MOLECULAR DYNAMICS OF TUBER AND SEED YIELD IN Sphenostylis stenocarpa (Hochst. ex A. Rich. Harms) (AFRICAN YAM BEAN)

ALADELE, ANDREW KOLAWOLE (22PCO02401)

AUGUST, 2024

MOLECULAR DYNAMICS OF TUBER AND SEED YIELD IN Sphenostylis stenocarpa (Hochst. ex A. Rich. Harms) (AFRICAN YAM BEAN)

BY

ALADELE, ANDREW KOLAWOLE (22PCO02401)

B.Agric Plant Physiology and Crop Production, Federal University of Agriculture Abeokuta

An M.Sc DISSERTATION SUBMITTED TO THE SCHOOL OF POSTGRADUATE STUDIES IN PARTIAL FULFILLMENT OF THE REQUIREMENT FOR THE AWARD OF THE DEGREE OF MASTERS OF SCIENCE (M.Sc) IN BIOLOGY IN THE DEPARTMENT OF BIOLOGICAL SCIENCES, COLLEGE OF SCIENCE AND TECHNOLOGY, COVENANT UNIVERSITY, OTA, OGUN STATE NIGERIA

AUGUST, 2024

ii

ACCEPTANCE

This is to attest that this dissertation has been accepted in partial fulfilment of the requirements for the award of the degree of Masters of Science in Biology, in the Department of Biological Sciences, Colleges of Science and Technology, Covenant University, Ota, Ogun State.

Miss Adefunke F. Oyinloye

(Secretary, School of Postgraduate Studies)

Signature and Date

Prof. Akan B. Williams

(Dean, School of Postgraduate Studies)

Signature and Date

DECLARATION

I ALADELE, ANDREW KOLAWOLE (22PCO02401), declare that I carried out this research under the supervision of Prof. Conrad A. Omonhinmin and Prof. Michael T. Abberton of the Department of Biological Sciences, College of Science and Technology, Covenant University, Ota, Nigeria and International Institute of Tropical Agriculture, Ibadan, Nigeria, respectively. I attest that the thesis has not been presented either wholly or partially for the award of any degree elsewhere. All sources of data and scholarly information used in this dissertation are duly acknowledged.

ALADELE, ANDREW KOLAWOLE

Signature and Date

CERTIFICATION

We certify that this thesis titled "MOLECULAR ANALYSIS TO UNDERSTAND THE GENETICS OF TUBER AND SEED YIELD IN AFRICAN YAM BEAN" is an original work carried out by ALADELE, ANDREW KOLAWOLE (22PCO02401), in the Department of Biological Sciences, College of Science and Technology, Covenant University, Ota, Ogun State, Nigeria under the supervision of Prof. Conrad A. Omonhinmin and Prof. Michael T. Abberton. We have examined and found this work is acceptable as part of the requirements for the award of Masters of Science (M.Sc) degree in Biology.

Prof. Conrad A. Omonhinmin	Signature and Date
(Supervisor)	
Prof. Michael T. Abberton	Signature and Date
(Co-Supervisor)	
Prof. Isaac O. Ayanda	Signature and Date
(Head of Department)	
(riena or 2 opar emono)	
XXXXXXXXXXXX	Signature and Date
	Signature and Date
(External Examiner)	
Prof. Akan B. Williams	Signature and Date
(Dean, School of Postgraduate Studies)	

DEDICATION

This research work is dedicated to the Almighty God and my parents, Dr. Sunday Aladele and Mrs. Grace Aladele

AKNOWLEDGEMENTS

I want to appreciate the Most High God, the custodian of all wisdom, knowledge, and understanding, for His grace and favour throughout the duration of carrying out my M.Sc programme. I acknowledge the University Chancellor, Prof. Abiodun H. Adebayo; the Registrar Mrs Regina A. Tobi-David; the Dean School of Postgraduate Studies, Prof. Akan B. Williams; The Sub-Dean School of Postgraduate Studies, Dr. Emmanuel O. Amoo; the Dean, College of Science and Technology, Prof. Timothy A. Anake and the Dean, Student Affairs, Mrs. Olushola E. Coker.

