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In this paper, an energy-saving scheme in rotor field-orientated vector control is
developed for induction motor drives. The energy-saving scheme minimizes
copper and core losses in induction motors, which are equally applicable to
induction generators. In efficiency optimization, an optimal stator angular
velocity is uniquely obtained, and consequently, a corresponding optimal slip
at any given rotor speed is determined. The challenge of determining a reference
for rotor flux linkage that guarantees the minimal copper and core loss regime is
overcome by developing a load torque observer loop. The torque observer is
developed alongside a rotor speed observer for a sensorless speed operation. The
observed mechanical torque is further used to enhance the outer-loop rotor
speed control that generates an electromagnetic torque command used in
building the reference for the inner-loop stator current control. The results
obtained justified the effective operation of the torque and rotor speed
observer, which consequently verified the effective minimal electrical loss
regime at the optimal stator angular velocity and optimal rotor flux linkage.
The results are further compared to results obtained from the equivalent
induction machine drive on a finite-set model predictive control (FS-MPC)
scheme with the same values of the optimal stator angular velocity and
optimal rotor flux linkage. The developed efficiency-optimized vector control
scheme gave lower ripples in developed electromagnetic torque and dampened
overshoot better during step change in load torque.
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1 Introduction

Over the years, induction machines, particularly squirrel cage induction motors, have
maintained dominance in various industrial manufacturing and domestic applications. The
squirrel cage induction motors have been competitive machines of choice for industrial
electric drives because they are very rugged, relatively cheaper, and have low maintenance
requirements than the wound rotor type. However, induction machines in general should
be operated in least loss regimes to avoid over-consumption of energy. Kirischen et al.
(1987) stated that electric drives have the largest share of grid energy consumption in the
world. Hence, improved efficiencies in energy utilization by induction motors yield
tremendous savings, and consequently, they avail more energy to other consumers. As
such, efficiency improvement in induction motors significantly contributes to reduction in
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production costs in the manufacturing sector. Other applications
that benefit tremendously from efficiency optimization in induction
motors include motor-driven compressors in heating, ventilation,
and air conditioning (HVAC) systems and in electric vehicle
applications (Ghozziandall et al., 2004; Sajedi et al., 2011).

Core (iron) and copper (resistive) losses are the main electrical
losses, which must be tactically minimized for energy savings to
occur significantly in an induction machine drive (Abrahamsen
et al., 2001). Minimization of such electrical losses is more than often
implemented via adjustable voltage and frequency/speed control
methods. With the advent of power electronics inverters, adjustable
speed drives have been more competitive in industrial automation
than their fixed-speed counterparts, where reasonable efficiency can
only be achieved at full load (Kirschen et al., 1984; Sul and Park,
1988; Kirschen et al., 1985; Vukosavic and Levi, 2003).

Several control techniques have been employed to improve the
efficiency of induction motor drives (Abrahamsen et al., 1996). They
are grouped into three major categories: simple state control (SSC)
(Akin et al., 2004; Lascu and Trzynadlowski, 2004), loss model
control (LMC) (Uddin and Nam, 2008; Olajube and Anubi, 2023;
Uddin et al., 2019), and the search control (SC) algorithms (Rehman
and Xu, 2011; Kastha and Bose, 1995; Choudhary et al., 2015). The
LMC involves the use of a machine model to compute the losses by
selecting an appropriate value of flux that minimizes these losses,
and it is the fastest of the three methods. However, its major
drawback is its sensitivity to parameter variations. The SSC, on
the other hand, is the simplified version of the LMC that utilizes the
state-space control technique, which may include observer design to
estimate the value of the required flux for cost and loss minimization
(Almeida et al., 2007). SC is devoid of parameter variations but
suffers from torque ripples and slow convergence depending on the
dimension of its dynamics (Vukosavic and Levi, 2003; Chakraborty
and Hori, 2003; Blanusa, 2010). Prior knowledge of the machine
parameters is also required by the SCmethod for proper variation of
the flux to achieve an optimum operating condition. However, these
methods can be hybridized or combined to forestall the
shortcomings of the individual methods (Chakraborty and Hori,
2003; Blanusa, 2010; Qu et al., 2012; Stumper et al., 2013). A fuzzy
logic control method was used in Kumar et al. (2014) for fast
convergence of the search control technique and to prevent
torque ripples. A neuro-fuzzy method was also used in Sousa
et al. (1995) and Bose et al. (1997) to improve the fuzzy
logic technique.

