VOLUME 10, 2022



V. P. Nzanzu et al.: FEDARGOS-V1: A Monitoring Architecture for Federated Cloud Computing Infrastructures

FIGURE 4. Notification Handling Flowchart for FEDARGOS-V1.

using the Alarms Database, and assigns a severity rating.
Based on the number of alarms and the operator’s knowledge,
the severity function computes the severity of a fault. The
severity function is based on a regression model derived from
network traffic and operator knowledge (opK) patterns [55].
Thus, the severity is obtained by equation (1).

severity = k(nAlarm[e], opK[e])

= nAlarm0 ∗ opK [e] + nAlarm1 ∗ opK [e]

+ . . . + nAlarme ∗ opK [e] (1)

The severity level for various types of alarms is set by the
cloud administrator. This stops cloud tenants from receiving
redundant alarms. In the process of creating alarms, the sys-
tem administrator calls the severity function while setting up
the different thresholds.

The alarm engine relies on the metrics feature, which
is a gauge that relates to a resource’s health, capabil-
ity, or performance. The NMA receives metrics from
resources, services, and applications. Moreover, when met-
rics match alarm-specified triggers, the monitoring architec-
ture’s (FEDARGOS-V1) alarm functionality works with the
notification service to notify the tenants. Figure 4 shows the
flowchart of the notification handling process of the monitor-
ing architecture.

Alarms are set using the Monitoring Query Language
(MQL) expressions. A threshold, statistics, interval, and trig-
ger rule must all be specified in an alarm query. The admin-
istrator transmits Alarm queries to the cloud environment
through alarm creation APIs. The parameters of an alarm
creation API include the project to which the alarm is related,
the user responsible for the alarm, the VM to which the alarm
is related, the time constraint, which states the interval of time

FIGURE 5. The broker based federation architecture for FEDGEN Testbed
Regions.

it takes for the alarms to be returned, the maximum number of
items to be returned, and the type of alarm. The monitoring
architecture alarm feature interprets the responses to moni-
toring queries. These responses are in the form of Boolean
values, with zero indicating false and non-zero indicating
true. When a true value is returned, it means that the trigger
rule constraint has been met.

IV. IMPLEMENTATION AND EXPERIMENTAL RESULTS

This section focuses on the implementation specifics of
FEDARGOS-V1. First the testbed setup is presented fol-
lowed by an overview of a created Web-based console tool
for Federated Cloudmonitoring. Finally, experimental results
and the evaluation of the performances of FEDARGOS-V1 as
well as its benchmarking with existing architectures are pre-
sented. The existing monitoring architectures such as Nagios
andDARGOS for standalone cloud infrastructure are selected
for the benchmark of the developed FEDARGOS-V1 whilst
the parameters including the Response Time, the Network
Traffic Flow, and the Scalability Factor are used to establish
the performance results.

A. THE FEDGEN TESTBED

The FEDGEN testbed [58] makes use of a Broker to manage
resource negotiations between end-users and CSPs within the
federated cloud environment. The testbed is built with Open-
Stack middleware. Two regions form the FEDGEN testbed,
a multi node cloud deployment and a single node cloud
deployment. The minimum requirements to build a multi
node cloud infrastructure are 6 Bare Metal servers, and a
network switch.Whereas, theminimum requirements to build
a single node cloud infrastructure include a single Bare Metal
server with internet connectivity.

The Broker acts as the federation’s main door and is in
charge of allocating the resources present in the heteroge-
neous pool of resources in a coordinated manner. There are
gateways between the Broker and different cloud regions.
Gateways are proxy processors that forward requests from
the broker to the cloud regions and convert resource requests
into commands that the cloud regions can comprehend. This
is depicted in Figure 5.

There are four tiers to the Cloud Broker node in the archi-
tecture of the FEDGEN testbed:

VOLUME 10, 2022 133565



V. P. Nzanzu et al.: FEDARGOS-V1: A Monitoring Architecture for Federated Cloud Computing Infrastructures

i. End-user Interface: This tier is responsible for the
reception of services requirements. It turns them into
execution terms for resources that can address these
needs. It is also in charge of the management of service
access credentials.

ii. Core Services: This layer manages a set of services
responsible for selecting the best services for end-user
application processes, discovering new services, mon-
itoring services already contracted, and negotiating
new services if an application requires to be relocated
because the current CSP can no longer offer SLA
requirements.

iii. Execution Interface: This tier communicates with the
load balancer in the federated cloud, which dispatches
the application, monitors its execution, and returns the
status to the end-user satisfaction.

iv. Persistence Tier: It handles the database that is utilized
to preserve the Cloud Broker state if there are any
failures.

The various hardware that constitutes the FEDGEN Testbed
Region 1 includes 6 DELL R620 Bare Metal servers, two
racks, and a network switch. The BareMetal servers make the
nodes of the cloud infrastructure. The hardware specification
of the Bare Metal server is as follows: Intel R©Xeon R©E5-
2620 12 cores@ 2GHz processor, 8GBRAM, 299GB (HDD)
operating system storage, 1000GB (HDD) data storage, and
four Network Interface Controller (NIC). The switch used is a
48 ports Catalyst 2960 series. On each of the servers, Ubuntu
18.04 LTS (server version) was used as the operating system.

The FEDGEN testbed Region 2 is deployed on a sin-
gle node using MicroStack. This is just one control node.
It comes with everything needed, including the ability to
operate as a compute node. The hardware specifications of the
unique node are: An Intel R©4 CoreTMi5-2400 @ 3.10 GHz
processor, 8GB RAM, and 1.0TB of disk capacity. Ubuntu
20.04.3 LTS (desktop version) was used as the operating
system on the unique node.

B. DEPLOYMENT OF FEDARGOS-V1

Figure 6 depicts the block diagram of the deployment of the
developed monitoring architecture. It shows different blocks
and components of the monitoring solution alongside the
architecture of the testbed on which the monitoring architec-
ture is deployed.

The architecture developed in this work uses FEDARGOS-
V1 APIs to provide access to monitoring information to
tenants within the federated cloud environment. However,
allowing open access to publish/subscribe infrastructure from
outside the federated Cloud might cause security and scal-
ability issues, and it necessitates significant DARGOS and
Python technical expertise. As a result, FEDARGOS-V1
provides a set of Representational State Transfer (REST)
APIs intended at providing access to monitoring data and,
as a matter of fact, increasing the monitoring architecture’s
interoperability with Web standards.

FIGURE 6. FEDARGOS-V1 deployment.

FIGURE 7. FEDARGOS-V1 JSON API response example.

