Development of an Extended Biomedical Named Entity Recognition and Relation Extraction Model for Malaria using BioBERT

AJAO, ADEMOLU DANIEL (22PCG02416) BSc Computer Science, Mountain Top University, Ogun State

AUGUST, 2024

Development of an Extended Biomedical Named Entity Recognition and Relation Extraction Model for Malaria using BioBERT

BY

AJAO, ADEMOLU DANIEL (22PCG02416) BSc Computer Science, Mountain Top University, Ogun State.

DISSERTATION A SUBMITTED TO THE **SCHOOL** OF POSTGRADUATE STUDIES IN PARTIAL FULFILMENT OF THE **REQUIREMENT OF THE MSc DEGREE IN COMPUTER SCIENCE ENGINEERING**) OF THE (SOFTWARE DEPARTMENT OF COMPUTER AND INFORMATION SCIENCES, COLLEGE OF SCIENCE AND TECHNOLOGY, COVENANT UNIVERSITY, OTA, **OGUN STATE, NIGERIA**

AUGUST, 2024

ACCEPTANCE

This is to attest that this dissertation is accepted in partial fulfilment of the requirements for the award of the degree of Master of Sciences in Computer Science in the Department of Computer and Information Sciences, College of Science and Technology, Covenant University, Ota, Nigeria.

Miss Adefunke F. Oyinloye (Secretary, School of Postgraduate Studies)

Signature and Date

Prof. Akan B. Williams (Dean, School of Postgraduate Studies)

Signature and Date

DECLARATION

I declare that AJAO, ADEMOLU DANIEL (22PCG02416), carried out this research entitled "DEVELOPMENT OF AN EXTENDED BIOMEDICAL NAMED ENTITY RECOGNITION AND RELATION EXTRACTION MODEL FOR MALARIA USING BIOBERT". It was carried out under the supervision of Dr. Oluranti Jonathan, Concepts of this research project are results of the research carried out by Ajao, Ademolu Daniel and ideas of other researchers have been fully recognized.

AJAO, ADEMOLU DANIEL

Signature and Date

CERTIFICATION

This is to certify that this dissertation titled "DEVELOPMENT OF AN EXTENDED BIOMEDICAL NAMED ENTITY RECOGNITION AND RELATION EXTRACTION MODEL FOR MALARIA USING BIOBERT" is original research carried out by AJAO, ADEMOLU DANIEL (22PCG02416) in the Department of Computer and Information Sciences, College of Science and Technology, Covenant University, Ota. Ogun State, Nigeria, under the supervision of Dr. Oluranti Jonathan. We have examined and found this work acceptable as part of the requirements for the award of Master of Science (M.Sc.) in Computer Science.

Dr. Oluranti Jonathan

(Supervisor)

Prof. Olufunke O. Oladipupo (Head of Department)

Prof. Zacchaeus O. Omogbadegun (External Examiner)

Prof. Akan B. Williams (Dean, School of Postgraduate Studies) **Signature and Date**

Signature and Date

Signature and Date

Signature and Date

DEDICATION

I dedicate this project to God Almighty for His Help and ever-sufficient Grace, Wisdom and Knowledge given to me throughout my Master's Degree Programme. My Family and Friends for their words of encouragement and support.

ACKNOWLEDGEMENTS

I use this medium to appreciate the following people/organizations that have supported me in one way or another during my study.

First and foremost, I would like to thank my project supervisor, Dr. Oluranti Jonathan, for his invaluable guidance, insightful feedback, and constant encouragement throughout the project.

Secondly, I want to thank the Head of the Department of Computer and Information Sciences, Prof. Olufunke Oladipupo, for giving me the unique privilege to pursue my interests and for her guidance.

Also, I would like to thank the faculty members for their feedback and advice and for giving expert opinions that helped shape me in the right direction.

I also want to thank CApiC-ACE for sponsoring, supporting and giving me the privilege to further my studies for this degree.

I also want to appreciate my parents, Mr Adefemi and Mrs Florence Ajao and my siblings for their support and encouragement that gives me the courage to carry on towards the journey of excellence

TABLE OF CONTENTS

CONTENTS PAGES i TITLE PAGE **COVER PAGE** ii ACCEPTANCE iii **DECLARATION** iv CERTIFICATION v **DEDICATION** vi ACKNOWLEDGEMENTS vii TABLE OF CONTENTS viii LIST OF FIGURES xi LIST OF TABLES xiii **ABBREVIATIONS** xiv ABSTRACT XV **CHAPTER ONE: INTRODUCTION** 1 1.1. Background to the Study 1 1.2. Statement of the Problem 3 1.3. Aim and Objectives of the Study 4 1.4. Research Methodology 4 1.5. Significance of the Study 5 1.6. 5 Scope of the Study 1.7. Organization of the Dissertation 5 **CHAPTER TWO: LITERATURE REVIEW** 7 2.1. Preamble 7 2.2. Large Language Models 7 2.2. 10 Natural Language Processing 2.3. Biomedical Models and Large Language Models 11 2.4. Natural Language Processing in the Biomedical Domain 24 2.5. **BERT** and Named Entity Recognition 25 2.6. **Relation Extraction** 27 2.7. Applications of the Biomedical Language Model in Relevant Studies 29