The convergence point for the least core loss in an induction
machine will not necessarily correspond to the convergence point
for the least copper loss, as the two losses attain their minimal values
independently. Therefore, to achieve an operating regime where
both losses can be considered adequately reduced, a compromise
between the core and copper losses must be reached. A compromise
will be reached where both losses intersect.

In this article, therefore, classical Jacobi is used as the loss
minimization procedure to uniquely determine the point of
intersection between the core and copper losses. Consequently,
the loss minimization yielded an optimal rotor flux command
and an optimal stator angular velocity that fixes operation to a
constant slip operation. Hence, the loss minimization in this paper is
implemented via the field-orientated vector control scheme. In
general, vector control is a multivariable control scheme that can

target more than one control objective, which has matured
significantly over the years. It has capability for flux regulation
used in efficiency improvement, which makes it very promising in
industrial drives (Chakraborty and Hori, 2003; Ta-Cao and Hori,
2000; Chakraborty et al., 2003; Moreno-Eguilaz and Peracaula, 1999;
Sousa et al., 1992). However, a major setback with vector control is
sensitivity to system parameter mismatch (Balogun et al., 2021).
Mismatched inductance in the cross-coupling terms of the inner
loop current control was observed in Balogun et al. (2021) to majorly
influence the stability of the system. The setback in such system
parameter mismatch is mitigated in this article by increasing the
gains of the proportional plus integral (PI) of the inner loop control,
as shown in Balogun et al. (2021). Such a strategy is adopted herein
to improve the resiliency of vector control to system parameter
variation. Furthermore, observers will be introduced to eliminate the
need for mechanical sensors for rotor speed and mechanical load
torque. The observed mechanical torque variable will be fed forward
to enhance the rotor speed control loop in obtaining the reference
command for inner current loop control. Furthermore, a
comparative analysis is done between the developed vector
control and equivalent finite-set model predictive control (FS-
MPC) on an equivalent induction machine.

The rest of the paper is arranged as follows: Sections 2 and
3 present the model of an induction machine and its steady-state
analysis, respectively. Electrical loss minimization control laws are
discussed in Section 4, while the design of the efficiency-optimizing
dynamic control scheme is shown in Section 5. Section 6 focuses on
the mechanical torque and rotor speed observer design. The results
and comparative analyses are given in Section 7 along with the
discussion, and the paper is concluded in Section 8.

2 Induction machine model

An inverter-fed squirrel cage induction motor is illustrated in
Figure 1A. The dynamic model of the squirrel cage induction motor
drive is given in Equation 1–11. In Equation 1, Equation 2, kc = 1+(rs/rc),
whereby the stator voltage equations account for the core loss with a
core loss resistance rc, as shown in Figure 1B. Therefore, i’qs and i’ds are
the effective torque producing stator current, as defined in Balogun et al.
(2021) and Gong et al. (2019). Therefore, they are referred to as the
stator currents to avoid confusion in use of terms.

vqs � mqsvdc
2

� rsiqs
′ + kcpλqs + kcωλds. (1)

vds � mdsvdc
2

� rsids
′ + kcpλds − kcωλqs. (2)

vqr � 0 � rriqr + pλqr + ω − ωr( )λdr. (3)
vdr � 0 � rridr + pλdr − ω − ωr( )λqr. (4)

where

λqs � Lsiqs
′ + Lmiqr. (5)

λds � Lsids
′ + Lmidr. (6)

λqr � Lriqr + Lmiqs
′ . (7)