I would like to acknowledge the Head of Department, Prof. Isaac O. Ayanda for his contribution during my programme. My sincere appreciation goes to my supervisor Prof. Conrad A. Omonhinmin and co-Supervisors Prof. Michael T. Abberton, Dr Olaniyi Oyatomi, Dr Rajneesh Paliwal for their support and mentorship given to me all through the stages of my research work, I would like to appreciate the Head of Unit, Dr. Samuel A. Ejoh; the Postgraduate coordinator, Dr Eze F. Ahuekwe; My lecturers, Prof. Oluwole O. Obembe, Dr. Bello O. Adetutu, Dr. Patrick O. Isibor and the entire staff of the Department of Biological sciences for their support.

I would like to express my profound gratitude to Crop Trust in conjuction with GRC, IITA for sponsoring my M.Sc programme. I also want to appreciate Dr. Olaniyi A. Oyatomi and Dr. Rajneesh Paliwal for their contributions and supervison during my research work. I appreciate staff and colleague of Genetic Resource Centre, International Institute of Tropical Agriculture. My sincere appreciation goes to my collegues: Miss Tobi Obadire, Mr Daniel Balogun and Mr Samuel Oyegbade to name a few whose contributions were invaluable all through my postgraduate studies. God bless and reward you abundantly.

I would like to appreciate my supportive parent (Dr. Sunday E. Aladele and Mrs. Grace Aladele) and my brother (Victor O. Aladele) for their continuous support.

TABLES OF CONTENTS

CHAPTER ONE: INTRODUCTION

ERROR! BOOKMARK NOT DEFINED.

1.1 Background to the Study	Error! Bookmark not defined.
1.2 Research Questions	Error! Bookmark not defined.
Aim and Objectives:	Error! Bookmark not defined.
1.3 Justification for the Study	Error! Bookmark not defined.
1.4 Scope of Study	Error! Bookmark not defined.
CHAPTER TWO: LITERATURE REVIEW ERROR	! BOOKMARK NOT DEFINED.
2.1 Legumes	Error! Bookmark not defined.
2.2 Root Tuber Crops	Error! Bookmark not defined.
2.3 Tuberous legumes	Error! Bookmark not defined.
2.4 Legumes in Africa	Error! Bookmark not defined.
2.5 Germplasm conservation	Error! Bookmark not defined.
2.5.1 In situ Germplasm Conservation	Error! Bookmark not defined.
2.5.2 Ex Situ Germplasm Conservation	Error! Bookmark not defined.
2.6 The Role of Seed Banks in Protecting Crop Biodiversity	Error! Bookmark not defined.
2.7 Seed Storage and Conservation	Error! Bookmark not defined.
2.8 Agronomy and botany of Sphenpstylis stenocarpa	Error! Bookmark not defined.
2.9 Eco-geographical distribution of Ss	Error! Bookmark not defined.

2.10 Economic potentials and uses of Ss	Error! Bookmark not defined.
2.11 Limitations of Ss	Error! Bookmark not defined.
2.12 Genetic diversity within species	Error! Bookmark not defined.
2.5.1 Morphological characterization of Ss	Error! Bookmark not defined.
2.5.2 Molecular characterization of Ss	Error! Bookmark not defined.
2.6 Concept of Yield stability	Error! Bookmark not defined.
2.7 Quantitative traits and marker-trait association	Error! Bookmark not defined.
2.15 Research Gaps	Error! Bookmark not defined.
CHAPTER THREE: MATERIALS AND METHODS DEFINED.	ERROR! BOOKMARK NOT
3.1 Research site	Error! Bookmark not defined.
3.2 Gerplasm used	Error! Bookmark not defined.
3.3 Experimental Design and Field Plot Management	Error! Bookmark not defined.
3.4 Collection of Data	Error! Bookmark not defined.
3.5 Equipment	Error! Bookmark not defined.
3.6 Reagents	Error! Bookmark not defined.
3.7 Methods	Error! Bookmark not defined.
3.7.1 Phenotypic analysis	Error! Bookmark not defined.
3.7.2 Genotyping	Error! Bookmark not defined.
3.7.2.1 Quality control	Error! Bookmark not defined.
3.7.2.2 DArT-Seq	Error! Bookmark not defined.
3.7.2.3 SNP Filtering	Error! Bookmark not defined.
3.7.2.4 Statistical Analysis	Error! Bookmark not defined.