For example, a JSON object containing the most recent
resource monitoring information of all the instances cur-
rently monitored by the NSA installed at the machine
172.16.60.22 can be obtained by simply entering the
http://172.16.60.22:8774/v2.1/servers/ URL. Figure 7 depicts
an example of FEDARGOS-V1 JSON encoded monitoring
information.

Although the JSON communication format is human-
readable, it is difficult for users to comprehend and often
requires further processing to create user-friendly displays
of monitored information. To address this problem, the
FEDARGOS-V1 includes a Web-based console that displays
collected monitoring information in a user-friendly and easy-
to-read format. FEDARGOS-V1 gives important information
about all of the apps running within the federated cloud
architecture. Relying on OpenStack middleware in this work,
the major applications that are monitored include networking
(Neutron), storage (Cinder), compute (Nova), image service
(Glance), and the telemetry for alerts and notifications of
federated cloud tenants when an issue occurs. FEDARGOS-
V1 guarantee that all relevant information about the federated
cloud deployment is monitored, including performance and
availability statistics. Figure 8 shows the overview of the

133566 VOLUME 10, 2022



V. P. Nzanzu et al.: FEDARGOS-V1: A Monitoring Architecture for Federated Cloud Computing Infrastructures

FIGURE 8. Screenshot of FEDARGOS-V1 monitoring web-based console.

monitored resources of all the regions of the FEDGEN testbed
cloud environment.
The benefits of using aWeb console application are numer-

ous, but the following are the most important. (i) It enables
monitoring data information to be accessed from beyond the
data center. (ii) Requests can be sent to various NSAs, making
it easier to monitor data across multiple Clouds and hosts. iii)
It also allows each tenant in the federation to define specific
and numerous views of the same deployment.

C. EXPERIMENTAL RESULTS

This section presents the evaluation of the performances
of the FEDARGOS-V1 as well as its benchmarking with
existing architectures. The existing monitoring architec-
tures such as Nagios and DARGOS for standalone cloud
infrastructure are selected for the benchmark of the devel-
oped FEDARGOS-V1 whilst the parameters including the
Response Time, the Network Traffic Flow, and the Scalability
Factor are used to establish the performance results.

1) TECHNICAL EVALUATION WITH THE BENCHMARKED

ARCHITECTURES

Nagios and DARGOS for the single cloud are chosen for
comparison with FEDARGOS-V1 among the open-source
cloud-aware monitoring solutions described in section II C.
Because of its simplicity and extensibility, Nagios is chosen
as a representative example of a general-purpose data center
monitoring system based on plug-ins. On the other hand,
the monitoring architecture proposed in this work extends
DARGOS, hence its selection.
Nagios is used to track host statuses via connection and

ping delays, as well as the status of services via HTTP.
It offers resource monitoring by enabling pull interactions
through the Nagios Remote Plugin Executor (NRPE) exten-
sion protocols. For push interactions, it also supports the
Nagios Service Check Acceptor (NSCA) methods.
Table 2 displays a qualitative side-by-side technical com-

parison of the most important aspects of the chosen monitor-
ing architectures.
Note: N:M (many-to-many scenario) stands for multiple

sources, multiple targets, and 1:M (many-to-one scenario)
stands for multiple sources, single target.

TABLE 1. Open-source cloud management platforms.

TABLE 2. FEDARGOS-V1, DARGOS, and nagios qualitative comparison.

Nagios is built on a centralized architecture. The moni-
toring functionalities are stored and processed by a single
central node in this architecture. Moreover, because of its
centralized structure, Nagios is the only viable option in
many-to-one cases. DARGOS and FEDARGOS-V1, on the
other hand, offer many-to-many communications by default,
making them monitoring solutions that are ideal for entirely
distributed and decentralized settings. In terms of interaction
models, Nagios NRPE is the only one that employs a pull
strategy, although this results in longer latency when retriev-
ing monitoring data because it necessitates both a request and
a response.

The discovering of nodes and hosts is another key fea-
ture. Automatic discovery is supported by DARGOS and
FEDARGOS-V1, but Nagios requires configuration files.
Because of this constraint, Nagios can only be used in static
scenarios.

VOLUME 10, 2022 133567



V. P. Nzanzu et al.: FEDARGOS-V1: A Monitoring Architecture for Federated Cloud Computing Infrastructures

Another key element is the data flow between monitored
nodes and clients: this should be proficient and, to the
extent possible, rely on defined formats. In this regard,
DARGOS and FEDARGOS-V1 use Common Data Repre-
sentation (CDR) [56] for transmitting data, whereas Nagios
uses plain text. Moreover, DARGOS and FEDARGOS-V1
employ the RTPS OMG standard to exchange data, whereas
Nagios uses proprietary protocols. Because of its RTPS pro-
tocol conformance, DARGOS is straightforward to integrate
with third-party DDS-based applications. Another distinc-
tion is that Nagios communicates data between monitored
nodes and the central server via the TCP protocol, which
increases latency (due to TCP link establishment, fault, con-
gestion, and flow control) when compared to DARGOS
and FEDARGOS-V1, which use the UDP connectionless
protocol.
The metadata that identifies the attributes and types of

each monitored sensor is likewise handled differently. Since
Nagios sends information in line with each data sample, the
server is responsible for properly processing the properties
and values. DARGOS has the option of transmitting metadata
with the sample or not; however, if no metadata is given,
the application must create an additional method to assist
DARGOS users in filling in the properties for each sensor.
FEDARGOS-V1 only shares sensor metadata during the first
discovery phase, saving bandwidth, especially when there are
a lot of sensors and samples.
Various filtering and updating algorithms can be imple-

mented by monitoring architectures to save bandwidth and
resources. The most common way to reduce bandwidth is
to send measurement updates only when particular events
occur rather than on a regular basis. While DARGOS and
FEDARGOS-V1 both provide this feature, Nagios does not.
In Nagios’ case, that characteristic is left at the application
level. Another contrast between DARGOS and FEDARGOS-
V1 is that the latter allows each user to design their own
data filters. In other words, each FEDARGOS-V1 subscriber
can set their own update frequency, whereas, in DARGOS,
this rate is set universally. As a result, it is now easier to
install heterogeneous applications with varying needs, such
as multi-tenant clouds, in FEDARGOS-V1.
The capacity to transmit and handle asynchronous event

notifications (including also alarms, failures, etc.) is the final
point to consider. This functionality can be used to acti-
vate a synchronization mechanism in the event of a failure,
including detecting aberrant events sending administrator
notifications. Asynchronous event notifications are sup-
ported byFEDARGOS-V1, DARGOS, and Nagios, although
FEDARGOS-V1 focuses on processing them at the alarm
engine level.