λdr � Lridr + Lmids
′ . (8)

pωr � P

2J
Te − Tm( ). (9)
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where

Te � 3PLm

4Lr
λdriqs

′ − λqrids
′( ) . (10)

Cdpvdc � 3
2

io − id( ) � 3
2
io − 3

4
mqsiqs +mdsids( ). (11)

3 Steady-state analysis

In general, steady-state analysis is quite useful in establishing the
operating and boundary regions in electric machines. Particularly, in
squirrel cage induction motor drive, a regulation of the operational
stator angular velocity (ω, in arbitrary reference frame) is of
significant interest for achieving energy savings. At steady state,
the derivative elements in the model of Section 2 are set to 0.
Therefore, use of the steady states of Equations 3, 4 for appropriate
substitution in rotor flux linkages in the Te of the steady-state of
Equation 9 yields Equation 12, which can be re-evaluated as
Equation 13.

Te � Tm � 3P
4

rrI2r
ω − ωr( )( ). (12)

I2r �
4 ω − ωr( )
3Prr

Te � 4 ω − ωr( )
3Prr

Tm. (13)

PL � 3
2

Iqs
2 + Ids

2( )rs + Iqr
2 + Idr

2( )rr + Icq
2 + Icd

2( )rc[ ]. (14)

PL � aPL + bPLω

ω − ωr( ) +
cPL

ω − ωr( )2( )I2r . (15)

Here,
aPL � 3

2 [LsL2m (L2s(rr − rc) − rr) − 2LsLr(rr + rc) + rr + rsLm + L2mrc],
bPL � 3rrrs

2rc
, and cPL � 3

2L2m
[rsr2r(1 + L2s ) + rcL2s ].

The core and copper losses (PL) of the machine are combined
and given in Equation 14. The first two terms in Equation 14 give
the copper loss, while the last term gives the core loss. The two
loss regimes are embedded into Equation 14 so that two separate
objective functions can be evaluated at once. If an induction
machine is made to operate at constant slip when there is no
magnetic saturation, as the rotor current increases, the stator
angular velocity increases, and the copper loss increases while
the core loss decreases. The two losses run contrary, as shown in
Figure 2A. As such, a region of compromise must be reached
where both loss functions intersect, which will be agreeable as
optimal, as seen in Figure 2A. Consequently, at the point of
intersection, the contribution of each of the loss function takes
50%, which implies that each of the copper loss and the core loss
contributes equally to the total electrical losses at the optimal
point. Therefore, Equation 14 is evaluated further as Equation
15, by appropriate substitution and simplification, to have
reduced variable sets like Equation 12. By implication,
substituting Equation 13 into Equation 15 gives the PL as a
quadratic function of ω, which gives rise to an optimization

FIGURE 1
(A) An inverter-fed induction motor drive system. (B) q–d equivalent circuit model of the induction machine including core–loss resistance.
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problem of minimizing the operational electrical losses at a
corresponding stator angular velocity. As such, an
optimization procedure that uniquely determines ω is given in
the next section.

In Figures 2B, C, profiles of the variation of PL against stator
angular velocity (ω) and against slip angular velocity (ωs) are
given, respectively, at specified electromagnetic (Te) or
mechanical (Tm) torque and rotor speed (ωr). The plots were
obtained while the machine is constrainednot to exceed the rated stator
voltage and current (i.e., Vs �










V2

qs + V2
ds

√
≤Vs rated

and Is �








I2qs + I2ds

√
≤ Is rated).

In Figure 2B, the rotor speed was specified at 200 rad/s for the
random Tm at 3.8 N.m, 5 N.m, and 7.2 N.m. It can be seen in the
figure that the least PL at each of the given Tm coincides at the
same ω of 224 rad/s. Therefore, there exists a constant slip
angular velocity given as sω (where sω = ω - ωr, obtained
from slip s = ((ω - ωr)/ω), which is 24 rad/s. As such, the
constant slip operation for least PL is further justified in
Figure 2C, where the three given Tm in Figure 2B are
subjected to random sub-synchronous ωr. Consequently, the
least PL in each of the plot still coincides to 24 rad/s. In
Figure 2D, the rotor flux linkage, regardless of the rotor speed,
has a unique minimal value of 0.208 Wb that corresponds to less
power loss. This value is observed to change only when the Tm

(and consequently Te) changes.