3.7.2.5 Principal Component Analysis (PCA) an	d Cluster Analysis Error! Bookmark not
defined.	
3.7.2.6 Inter-trait relationship	Error! Bookmark not defined.
CHAPTER FOUR: RESULTS	ERROR! BOOKMARK NOT DEFINED.
4.1 Phenotype analysis	Error! Bookmark not defined.
4.1.1: SEED	Error! Bookmark not defined.
4.1.2: TUBER	Error! Bookmark not defined.
4.2 Genome-wide AssociationStudies (GWAS)	Error! Bookmark not defined.
CHAPTER FIVE: DISCUSSION	ERROR! BOOKMARK NOT DEFINED.
GWAS	Error! Bookmark not defined.
CHAPTER SIX: CONCLUSION AND RECON NOT DEFINED.	IMENDATIONS ERROR! BOOKMARK
6.1 Conclusion	Error! Bookmark not defined.
6.2 Contribution to Knowledge	Error! Bookmark not defined.
6.3 Recommendations	Error! Bookmark not defined.
6.4 Limitations to this Study	Error! Bookmark not defined.
REFERENCES	ERROR! BOOKMARK NOT DEFINED.

LIST OF TABLES

TABLESTITLE OF TABLES	PAGES
1.1: Research gaps	32
3.1: AYB passport information displaying the nation of origin, the acquisition date	, 35
and the name of the collector	
4.1: Total number of filtered significant SNPs	55
4.2: BLUE FarmCPU Seed thickness	68
4.3: BLUE FarmCPU Tuber weight Group	69
4.4: BLUE FarmCPU Tuber weight	70
4.5: BLUE GLM Tuber weight Group	71
4.6: BLUE GLM Tuber weight	72
4.7: BLUE MLM Tuber weight	73
4.8: BLUE BLINK Pod width	74
4.9: BLUE BLIK Seed thickness	75

LIST OF FIGURES

FIGURES TITLE OF FIGURES	PAGES
4.1: The cladogram shows the clustering pattern of the accessions based	45
on seed yield	
4.2: Biplot analysis of seed yield performance and their influencing traits	46
4.3: Identification of correlation of traits on the tuber yield	47
4.4: The cladogram shows the clustering pattern of the tuber producing accession	s. 48
4.5: Biplot analysis of tuber yield performance and their influencing traits	49
4.6: Identification of correlation of traits on the tuber yield	50
4.7: Identification of relationship between seed and tuber traits	51
4.8: FarmCPU model showing significant SNPs for the BLUEs Tuber weight	52
utilizing Manhattan plot and Q-Q plot	
4.9: GLM model showing significant SNPs for the BLUEs Tuber weight utilizin	ng 53
Manhattan plot and Q-Q plot	
4.10: MLM model showing significant SNPs for the BLUEs Tuber weight utilizing	g 54
Manhattan plot and Q-Q plot	
4.11: BLINK model showing significant SNPs for the BLUEs Tuber weight	55
utilizing Manhattan plot and Q-Q plot	
4.12: FarmCPU model showing significant SNPs for the BLUEs grouped Tuber	56
weight utilizing Manhattan plot and Q-Q plot	
4.13: BLINK model showing significant SNPs for the BLUEs grouped Tuber wei	ght 57
utilizing Manhattan plot and Q-Q plot	

4.14: GLM model showing significant SNPs f	or the BLUEs grouped Tuber weight	58
utilizing Manhattan plot and Q-Q plot		
4.15: FarmCPU model showing significant SN	Ps for the BLUEs Seed Thickness	59
utilizing Manhattan plot and Q-Q plot		
4.16: BLINK model showing significant SNPs	for the BLUEs Seed Thickness	60
utilizing Manhattan plot and Q-Q plot		
4.17: MLM model showing significant SNPs for	r the BLUEs Seed Thickness	61
utilizing Manhattan plot and Q-Q plot		
4.18: BLINK model showing significant SI	NPs for the BLUEs Pod Width utilizing	62
Manhattan plot and Q-Q plot		
4.19: FarmCPU model showing significant S	SNPs for the BLUEs Pod Width	63
utilizing Manhattan plot and Q-Q plot		