2) EXPERIMENTAL PERFORMANCE RESULTS

Three series of experimentations were carried out to thor-
oughly assess FEDARGOS-V1 abilities and performance.
First, FEDARGOS-V1 response time is assessed and com-
pared to the DARGOS response time. The FEDARGOS-

V1 network traffic flow is then examined, and a compari-
son with the reference DARGOS implemented for a regular
OpenStack single cloud network utilization is made. Finally,
FEDARGOS-V1, DARGOS, and Nagios scalability factors
are assessed.

a: RESPONSE TIME

The response time is the time it takes for a request to reach its
destination and for a response to be received. All monitoring
tasks comprise a request and a response. In FEDARGOS-V1,
requests are sent from NSAs to NMAs. The response time is
thereby given by the time it takes for an interested NSA to
send a request to receive monitoring data and get a response.
The different delays, propagation time, and processing times
enter into account to determine the overall response time.
FEDARGOS-V1 utilizes UDP standards for communication
between NSAs and NMAs. Thus, within FEDARGOS-V1,
the minimum time a monitoring request can take is given by
Equation (2) [57]:

minTime = min Frame SerializationTime

+Link Media Delay+ Queueing Delay

+Node Processing Delay (2)

With:

FrameSerializationTime = S/R (3)

LinkMediaDelay = D/p (4)

QueueingDelay = Q/R (5)

where R is the link data rate (in bits/second), S the packet
size (in bits), D the link distance (in meters), p the medium
propagation speed (in meters/second), andQ the queue depth.

The NodeProcessingDelay is normally specified by the
configuration of the infrastructure.

The maximum time is as well given by (6) [57]:

maxTime = max Frame SerializationTime

+Link Media Delay

+Queueing Delay

+Node Processing Delay (6)

Practically, using Wireshark testing tool, considering the
FEDGEN testbed, the Node ProcessingDelay= 0, the
Queueing Delay= 0 because there is no congestion, the
Link Media Delay= 0.04 seconds. The minimal packet size
of the monitoring task in FEDARGOS-V1 is

S_min= 4.11KB

The maximal packet size of the monitoring task in the
FEDARGOS-V1 is

S_max= 794.751KB

The link data rate R= 2∗102bps

The minTime =

(

4.11

2∗102

)

+ 0.04

133568 VOLUME 10, 2022



V. P. Nzanzu et al.: FEDARGOS-V1: A Monitoring Architecture for Federated Cloud Computing Infrastructures

= 0.06055seconds

The maxTime =

(

3794.751

2∗102

)

+ 0.04

= 19.013755 seconds

The latency L ≃
MaxTime−MinTime

Numberof Requests

=
19.013755 − 0.06055

30
= 0.6317735 seconds

The response time of monitoring tasks within
FEDARGOS-V1 deployed on the FEDGEN testbed is of the
order of 631.7735 milliseconds.

b: NETWORK TRAFFIC FLOW

The experiments conducted here quantifies the impact of
FEDARGOS-V1 on the FEDGEN testbed cloud infrastruc-
ture’s network use. The network traffic generated for moni-
toring the federated cloud nodes is being measured in these
experiments. A comparison of the FEDARGOS-V1 traffic
with the reference DARGOS is conducted in particular.
The Advanced Message Queuing Protocol (AMQP) stan-

dards for exchanging messages and RPC requests/responses
amongst all OpenStack services involved in monitoring give
statistics such as users, the number of operating VMs with
their networking-related data. These data are analyzed to
have a better understanding of the monitoring architecture’s
network traffic flow.
Within FEDARGOS-V1, one NSA is placed at the broker

node level and at least one NMA to collect monitoring data
at each OpenStack Compute node. The monitoring strate-
gies are both event-based (in the sense that the CPU usage
thresholds are [0, 25, 50, 60, 70, 75, 80, 85, 90, 95, 100]
percent) and periodic (with the period of 1 second). The
amount of computational load is determined by the VM’s
instantiation. At the time of VM startup, each VM bears
a pure computational capacity that varies between 0% and
60%. Requests are placed according to a Poisson distribution
with a maximum inter-arrival period of 4 seconds. Every
analysis lasted 60 seconds andwas carried out for a total of ten
times. Using Wireshark testing tool, considering 10 phases
of the signal cycle, and a traffic flow ratio of 46.879415 for
event-based reporting and 73.6774 KB for periodic report-
ing, and the loss time of 0.1774 constant for all the phases
of the monitoring task. The acquired data are depicted in
Figure 9 and 10 on a logarithmic scale for easier reading.
It shows that for both periodic and event-based reporting,
FEDARGOS-V1 outperforms the reference DARGOS imple-
mentation. FEDARGOS-V1 deployed in a federated environ-
ment, in particular, generates about slightly below the traffic
of the reference DARGOS deployed in a single cloud.

c: SCALABILITY FACTOR

Nagios monitoring tool was deployed on the FEDGEN
testbed. This solution was able to collect monitoring data
of the broker node and, to an extent, monitoring data of

FIGURE 9. Generated Traffic per Protocol for Event-based Reporting in the
FEDGEN Testbed for FEDARGOS-V1 (i.e. Enhanced DARGOS) and DARGOS.

FIGURE 10. Generated traffic per protocol for periodic reporting in the
FEDGEN Testbed for FEDARGOS-V1 (i.e Enhanced DARGOS) and DARGOS.

one region of the federated cloud infrastructure. Requests
sent to the second region of the federated cloud were lost,
or the nodes of the second region were not reachable to
Nagios. Thus, Nagios is limited to monitoring a single cloud
environment. Furthermore, every time a new node is added
to the infrastructure, all the Nagios configuration files need
to be revisited. After determining that FEDARGOS-V1 and
DARGOS are the best prospects for high scalability when
compared to Nagios, this stage of the experiment compares
these two systems in a real-world implementation. With this
in mind, a new compute node was added to the FEDGEN
infrastructure, and each federation region sends five updates
per second to the monitoring architecture, which is higher
than the standard update rate in the periodic context. Further-
more, the same experiment was carried out with both DAR-
GOS in a single cloud and the FEDARGOS-V1 deployed
on the FEDGEN testbed for this evaluation. To determine
the average global throughput generated in each host, both
systems were run for 60 seconds and these were repeated
ten times. For ease of presentation, Figure 11 displays the
collected data (overall network bandwidth in Bytes per sec-
ond) on a logarithmic scale. The results (the greatest through-
put achievable) are presented for 12 instances with different
nodes linked via 100 Mbps Ethernet.

The scalability factor of the FEDARGOS-V1 is given by:

VOLUME 10, 2022 133569



V. P. Nzanzu et al.: FEDARGOS-V1: A Monitoring Architecture for Federated Cloud Computing Infrastructures

FIGURE 11. Results of FEDARGOS-V1 (i.e. Enhanced DARGOS) and
DARGOS scalability.