4 Electrical loss minimization
control laws

In the previous section, the optimization problem was
established as a control problem with an objective function of
minimizing the copper and core losses of the induction machine
with respect to the stator angular velocity and the rotor current
magnitude. The goal is to investigate if a unique expression can be
determined for an optimal stator angular velocity and consequently
obtaining a unique expression for an optimal rotor flux
linkage reference.

4.1 Determination of optimal stator
frequency

The classical Jacobi is employed for the optimization procedure,
which is formulated from the derivatives of PL and Te with respect to
ω and Ir, as given in Equation 16. The objective (cost) function of
Equation 16 is to minimize PL, which also corresponds to
maximizing the torque or power output of the machine. With
the determinant of Equation 16 set to 0, Equation 17 is obtained
as an optimal stator angular velocity that fixes the slip at an optimal
value. The optimal stator angular velocity is critical for constant slip
operation. As such, with machine parameters given in the appendix,

FIGURE 2
(A) Copper and core losses versus rotor current. (B) Copper and core losses versus stator angular velocity. (C) Copper and core losses versus slip
angular velocity. (D) Copper and core losses versus rotor flux linkage.
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Equation 17 gives ωopt = 224 rad/s with rotor speed set at 200 rad/s,
which corresponds to the value obtained as optimal in Figure 2B.
Consequently, the terms in square root in the right-hand side of
Equation 17 correspond to the slip angular velocityωs, which is fixed
at 24 rad/s according to the parameters of the test machine of
this paper.

dTe

dIr

dTe

dω

dPL

dIr

dPL

dω

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣ � 0. (16)

ωopt � ωr ±





Ac

Bc

√
. (17)

Here, Ac � rcr2r(1 + L2s ) + r2c r
2
rL

2
s and Bc � rcrs (1 + L2s )L2r −

2rcrsLsLrL2m +2rsrrL2m + rcrrL2m + r2cL
2
s L

2
r − 2r2cLsLrL

2
m + r2cL

4
m

4.2 Determination of optimal rotor
flux linkage

With an optimal stator angular velocity obtained, a
corresponding optimal rotor flux linkage reference can
consequently be determined. Notice that at steady state of
Equation 4 and with a rotor flux alignment of λqr = 0 and λdr
= λr, Idr = 0, consequently, Iqr = Ir. Therefore, the steady state of
Equation 3, 18 is obtained, while Equation 19 is determined from
Equation 13. As such, the corresponding optimal rotor
flux linkage is given in Equation 20 as 0.208 Wb, with the
mechanical torque specified as 3.8 N.m and with an
optimal slip angular velocity obtained as 24 rad/s for this
machine in the last sub-section. Therefore, based on Equation
20, the rotor flux agrees with Figure 2D and will only change
along an optimal profile determined by a change in the
mechanical torque.

λdr � − rrIqr
ωopt − ωr

. (18)

Iqr �














4Tm ωopt − ωr( )

3Prr

√
. (19)

λdr opt � ±














4Tmrr

3P ωopt − ωr( )
√

� 0.208 Wb. (20)

5 Efficiency-optimizing dynamic
control scheme

The energy-saving dynamic control scheme is based on rotor
flux-oriented vector control with inner-loop stator current control
and outer-loop speed and rotor flux control. The rotor flux
orientation of λqr = 0 and λdr = λr used in the previous section is
adopted in the dynamic control. The flux alignment decouples
inner-loop control of electromagnetic torque via independent
control on the q-axis.