33

2.9.	Summary of Findings	34
СНА	APTER THREE: METHODOLOGY	35
3.1.	Preamble	35
3.2.	Models Overview	35
	3.2.1. BioBERT	35
	3.2.2. Multi-BioNER	36
	3.2.3. FT-BioBERT	37
3.3.	Model Architecture	37
	3.3.1. Long Short-Term Memory (LSTM) Layer	37
	3.3.2. Random Forest	40
	3.3.3. Support Vector Machine (SVM)	40
	3.3.4. Gradient Boosting Machine (GBM)	42
3.4.	Data Collection	43
	3.4.1 Sources of Data	44
	3.4.2 Datasets for Model Analysis	44
3.5.	Data Pre-Processing	45
	3.5.1. Data Pre-Processing for our Model	45
	3.5.2. Initial Data Cleaning	47
	3.5.3. Tokenization and Annotation Alignment	48
	3.5.4. Handling Missing Data	48
3.6.	Data Splitting	48
	3.6.1. Training Set (70%)	49
	3.6.2. Validation Set (15%)	49
	3.6.3. Test Set (15%)	49
3.7.	Model Training and Evaluation	49
	3.7.1. Training Setup	49
	3.7.2. Performance Evaluation	50

CHAPTER FOUR: RESULTS AND DISCUSSION		52
4.1.	Preamble	52
4.2.	Results on BC5CDR-Disease Dataset	52
	4.2.1. Results on BC5CDR-Disease Dataset for System 1:	52
	4.2.2. Results on BC5CDR- Diseases for System 2	53
	4.2.3. Analysis of Results	54
4.3.	Results on BioRED dataset	55
	4.3.1 Results on BioRED Dataset on System 1	55
	4.3.2. Results on BioRED Dataset on System 2	56
	4.3.3. Analysis of Results	56
4.4.	Results on NCBI-Disease Dataset	57
	4.4.1 Results on NCBI-Disease Dataset on System 1	57
	4.4.2. Results on NCBI-Disease Dataset on System 2	58
	4.4.3 Analysis of Results	59
4.5.	Summary of Results	
4.6.	Discussion of Results	60
CHA	PTER FIVE: RECOMMENDATIONS AND CONCLUSION	62
5.1.	Summary of Findings	62
5.2.	Contributions to Knowledge	63
5.3.	Limitations of the Study	64
5.4.	Recommendations for Future Research	64
5.5.	Conclusion	65
REFERENCES		67

LIST OF FIGURES

FIGURE	TITLE OF FIGURE	PAGE
Figure 1.1:	A basic flow diagram depicting various stages of LLMS from pre-training	ng
	to prompting/utilization (source: Naveed et al., 2024)	2
Figure 1.2:	Core Concepts of Natural Language Processing (source: Geetha et al., 2	023) 3
Figure 2.1:	A 4th generation compiler based on large language models (source:	
	Marcondes et al. 2023)	8
Figure 2.2:	LLM's use in Healthcare (source: Reddy, 2023)	9
Figure 2.3:	The NLP pipeline for Smart Healthcare (source: Zhou et al. 2024)	10
Figure 2.4:	The overall Architecture of keBioLM (source: Yuan et al. 2021)	13
Figure 2.5:	Pre-training and Fine-tuning of BioALBERT on NER (Source: Naseem	et
	<i>al.</i> ,2021)	14
Figure 2.6:	Overview of the proposed integration process and model architecture.	
	(source: Arabzadeh and Bagheri, 2023)	15
Figure 2.7:	The ABioNER model (source: Boudjellal et al.,2021)	16
Figure 2.8:	Application of BERT to perform BioNER in the MRC framework	
	framework (Source: Sun et al., 2021)	17
Figure 2.9:	Architecture of the BiLSTM Model (source: Naseem et al., 2020)	18
Figure 2.10:	The KEBLM model (source: Lai et al., 2023)	19
Figure 2.11:	Proposed Neural Model (source: Narayanan et al., 2022)	21
Figure 2.12:	The Architecture of the BioBIT model (source: Buonocore et al., 2023)	22
Figure 2.13:	StaResGRU-CNN structure (Source: Ni et al., 2021)	23
Figure 2.14:	An Overview of BioMedBERT Information Retrieval Architecture	
	(Source: Chakraborty et al., 2020)	24
Figure 2.15:	Overall Pre-Training and Fine-Tuning Processes of BERT (Source:	
	Lee <i>et al.</i> , 2019)	25
Figure 2.16:	An overview of BioVocabBERT Tokenizer (Source: Gutiérrez et al., 202	23) 26
Figure 2.17:	The Tripet linearization of REBEL (Source: Huguet Cabot and Navigli,	
	2021)	28