LIST OF PLATES

PLA	TES TITLE OF PLATES	PAGES
2.1:	Diverse tubers of African yam bean. The different accessions of	22
Afric	an yam bean seeds showing different colors	
2.2:	African yam bean staked on-field. Green matured pod in view	26

LIST OF APPENDICES

APP	ENDICES	FITLE OF APPENDICES	PAGES
1:	Flower of AYB plant on field	1	104
2:	Fresh pod growth on field		105
3:	Harvesting of dry pods		106
4:	Harvesting of tubers		107
5:	Image of freshly harvested tu	bers	108
6:	Packaging of tuber for post-h	arvest data collection	109
7:	Image of Pod and seed		110
8:	Image of TSs-421 tubers		111
9:	AYB porridge obtained from	various accessions producing tuber	112

LIST OF ABBREVIATIONS

AFLP: Amplified Fragment Length Polymorphism
AYB: African Yam Bean
Bp: Base pairs
BLUE: Best linear and unbiased estimators
Chr: Chromosome
CTAB: Cetyl trimethylammonium bromide
DArT: Diversity array technology
DArTseq: Diversity array technology sequence (DArTseq)
DNA: Deoxyribonucleic Acid
EDTA: Ethylene Diaminetetraacetic Acid
FAO: Food and Agriculture Organization
GLM: General linear Model
GRC: Genetic Resource Centre
GWAS: Genome-Wide Association Study
IITA: International Institute of Tropical Agriculture
ISSR: Inter-Simple Sequence Repeat
MAF: Minor allele frequency
MAS: Marker assisted selection

MLM: Mixed linear model

mRNA: Messenger ribonucleic acid

NA: Not available

NGS: Next generation sequencing

PCA: Principal component analysis

PCR: Polymerase chain reaction

Q-Q: Quantile-quantile

QTLs: Quantitative Trait Loci

RAPD: Random Amplified Polymorphic DNA

SNPs: Single Nucleotide Polymorphisms

SSR: Single Sequence Repeat

TASSEL: Trait Analysis by Association, Evolution and Linkage

tRNA: Transfer ribonucleic acid

TSs: Tropical Sphenostylis stenocarpa

ABSTRACT

Sphenostylis stenocarpa (African yam bean - AYB) is an understudied and opportunity crop with the potential to contribute to food security It is a versatile legume that produces both edible seeds and tubers. AYB faces under-exploitation due to limited understanding and challenges as well as an unabetted threat to its diversity like several other indigenous plant species. Expanding the diversity of global food sources has become imperative. This study investigated the molecular dynamics in AYB by assessing the genetic diversity in non-tuber and tuberproducing landraces, identified SNP markers associated with tuber formation and determined the relationship between seed and tuber production. The study evaluated accessions from the Genetic Resources Centre of the International Institute of Tropical Agriculture (IITA), Ibadan. Phenotypic data was generated from monitored growth, genotyping was conducted using DArTseq technology, with SNP data generated afterward. Phenotypic data employed clustering, correlation analysis and distribution plots. Genome-wide Association Studies (GWAS) using the GAPIT package in R elucidated population structure and identified SNPs responsible for yield. Multiple traits such as NoPods, Hundred sdcount, TSdwghtPPL, TPodwgth indicate a close association with each other showing a strong indication with the accessions and yield. While clustering for seed and tubers showed four and five clusters each. BLUEd traits and 2254 SNP markers from 92 genotypes were used for the association analysis. Using the BLINK, FarmCPU, GLM, and MLM models. Twelve significant SNP markers were identified to be associated with three African yam bean yield traits (Tuber weight, Seed thickness, and Pod width). These results have the potential to accelerate marker-assisted selection in molecular breeding.

Keywords: African yam bean, opportunity, Seed, Tuber, SNPs, Yield