With

A =

n
∑

k=1
(Dk − D0) ∗ (Ik + I0)

2
= 5929

and

A∗ =

n
∑

k=1
(Dk − D0) ∗

(

I∗k + I∗0
)

2
= 25433

ηI =
A

A∗
= 0.2331

The scalability factor of DARGOS in a single cloud is given
by:
With

A =

∑n
k=1 (Dk − D0) ∗ (Ik + I0)

2
= 6463

and

A∗ =

∑n
k=1 (Dk − D0) ∗

(

I∗k + I∗0
)

2
= 23752

ηI =
A

A∗
= 0.2721

where A and A∗are the ideal scalability factors calculated for
the default number of instances to be allocated to service
demand and the actual (increased) number of instances allo-
cated to the new service demand.
AndDk andD0 are two service demand volumeswithDk >

D0 and Ik and I0 are the corresponding amount of instance
resources that are deployed to deliver the required services.
The amount of instance resources is obtained by computation
of the following:

D∗

D
=
I∗

I
thus I∗ =

D∗

D
∗ I

Hence, both the FEDARGOS-V1 and the reference DAR-
GOS are able to monitor the additional node in the infrastruc-
ture. The overall throughput of the FEDARGOS-V1 increases
by 23%, while the overall throughput of DARGOS increases
by 27%, which is comparable to FEDARGOS-V1 through-
put.

V. CONCLUSION

This research work was carried out with the aim of develop-
ing an enhanced resource monitoring architecture for feder-
ated cloud infrastructure named FEDARGOS. The enhanced
monitoring architecture extends DARGOS due to its poten-
tials that make it one of the best candidates to satisfy the
needs for monitoring of a federated cloud infrastructure
characterized by multi-tenancy support. Two major compo-
nents were touched to extend the reference DARGOS, and
these components include the configuration engine, the alarm
engine, and finally, a suitable web-based monitoring con-
sole. FEDARGOS-V1 was deployed in the FEDGEN testbed
cloud infrastructure for its testing and performance evalua-
tion. The evaluation of the developed enhanced DARGOS
(i.e. FEDARGOS-V1) focused on the following metrics: the
overall response time of the monitoring task, the network
traffic flow for a cycle of a monitoring request and its equiv-
alent response, and the scalability factor. The performance of
FEDARGOS-V1 was satisfactory compared to the reference
DARGOS. In the future, we hope to incorporate intrusion
detection, billing and SLA monitoring capabilities in the
FEDARGOS-V1.

CONFLICT OF INTEREST STATEMENT

We declare that none of the authors has conflict of interest
with respect to the publication of this article.

REFERENCES

[1] A. Ahmad, A. S. Alzahrani, N. Ahmed, and T. Ahsan, ‘‘A delegation
model for SDN-driven federated cloud,’’ Alexandria Eng. J., vol. 59, no. 5,
pp. 3653–3663, Oct. 2020, doi: 10.1016/j.aej.2020.06.018.

[2] D. C. Marinescu, Cloud Computing, 2nd ed. Cambridge MA, USA: Else-
vier, 2018, doi: 10.1016/C2016-0-02364-1.

[3] M. Liaqat, V. Chang, A. Gani, S. H. A. Hamid, M. Toseef, U. Shoaib,
and R. L. Ali, ‘‘Federated cloud resource management: Review and dis-
cussion,’’ J. Netw. Comput. Appl., vol. 77, pp. 87–105, Jan. 2017, doi:
10.1016/j.jnca.2016.10.008.

[4] A. Banijamali, O.-P. Pakanen, P. Kuvaja, and M. Oivo, ‘‘Software archi-
tectures of the convergence of cloud computing and the Internet of Things:
A systematic literature review,’’ Inf. Softw. Technol., vol. 122, Jun. 2020,
Art. no. 106271, doi: 10.1016/j.infsof.2020.106271.

[5] Y. Chen, ‘‘IoT, cloud, big data and AI in interdisciplinary domains,’’
Simul. Model. Pract. Theory, vol. 102, Jul. 2020, Art. no. 102070, doi:
10.1016/j.simpat.2020.102070.

[6] H. Kurdi, A. Alfaries, A. Al-Anazi, S. Alkharji, M. Addegaither,
L. Altoaimy, and S. H. Ahmed, ‘‘A lightweight trust management algo-
rithm based on subjective logic for interconnected cloud computing envi-
ronments,’’ J. Supercomput., vol. 75, no. 7, pp. 3534–3554, Jul. 2019, doi:
10.1007/s11227-018-2669-y.

[7] R. Kumar and R. Goyal, ‘‘On cloud security requirements, threats, vul-
nerabilities and countermeasures: A survey,’’ Comput. Sci. Rev., vol. 33,
pp. 1–48, Aug. 2019, doi: 10.1016/j.cosrev.2019.05.002.

[8] S. Suneja, C. Isci, R. Koller, and E. De Lara, ‘‘Touchless and always-
on cloud analytics as a service,’’ IBM J. Res. Dev., vol. 60, nos. 2–3,
pp. 11:1–11:10, Mar. 2016, doi: 10.1147/JRD.2016.2518438.

[9] X. Wen, G. Gu, Q. Li, Y. Gao, and X. Zhang, ‘‘Comparison of open-source
cloud management platforms: OpenStack and OpenNebula,’’ in Proc. 9th
Int. Conf. Fuzzy Syst. Knowl. Discovery, May 2012, pp. 2457–2461, doi:
10.1109/FSKD.2012.6234218.

[10] B. König, J. M. A. Calero, and J. Kirschnick, ‘‘Elastic monitoring
framework for cloud infrastructures,’’ IET Commun., vol. 6, no. 10,
pp. 1306–1315, Jul. 2012, doi: 10.1049/iet-com.2011.0200.

[11] S. Clayman, G. Toffetti, A. Galis, and C. Chapman, ‘‘Monitoring services
in a federated cloud,’’ in Achieving Federated and Self-Manageable Cloud
Infrastructures. Hershey, PA, USA: IGI Global, 2012, pp. 242–265, doi:
10.4018/978-1-4666-1631-8.ch013.

133570 VOLUME 10, 2022



V. P. Nzanzu et al.: FEDARGOS-V1: A Monitoring Architecture for Federated Cloud Computing Infrastructures

[12] P. K. Paul and M. K. Ghose, ‘‘Cloud computing: Possibilities, challenges
and opportunities with special reference to its emerging need in the aca-
demic and working area of information science,’’ Proc. Eng., vol. 38,
pp. 2222–2227, Jan. 2012, doi: 10.1016/j.proeng.2012.06.267.