5.1 Inner-loop current control

The stator equations in Equations 1, 2 form the basis for the
inner-loop control with the voltage impressed by the inverter as the
stator control input vectors. As such, the stator flux linkages in
Equations 1, 2 are expressed in terms of the rotor flux linkages and
the stator current for the rotor field-oriented control. Consequently,
Equation 21 is obtained as the dynamics of the inner-loop current
regulation and expressed in complex form, as given in Equation 22.

Lσpiqs + riqs
Lσpids + rids

[ ] � δqs
δds

[ ]
�

−ωrLmλdr
Lr

− ωLσ ids

rrLm

Lr
2 λdr + ωLσ iqs

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ +
1
kc

0

0
1
kc

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ vqs
vds

[ ]. (21)

Lσp + r( )iqds � Kr iqds
* − iqds( ) � Kr eqds( ) � δqds. (22)

Here, r � (rs/kc) + (rrL2m/L2r) and Lσ � Ls − L2m/Lr.

Gr p( ) � iqs
Kqreqs

� ids
Kdreds

� 1
pLσ + r( ). (23)

Expanding Equation 22 gives the open-loop current transfer
function of Equation 23, where Kqr = Kdr = Kr and represents the
proportional plus integral (PI) controllers in the inner-loop. The
delay given in Equation 24 accounts for dead-time and transport/
sampling delays introduced by the inverter feeding the machine and
the analog-to-digital conversion process (Balogun et al., 2021; Dong
and Ojo, 2006; Holmes et al., 2009; Kazmierkowski et al., 2002;
Rabelo et al., 2009). Introducing Equations 24, 23 yields Equation 25.
With the PI controller Kr expressed in terms of proportional and
integral gains in Equation 26, the closed-loop transfer function of
the plant’s inner-loop current control is given by Equation 27. For
pole zero cancellation, the controller’s gains are selected such that
Kpr/Kir = Lσ/r (Lascu et al., 2007). Since inner-loop current
controllers are the most significant in vector control stability (Ali
et al., 2020), the stability of Equation 27 is sacrosanct.

Gd p( ) � 1
pTrd + 1( ). (24)

Gr p( )Gd p( ) � 1
pLσ + r( ) · 1

pTrd + 1( ). (25)

Kr p( ) � pKpr +Kir

p
. (26)

Gcr p( ) � Kpr

p2LσTrd + pLσ +Kpr( ). (27)

Comparing the denominator of Equation 27 with the second-
order Butterworth polynomial of p2+2ωnζp+ωn

2 at optimal
damping criteria, such that ζ = 1/√2, then ωn/√2 = 1/Trd and
ωn

2 = Kpr/(Lσ Trd). Therefore, Kpr = Lσ/(2Trd), and consequently,
Kir = r/(2Trd). Hence, Equation 27 is further simplified as
Equation 28. As such, the control inputs from the inverter are
the stator voltage vectors given in Equation 29. δqs and δds in
Equation 29 stand for outputs from Kqr and Kdr in the q-axis and
d-axis, respectively.
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Gcr p( ) � iqs
iqs*

� ids
ids*

� 1

p22Trd
2 + p2Trd + 1( ). (28)

vqs
vds

[ ] �
1
kc

0

0 1
kc

⎡⎢⎢⎣ ⎤⎥⎥⎦−1 δqs
δds

[ ] −
−ωrLmλdr

Lr
− ωLσ ids

rrLm

Lr
2 λdr + ωLσ iqs

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (29)

5.2 Outer-loop speed control

The rotor speed outer-loop control is developed from Equation 9
and obtained in Equation 30. With the rotor field orientation in the
electromagnetic torque, as given in Equation 31, and accounting for
friction and windage losses in Equation 9 via damping coefficient
Bm, Equation 30 is expanded to Equation 32. Consequently, the
q-axis stator current reference is generated in Equation 33. The
current reference can also be represented by Equation 34 from
Equation 28. As such, Equation 32 is modified to Equation 35.
Equation 36 is obtained from Equation 3 and substituted in
Equation 35 to yield Equation 37, which results in the open-loop
transfer function of Equation 38. In the closed loop, Equation 39
evolves from Equation 38. Kωr is the PI controller for the outer rotor
speed loop, and δωr stands for the output of Kωr.