Figure 2.18:	The architecture of the model with type-aware map memories (TaMM)	
	(Source: Chen et al.,2021)	29
Figure 2.19:	Conditional Knowledge Infusion into Pretrained Language Models (Source	:
	Jha and Zhang, 2022)	30
Figure 2.20:	Querying Knowledge Bases (KB) and language models (LM) with EHR no	te
	context to enhance factual knowledge extraction. (Source: Yao et al. 2022)	32
Figure 3.1:	Biobert Model (Source: Lee et al. 2019)	36
Figure 3.2:	Multi-BioNER Model (Source: Park et al., 2023)	37
Figure 3.3:	Ft-BioBERT Architecture	43
Figure 3.4:	The Search Query Result as of 14 th May 2024	44
Figure 3.5:	Documents Retrieved after the first iteration of Preprocessing	46
Figure 3.6:	Second round of Data Preprocessing	46
Figure 4.1:	BC5CDR results for System 1	53
Figure 4.2:	BC5CDR-Disease Dataset Results on System 2	54
Figure 4.3:	BioRED Dataset Results on System 1	55
Figure 4.4:	BioRED results on System 2	56
Figure 4.5:	NCBI-Disease Results on System 1	58
Figure 4.6:	NCBI-Disease on System 2	59

LIST OF TABLES

TABLE	TITLE OF TABLE	PAGE
Table 4.1: Result c	f BC5CDR-Disease Dataset On System 1	52
Table 4.2: Result of	f BC5CDR-Disease Dataset On System 2	53
Table 4.3: BioREE	Dataset Results on System 1	55
Table 4.4: BioEDF	Results on System 2	56
Table 4.5: Results	On NCBI-Disease Dataset On System 1	57
Table 4.6: Results	On NCBI-Disease Dataset On System 2	58

ABBREVIATIONS

Named Entity Recognition	
Relation Extraction	
Large Language Model	LLM
Biomedical Bidirectional Encoding Representations from Transformers	BioBERT
Natural Language Processing	NLP
Convolutional Neural Network	CNN
Kernelized Support Vector Machine	KSVM
Biomedical Information Extraction	
Biomedical Natural Language Processing	BioNLP
Biomedical Named Entity Recognition	BioNER
Long Short-Term Memory	LSTM
Random Forest	RF
Support Vector Machine	SVM
Gradient Boosting Machines	GBM
Bidirectional Encoder Representations from Transformers	BERT

ABSTRACT

This study aims to enhance the biomedical Named Entity Recognition and Relation Extraction model for use in the malaria subdomain by fine-tuning the existing BioBERT (Bidirectional Encoder Representations from Transformers for Biomedical Text Mining) model. The process of fine-tuning involves adjusting the parameters of the BioBERT model to suit the characteristics of the malaria subdomain better. The model is intended to improve the process of recognizing entities and their relationships in the context of malaria-associated publications. This solves an essential problem in connection with the inapplicability of the previously developed models in the biomedical field. The study uses complex and highly effective machine learning algorithms, such as Long Short-Term Memory, Random Forests, Support Vector Machine and Gradient Boosting Machine, to fine-tune the existing BioBERT model, leading to the FT-BioBERT model. The fine-tuned model is compared with other models, such as BioBERT and Multi-BioNER, over three datasets, namely BC5CDR-Disease, BioRED, and NCBI-Disease. The fine-tuned model achieved notable performance improvements: achieving 92.4% in accuracy, which is a 3.13% increase from BioBERT and 2.33% from Multi-BioNER and attaining 91.8% in precision, 92.7% in recall, and 92.2% F1score which is a of 3.15% improvement over BioBERT, and 2.23% improvement over Multi-BioNER. Based on the results, we confirm that the proposed model can effectively identify and extract entities and their relationships when supplied with malaria literature and, therefore, is suitable for biomedical text mining. We hope that the study's findings will provide new avenues that will lead to the creation of domain-related NLP applications in malaria-related fields.

Keywords: Named Entity Recognition, Relation Extraction, BioBERT, Biomedical Language Model, Biomedical Natural Language Processing