[13] H. J. Syed, A. Gani, R. W. Ahmad, M. K. Khan, and A. I. A. Ahmed,
‘‘Cloud monitoring: A review, taxonomy, and open research issues,’’
J. Netw. Comput. Appl., vol. 98, pp. 11–26, Nov. 2017, doi:
10.1016/j.jnca.2017.08.021.

[14] W. Tian, M. Xu, A. Chen, G. Li, X. Wang, and Y. Chen, ‘‘Open-
source simulators for cloud computing: Comparative study and challenging
issues,’’ Simul. Model. Pract. Theory, vol. 58, pp. 239–254, Nov. 2015, doi:
10.1016/j.simpat.2015.06.002.

[15] J. Povedano-Molina, J. M. Lopez-Vega, J. M. Lopez-Soler, A. Corradi,
and L. Foschini, ‘‘DARGOS: A highly adaptable and scalable monitoring
architecture for multi-tenant clouds,’’ Future Gener. Comput. Syst., vol. 29,
no. 8, pp. 2041–2056, Oct. 2013, doi: 10.1016/j.future.2013.04.022.

[16] S. Logesswari, S. Jayanthi, D. KalaiSelvi, S. Muthusundari, and
V. Aswin, ‘‘WITHDRAWN: A study on cloud computing challenges
and its mitigations,’’ Mater. Today, Proc., pp. 2214–7853, 2020, doi:
10.1016/j.matpr.2020.10.655.

[17] M. Chiregi and N. J. Navimipour, ‘‘Cloud computing and trust evalua-
tion: A systematic literature review of the state-of-the-art mechanisms,’’
J. Electr. Syst. Inf. Technol., vol. 5, no. 3, pp. 608–622, Dec. 2018, doi:
10.1016/j.jesit.2017.09.001.

[18] F. K. Parast, C. Sindhav, S. Nikam, H. I. Yekta, K. B. Kent, and
S. Hakak, ‘‘Cloud computing security: A survey of service-based
models,’’ Comput. Secur., vol. 114, Mar. 2022, Art. no. 102580, doi:
10.1016/J.COSE.2021.102580.

[19] M. Ghobaei-Arani, S. Jabbehdari, and M. Pourmina, ‘‘An autonomic
resource provisioning approach for service-based cloud applications:
A hybrid approach,’’ Future Gener. Comput. Syst., vol. 78, no. 1,
pp. 191–210, 2018, doi: 10.1016/J.FUTURE.2017.02.022.

[20] W. Huang, A. Ganjali, B. H. Kim, S. Oh, and D. Lie, ‘‘The state of public
infrastructure-as-a-service cloud security,’’ ACM Comput. Surv., vol. 47,
no. 4, pp. 1–31, Jul. 2015, doi: 10.1145/2767181.

[21] M. Pyati, D. G. Narayan, and S. Kengond, ‘‘Energy-efficient and
dynamic consolidation of virtual machines in OpenStack-based private
cloud,’’ Proc. Comput. Sci., vol. 171, pp. 2343–2352, Jan. 2020, doi:
10.1016/j.procs.2020.04.254.

[22] J. P. Mullerikkal and Y. Sastri, ‘‘A comparative study of OpenStack and
CloudStack,’’ in Proc. 5th Int. Conf. Adv. Comput. Commun. (ICACC),
Sep. 2015, pp. 81–84, doi: 10.1109/ICACC.2015.110.

[23] D. Freet, R. Agrawal, J. J. Walker, and Y. Badr, ‘‘Open source
cloud management platforms and hypervisor technologies: A review
and comparison,’’ in Proc. SoutheastCon, Mar. 2016, pp. 1–8, doi:
10.1109/SECON.2016.7506698.

[24] F. Marozzo, ‘‘Infrastructures for high-performance computing: Cloud
infrastructures,’’ in Encyclopedia of Bioinformatics and Computational

Biology, vols. 1–3. Amsterdam, The Netherlands: Elsevier, 2019,
pp. 240–246, doi: 10.1016/B978-0-12-809633-8.20374-9.

[25] S. Ismaeel and A. Miri, ‘‘A universal unit for measuring clouds,’’ in
Proc. IEEE Canada Int. Humanitarian Technol. Conf. (IHTC), May 2015,
pp. 1–4, doi: 10.1109/IHTC.2015.7238044.

[26] S. S. Chauhan, E. S. Pilli, R. C. Joshi, G. Singh, and M. C. Govil,
‘‘Brokering in interconnected cloud computing environments: A survey,’’
J. Parallel Distrib. Comput., vol. 133, pp. 193–209, Nov. 2019, doi:
10.1016/j.jpdc.2018.08.001.

[27] M. M. Hassan, B. Song, and E.-N. Huh, ‘‘A market-oriented dynamic
collaborative cloud services platform,’’ Ann. Telecommun. Annales des
téléCommunications, vol. 65, nos. 11–12, pp. 669–688, Dec. 2010, doi:
10.1007/S12243-010-0184-0.

[28] B. Rochwerger, D. Breitgand, A. Epstein, D. Hadas, I. Loy, K. Nagin,
J. Tordsson, C. Ragusa, M. Villari, S. Clayman, E. Levy, A. Maras-
chini, P. Massonet, H. Mu, and G. Tofetti, ‘‘Reservoir–when one cloud
is not enough,’’ Computer, vol. 44, no. 3, pp. 44–51, Mar. 2011, doi:
10.1109/MC.2011.64.

[29] R. N. Calheiros, A. N. Toosi, C. Vecchiola, and R. Buyya, ‘‘A coor-
dinator for scaling elastic applications across multiple clouds,’’ Future
Gener. Comput. Syst., vol. 28, no. 8, pp. 1350–1362, Oct. 2012, doi:
10.1016/j.future.2012.03.010.

[30] R. Buyya, R. Ranjan, and R. N. Calheiros, ‘‘InterCloud: Utility-
oriented federation of cloud computing environments for scaling of
application services,’’ in Proc. Int. Conf. Algorithms Archit. Par-

allel Process., vol. 6081, 2010, pp. 13–31, doi: 10.1007/978-3-642-
13119-6_2.

[31] D. Bernste and D. Vij, ‘‘Intercloud directory and exchange protocol detail
using XMPP and RDF,’’ in Proc. 6th World Congr. Services, Jul. 2010,
pp. 431–438, doi: 10.1109/SERVICES.2010.131.

[32] G. Zangara, D. Terrana, P. P. Corso, M. Ughetti, and G. Montalbano,
‘‘A cloud federation architecture,’’ in Proc. 10th Int. Conf. P2P, Parallel,
Grid, Cloud Internet Comput. (3PGCIC), Nov. 2015, pp. 498–503, doi:
10.1109/3PGCIC.2015.183.