2J
P
pωr � T*

e − Tm( ) � Kωr ω*
r − ωr( ) � Kω eω( ) � δω. (30)

Te � 3PLm

4Lr
λdri

′*
qs . (31)

2J
P
pωr + 2

P
Bmωr � 3PLm

4Lr
λdri

′*
qs − Tm( ) � Kωr ω*

r − ωr( ) � Kωr eωr( )

� δωr.

(32)
i′*qs � Lr

kλrLm
δωr + Tm( ). (33)

i′*qs � iqs p22Trd
2 + p2Trd + 1( ). (34)

Kωr ω*
r − ωr( ) � 3PLm

4Lr
λdriqs p22Trd

2 + p2Trd + 1( ) − Tm. (35)

iqs � Lr

Lmrr
λr ω − ωr( ). (36)

Kωr ω*
r − ωr( ) � 3P

4rr
λ2r ω − ωr( ) p22Trd

2 + p2Trd + 1( ) − Tm. (37)

Hoωr � ωr

Kωr ω*
r − ωr( ) � ωr

Kωreωr
� ko

1

p22Trd
2 + p2Trd + 1( ). (38)

Here, ko � −3P
4rr

λ2r .

Hcωr
� ko

Kωr

p22Trd
2 + p2Trd + 1( ) pTrc + 1( ) + koKωr

. (39)

In order make the controller’s zero cancel the undesired pole of
the plant (Lascu et al., 2007), let the gains of the PI controller design
in Equation 40 be selected as Equation 41 to yield Equation 42.

Kωr � Kpωr + Kiωr

p
. (40)

Kpωr

Kiωr
� J

Bm
. (41)

Kωr � Kpωr

pTiωr
Tiωrp + 1( ). (42)

Here, Tiωr � J/Bm.
Hence, appropriate substitution of Equation 42 in Equation 39,

while equating that Tiωr � Trc , Kpωr � Trc
2koTrd

, and ko � −3P
4rr

λ2r , yields
the overall closed-loop transfer function of the speed control in
Equation 43, given that all other disturbances are equated to 0. The
linearized block model of the speed control loop is given in Figure 3.

Hcωr
� 1

p34Trd
3 + p24Trd

2 + p2Trd + 1
. (43)

5.3 Outer-loop optimized rotor flux
linkage control

The rotor flux linkage is regulated at the outer-loop d-axis
control of the inverter. Equation 44 evolves from Equation 4 and
yields Equation 45 as the dynamics for the flux regulation.
Therefore, Equation 28 yields Equation 46.

Lrpλdr + rrλdr � rrLmids
*. (44)

δλr � Kλr λdr
* − λdr( ) � Kλr eλr( ) � Lrp + rr( )λdr � rrLmids

*. (45)
ids
* � ids p22Trd

2 + p2Trd + 1( ). (46)
Here, Kλr represents the PI controller for the rotor flux outer-loop
control and δλr stands for the output of Kλr. Substituting Equation 46
into Equation 45 yields Equation 47. However, from Equation 8, i’ds
can be represented as Equation 48, which can be substituted in
Equation 47 to yield Equation 49.

δλr � Lmrrids
′ p22Trd

2 + p2Trd + 1( ). (47)
ids
′ � 1

Lm
λdr − Lridr( ). (48)

Kλr λdr
* − λdr( ) � rr λdr − Lridr( ) p22Trd

2 + p2Trd + 1( ). (49)

Hence, the open-loop transfer function of the flux linkage
controller given that all other disturbances are equated to zero
gives Equation 50.

Hoλr � λr

Kλr λ*r − λr( ) � λr
Kλreλr

� kr
1

p22Trd
2 + p2Trd + 1( ), (50)

where kr = 1/rr. Introducing a delay gain into Equation 50 results in
Equation 51. The delay gain can represent the time constant of the
filter needed for estimating the stator flux linkage.