[33] E. Carlini, M. Coppola, P. Dazzi, L. Ricci, and G. Righetti, ‘‘Cloud
federations in contrail,’’ in Proc. Eur. Conf. Parallel Process., vol. 7155.
Cham, Switzerland: Springer, 2012, pp. 159–168, doi: 10.1007/978-3-642-
29737-3_19.

[34] J. Jensen, M. Coppola, P. Dazzi, A. Lazouski, F. Martinelli, P. Mori,
I. Johnson, and P. Kershaw, ‘‘The CONTRAIL approach to cloud feder-
ations,’’ in Proc. Int. Symp. Grids Clouds (ISGC) PoS(ISGC), Aug. 2012,
p. 1, doi: 10.22323/1.153.0019.

[35] R. M. Badia, ‘‘Demonstration of the OPTIMIS toolkit for cloud service
provisioning,’’ in Proc. Eur. Conf. Service-Based Internet, vol. 6994, 2011,
pp. 331–333, doi: 10.1007/978-3-642-24755-2_40.

[36] A. C. Marosi, G. Kecskemeti, A. Kertusz, and P. Kacsuk, ‘‘FCM: An
architecture for integrating IaaS cloud systems,’’ in Proc. CLOUD

Comput. 2nd Int. Conf. Cloud Comput., GRIDs, Virtualization,
2011, pp. 7–12. Accessed: Jul. 15, 2021. [Online]. Available:
http://www.thinkmind.org/index.php?view=article&articleid=cloud_
computing_2011_1_20_20064

[37] D. Petcu, B. Martino, S. Venticinque, M. Rak, T. Máhr, G. Lopez, F. Brito,
R. Cossu, M. Stopar, S. Šperka, and V. Stankovski, ‘‘Experiences in
building a mOSAIC of clouds,’’ J. Cloud Comput., Adv., Syst. Appl., vol. 2,
no. 1, p. 12, 2013, doi: 10.1186/2192-113X-2-12.

[38] P. Pawluk, B. Simmons, M. Smit, M. Litoiu, and S. Mankovski,
‘‘Introducing STRATOS: A cloud broker service,’’ in Proc. IEEE

5th Int. Conf. Cloud Comput., Jun. 2012, pp. 891–898, doi: 10.1109/
CLOUD.2012.24.

[39] M. N. Birje and C. Bulla, ‘‘Cloud monitoring system: Basics, phases and
challenges,’’ Int. J. Recent Technol. Eng., vol. 8, no. 3, pp. 4732–4746,
Sep. 2019, doi: 10.35940/ijrte.C6857.098319.

[40] J. S. Ward and A. Barker, ‘‘Observing the clouds: A survey and taxonomy
of cloud monitoring,’’ J. Cloud Comput., vol. 3, no. 1, pp. 1–30, Dec. 2014,
doi: 10.1186/s13677-014-0024-2.

[41] G. Aceto, A. Botta, W. D. Donato, and A. Pescapè, ‘‘Cloud monitoring:
A survey,’’ Comput. Netw., vol. 57, no. 9, pp. 2093–2115, 2013, doi:
10.1016/j.comnet.2013.04.001.

[42] H. J. Syed, A. Gani, R. W. Ahmad, M. K. Khan, and A. I. A. Ahmed,
‘‘Cloud monitoring: A review, taxonomy, and open research issues,’’
J. Netw. Comput. Appl., vol. 98, pp. 11–26, Nov. 2017, doi:
10.1016/j.jnca.2017.08.021.

[43] J. M. A. Calero and J. G. Aguado, ‘‘MonPaaS: An adaptive monitoring
platformas a service for cloud computing infrastructures and services,’’
IEEE Trans. Services Comput., vol. 8, no. 1, pp. 65–78, Jan. 2015, doi:
10.1109/TSC.2014.2302810.

[44] W. Barth, Nagios, 2nd ed. San Francisco, CA, USA: No Starch Press,
2008. Accessed: Jun. 21, 2020. [Online]. Available: https://books.
google.com.ng/books?hl=fr&lr=&id=QgYvDwAAQBAJ&oi=fnd&
pg=PA5&dq=Barth,+W.,+2008.+Nagios:+System+and+network+
monitoring,+No+Starch+Press.&ots=hTx_hizPp4&sig=
RqZg0qxPGj4EyafYsGfN0PME8LM&redir_esc=y#v=onepage&q=
Barth%2C W.%2C2008.Nagios%3ASys

[45] J. Gutierrez-Aguado, J. M. Alcaraz Calero, and W. Diaz Villanueva,
‘‘IaaSMon: Monitoring architecture for public cloud computing data cen-
ters,’’ J. Grid Comput., vol. 14, no. 2, pp. 283–297, Jun. 2016, doi:
10.1007/s10723-015-9357-4.

[46] S. Mongkolluksamee, P. Pongpaibool, and C. Issariyapat, ‘‘Strengths and
limitations of Nagios as a network monitoring solution,’’ Proc. 7th Int. Jt.
Conf. Comput. Sci. Softw. Eng. (JCSSE), Feb. 2010, pp. 96–101, Accessed:
Aug. 28, 2020. [Online]. Available: https://docplayer.net/1264602-
Strengths-and-limitations-of-nagios-as-a-network-monitoring-
solution.html

[47] P. Tader, ‘‘Server monitoring with Zabbix,’’ Linux J., vol. 2010, no. 195,
p. 7, 2010, doi: 10.5555/1883478.1883485.

[48] A. Iqbal, C. Pattinson, and A.-L. Kor, ‘‘Performance monitoring of vir-
tual machines (VMs) of type i and II hypervisors with SNMPv3,’’ in
Proc. World Congr. Sustain. Technol. (WCST), Dec. 2015, pp. 98–99, doi:
10.1109/WCST.2015.7415127.

[49] D. Tovarnakk and T. Pitner, ‘‘Towards multi-tenant and interoperable
monitoring of virtual machines in cloud,’’ in Proc. 14th Int. Symp. Sym-
bolic Numeric Algorithms Sci. Comput., Sep. 2012, pp. 436–442, doi:
10.1109/SYNASC.2012.55.

VOLUME 10, 2022 133571



V. P. Nzanzu et al.: FEDARGOS-V1: A Monitoring Architecture for Federated Cloud Computing Infrastructures

[50] J. Montes, A. Sánchez, B. Memishi, M. S. Pérez, and G. Antoniu,
‘‘GMonE: A complete approach to cloud monitoring,’’ Future

Gener. Comput. Syst., vol. 29, no. 8, pp. 2026–2040, Oct. 2013, doi:
10.1016/j.future.2013.02.011.

[51] D. Milojičić, I. M. Llorente, and R. S. Montero, ‘‘OpenNebula: A cloud
management tool,’’ IEEE Internet Comput., vol. 15, no. 2, pp. 11–14,
Mar. 2011, doi: 10.1109/MIC.2011.44.

[52] S. Hasan, S. O’Riain, and E. Curry, ‘‘Approximate semantic matching of
heterogeneous events,’’ in Proc. 6th ACM Int. Conf. Distrib. Event-Based

Syst. (DEBS), 2012, pp. 252–263, doi: 10.1145/2335484.2335512.
[53] S. Al-Shammari and A. Al-Yasiri, ‘‘MonSLAR: A middleware for mon-

itoring SLA for RESTFUL services in cloud computing,’’ in Proc. IEEE
9th Int. Symp. Maintenance Evol. Service-Oriented Cloud-Based Environ.

(MESOCA), Oct. 2015, pp. 46–50, doi: 10.1109/MESOCA.2015.7328126.
[54] K. Vieira, A. Schulter, C.Westphall, and C.Westphall, ‘‘Intrusion detection

for grid and cloud computing,’’ IT Prof., vol. 12, no. 4, pp. 38–43, 2010,
doi: 10.1109/MITP.2009.89.

[55] S. Chatterjee and A. S. Hadi, Regression Analysis by Example. Hoboken,
NJ, USA: Wiley, 2015.

[56] M. Eisler, XDR: External Data Representation Standard, document RFC
4506, 2006.

[57] K. Cao, L. Li, Y. Cui, T. Wei, and S. Hu, ‘‘Exploring placement of het-
erogeneous edge servers for response time minimization in mobile edge-
cloud computing,’’ IEEE Trans. Ind. Informat., vol. 17, no. 1, pp. 494–503,
Jan. 2021, doi: 10.1109/TII.2020.2975897.

[58] E. Adetiba, M. Akanle, V. Akande, J. Badejo, V.P. Nzanzu, M.J. Molo,
V. Oguntosin, O. Oshin, and E. Adebiyi, ‘‘FEDGEN testbed: A federated
genomics private cloud infrastructure for precision medicine and artificial
intelligence research,’’ in Proc. Int. Conf. Inform. Intell. Appl. Cham,
Switzerland: Springer, 2021, pp. 78–91.

[59] S. A. de Chaves, R. B. Uriarte, and C. B. Westphall, ‘‘Toward an architec-
ture for monitoring private clouds,’’ IEEE Commun. Mag., vol. 49, no. 2,
pp. 130–137, Dec. 2011.

VINGI PATRICK NZANZU received the B.Sc.
degree in electrical and computer engineering
from the Université Libre des Pays des Grands
Lacs (ULPGL), Goma, DR Congo, in 2017, and
the M.Eng. degree in information and communi-
cation engineering from the Electrical and Infor-
mation Engineering Department, Covenant Uni-
versity, Ota, Nigeria, in 2022.
He is currently working with ULPGL as

an Assistant Lecturer. From 2020 to 2022,
he was a Research Assistant with the Covenant Applied Informatics and
Communication-Centre of Excellence (CApIC-ACE). His research interests
include the development of an enhanced monitoring tool for federated cloud
computing infrastructures, the IoT, software and system development, real-
time systems, machine intelligence, data engineering, and analysis.

EMMANUEL ADETIBA (Member, IEEE) received
the Ph.D. degree in information and commu-
nication engineering from Covenant University,
Ota, Nigeria. He is currently a Full Professor
and the Incumbent Head of the Department of
Electrical and Information Engineering, Covenant
University. He was the Director of the Center
for Systems and Information Services (ICT Cen-
ter), Covenant University, from 2017 to 2019.
He is also the Incumbent Deputy Director of

the Covenant Applied Informatics and Communication Africa Centre of
Excellence (CApIC-ACE) and the Co-PI for the FEDGEN Cloud Infras-
tructure Research Project at the Centre (World Bank and AFD funded).
He is also the Founder and the Principal Investigator of the Advanced
Signal Processing and Machine Intelligence Research (ASPMIR) Labora-
tory. He is also an Honorary Research Associate at the Institute for System
Sciences, Durban University of Technology, Durban, South Africa. He has
authored/coauthored more than 100 scholarly publications in journals and
conference proceedings, some of which are indexed in Scopus/ISI/CPCI. His
research interests and experiences include machine intelligence, software

defined radio, cognitive radio, biomedical signal processing, and cloud
federation. He is also a Registered Engineer (R.Engr.) with the Council
for the Regulation of Engineering in Nigeria (COREN), and a member of
the Institute of Information Technology Professional (IITP), South Africa.
He was a recipient of several past and ongoing scholarly grants and funds
from reputable bodies, such as theWorld Bank, France Development Agency
(AFD), Google, U.S. National Science Foundation, the Durban University
of Technology, Nigeria Communications Commission, Rockefeller Foun-
dation, International Medical Informatics Association (IMIA), and hosts of
others.

JOKE A. BADEJO (Member, IEEE) received
the Ph.D. degree in computer engineering from
Covenant University, Nigeria, in 2015. She is cur-
rently a Senior Lecturer and the Coordinator of the
Computer Engineering Program with the Depart-
ment of Electrical and Information Engineering,
Covenant University, where she is also a Fac-
ulty Member of the Covenant Applied Informatics
and Communication Africa Centre of Excellence
(CApIC-ACE), aWorld Bank ACE-IMPACTCen-

tre. Her research interests include biometrics and biomedical image analysis,
machine (deep) learning, large-scale data analytics, software engineering,
and cloud computing. She works as a Co-Investigator on a World Bank
ACE-IMPACT Project targeted at developing a federated genomics cloud
infrastructure for precision medicine in Africa. She has also been actively
involved in the Covenant University Data Analytics Cluster (CUDAC),
which supports data-driven decision-making at the university. With more
than a decade of computing research, teaching, and leadership experiences,
she has published over 40 papers in reputable journals and conference
proceedings. She is a member of several professional bodies, including
the Council for the Regulation of Engineering in Nigeria (COREN). She
enjoys being an academic and loves contributing impactful and cost-effective
solutions to current societal engineering problems in Africa.

MBASA JOAQUIM MOLO received the B.Sc.
degree in electrical and computer engineer-
ing from the Université Libre des Pays des
Grands Lacs, DR Congo, in 2019, and the
master’s degree in information and communi-
cation engineering from Covenant University,
Nigeria.
He worked as a Research Assistant with

the Covenant Applied Informatics and
Communication-Centre of Excellence, from 2020

to 2022. He is currently a Lecturer at the Université Libre des Pays des
Grands Lacs. His research interests include machine learning and cloud
computing. Also, he is a member of Kwetu Best Sarl, a company focused
on software development and robotics-related applications.

MATTHEW BOLADELE AKANLE is currently a
Principal System Engineer at the Canter for Sys-
tem and Information Services (CSIS), Covenant
University, Ogun, Nigeria. He has been a System
Administrator and a Researcher with the Covenant
University Bioinformatics Research (CUBRe)
node of H3ABioNet, since 2015, where he devel-
oped a research interest. He also manages the
high-performance computing platform of CUBRe.
Currently, he is the Acting Director of CSIS

Covenant University. His research interests include cloud computing, infor-
mation security, bioinformatics, machine learning, and data communication.
He got a scholarship to study computer engineering at a master’s level
from H3ABioNet through CUBRthe e node at the Department of Electrical
and Information Engineering, College of Engineering, Covenant University,
from 2018 to 2020. He is a member of the Nigeria Society of Engineers
(NSE) and a Registered Engineer of the Council for Regulation of Engineers
in Nigeria (COREN). He is one of the recipients of the fellowship to the
IETF98 meeting in Chicago United State by Internet Society, in 2016. He is
also one of the SCI-GAIA champions under the Sci-Gaia Project, an EU
Horizon 2020-funded project, in 2016.

133572 VOLUME 10, 2022



V. P. Nzanzu et al.: FEDARGOS-V1: A Monitoring Architecture for Federated Cloud Computing Infrastructures

KALIMUMBALO DANIELLA MUGHOLE rece-
ived the B.Sc. degree in electrical and computer
engineering from the Université Libre des Pays
des Grands Lacs, DR Congo, in 2018. She is cur-
rently pursuing the master’s degree in information
and communication engineering with Covenant
University, Nigeria. She works as a Research
Assistant with the Covenant Applied Informatics
and Communication Africa Centre of Excellence
(CApIC-ACE), aWorld Bank ACE-IMPACTCen-

tre, Covenant University. Her research interests include cloud computing and
machine (deep) learning.

VICTOR AKANDE is currently pursuing the B.Sc.
degree in computer science with Elizade Univer-
sity. He is also a Software Engineer with over three
years of experience buildingweb andmobile appli-
cations. He is also the Vice President of the Nige-
ria Association of Computing Students (NACOS),
Elizade University. His research interests include
cloud computing, artificial intelligence, and soft-
ware engineering. For more information visit the
link (https://akande.com.ng).

OLUWADAMILOLA OSHIN (Member, IEEE)
received the Ph.D. degree in information and com-
munication engineering (with a focus on nano-
electronic biosensing) from Covenant University,
Nigeria, in 2020. She is currently a Lecturer
in information and communication engineering
with the Department of Electrical and Information
Engineering, Covenant University, where she is
also a Faculty Member of the Covenant Applied
Informatics and Communication Africa Centre

of Excellence (CApIC-ACE), a World Bank ACE-IMPACT Centre. Her
research interests include mobile communications, data analytics, and
MEMS-based biosensing. She has published about 30 papers in reputable
journals and conference proceedings. She is amember of several professional
bodies, including the Council for the Regulation of Engineering in Nigeria
(COREN). She enjoys research and solving health-related issues using engi-
neering and technology.

VICTORIA OGUNTOSIN received the B.Eng.
degree in electrical engineering from the Univer-
sity of Ilorin, Nigeria, the M.Sc. degree in electri-
cal and electronic engineering from the University
of Greenwich, U.K., and the Ph.D. degree from
the University of Reading, U.K. Her Ph.D. work at
the University of Reading was on the development
of a soft modular robotic arm. The research work
involved building a soft robotic assistive arm that is
actuated by pneumatics. She is currently a Lecturer

at the Department of Electrical and Information Engineering, Covenant
University, Ota, Ogun, Nigeria.

CLAUDE TAKENGA received the B.Sc. andM.Sc.
degrees in radio engineering and telecommunica-
tion from Saint Petersburg State Technical Uni-
versity, in 2001 and 2003, respectively, and the
Ph.D. degree in electrical engineering from the
Institute for Communication Technology, Leibniz
University of Hannover, Germany, in 2007. He is
currently working in industry with the Research
and Development Department, Infokom GmbH,
Germany, where he collaborates in several inter-

national joint-projects focusing on integrating IT technologies in the health
sectors. His research interests include eHealth systems, mobile applications,
and communication technologies. He serves as a university professor in some
countries. He has published numerous papers in conference proceedings and
journals.

MAISSA MBAYE (Member, IEEE) received the
master’s degree in computer and ICT engineer-
ing (2ITIC) from Gaston Berger University, St-
Louis, Senegal, in 2005, the master’s degree
in distributed systems, networks and parallelism
(SDRP) from Bordeaux 1 University, France,
in 2006, and the Ph.D. degree from the Bordeaux
Computer Science Research Laboratory (LaBRI),
Bordeaux 1 University, in 2009.
He has been an Associate Professor at Gaston

Berger University (UGB), and a member of the Laboratory of Numerical
Analysis and Computer Science (LANI), UGB, since 2011. He teaches
computer science and his research interests include autonomous networking,
knowledge plane, edge artificial intelligence (the IoT, fog-edge comput-
ing, and machine learning) applied to agriculture, health and environment,
ICT4D, and cyber security. His work has been the subject of numerous
scientific publications in international conferences and journals. He has
been the Coordinator of the African Center of Excellence in Mathematics,
Computer Science and ICT (ACE-MITIC), Senegal, since April 2020.

DAME DIONGUE (Member, IEEE) received the
Bachelor of Science andMaster of Science degrees
in computer science from the Cheikh Anta Diop
University of Dakar, Senegal, in 2007 and 2011,
respectively, and the Ph.D. degree in computer sci-
ence from Gaston Berger University, Saint-Louis,
Senegal, in 2014. His research interests include
networking, wireless mesh networking and wire-
less sensor networks, and particularly in schedul-
ing algorithms and coverage heuristics design in

wireless sensor networks. He is actually interested on AI application on
agriculture and health. He was an Assistant Professor at the Assane Seck
University of Ziguinchor, Senegal, from 2015 to 2017. He has been with
the Institut Polytechnique de Saint Louis, an Engineering School hosted at
Gaston Berger University, since January 2018. He is in charge of teaching
network-based simulation techniques in wired and wireless networks at
Gaston Berger University.

EZEKIEL F. ADEBIYI is currently a H3Africa, aka
German Science Foundation (DFG) Projects Prin-
cipal Investigator and the Head of the Covenant
University Bioinformatics Research (CUBRe)
Group. He is also the Centre Leader of the
Covenant Applied Informatics and Communica-
tion African Centre of Excellence (CApIC-ACE),
a new World Bank funded ACE Impact Project.

VOLUME 10, 2022 133573