Hoeλr � kr
1

p22Trd
2 + p2Trd + 1( ) pTre + 1( ). (51)

FIGURE 3
Linearized block model for rotor speed control loop.
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Hcλr � kr
Kλr

p22Trd
2 + p2Trd + 1( ) pTre + 1( ) + krKλr

. (52)

The closed-loop transfer function is given in Equation 52. For
pole-zero cancelation, let the PI controller design take the form Kpλr/
Kiλr = Lr/rr (Lascu et al., 2007). The gains of the PI controller are
expressed in Equation 53, which translates to Equation 54.

Kλr � Kpλr + Kiλr

p
. (53)

Kλr � Kpλr

pTi
Tip + 1( ). (54)

Here, Ti � Lr/rr.
Hence, appropriate substitution of Equation 54 in Equation 52,

while equating that Ti � Tre, Kpλr � Tre/(2krTrd), and kr � 1/rr,
yields Equation 55.

Hcλr � 1

p34Trd
3 + p24Trd

2 + p2Trd + 1
. (55)

Notice that Equation 55 is reduced to exactly the transfer
function of Equation 43 for the speed control. The stability
condition, therefore, that applies for the speed loop equally
suffices for the rotor flux loop control based on gains selected for
both loops. A linear model of the closed-loop flux regulation is
shown in Figure 4. Figure 5 shows the pole’s loci for 3-time delays,
Trd = 2/fs, 3/fs, and 7/fs (fs = 5000 Hz, switching frequency of the
converters), for the optimal damping criteria in Equations 43, 55.
The system is seen to be stable at a natural frequency, ωn, which
decreases as Trd increases. Consequently, with more increase of Trd,
the closer the poles are toward marginal stability. The practical
implication as such is that with a significant increase in Trd, the
system is tossed into instability.

6 Mechanical torque and rotor
speed observer

The optimization procedure in Section 4 and the dynamic
control scheme in Section 5 indicate that measuring or
estimating the mechanical torque is quite vital for the efficiency
optimization scheme of this article. State estimation (Awelewa et al.,
2023; Omiloli et al., 2023) plays a significant role in this respect, as
placing mechanical torque transducers on the drive will lead to an
additional cost. Consequently, a Luenberger load torque observer is
developed in this section for the energy saving scheme. The
Luenberger observer block is included in the overall control
scheme of the motor drive shown in Figure 6.

6.1 State-space model

The mechanical dynamics of Equation 56 can be represented in
the state-space format given in Equations 57, 58, where x = [x1 x2]

T =
[ωr Tm]

T, y = ωr, u = i’qs, and C = [1 0].

_ωr
_Tm

[ ] � 0 − P

2J

0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ ωr

Tm
[ ] +

3P2Lmλr
8JLr

0

0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ iqs′

0
[ ]. (56)

_x � Ax + Bu. (57)
y � Cx. (58)

Here, y = ωr, u = i’qs, A � 0 − P

2J

0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦, B �
3P2Lmλr
8JLr

0

0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, and
C � [ 1 0 ].

6.2 Observer model

The state-space model of sub-Section 6.1 is used to develop an
observer for the mechanical load torque and consequently for the
rotor speed as well. Consequently, a corresponding Luenberger
observer model for Equation 56 is given in Equation 59,
represented by the state-space of Equations 60, 61. Therefore,
the observer herein is modified from Zorgani et al. (2016) for the
rotor field-oriented control. The diagrammatic representation
for the load torque and rotor speed Luenberger observer is shown
in Figure 7.

[ _̂ωr

_̂Tm

] � 0 − P

2J

0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ ω̂r

T̂m
[ ] +

3P2Lmλr
8JLr

0

0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ iqs′

0
[ ] + L1

L2
[ ] ωr − ω̂r( ).

(59)
_̂x � Ax̂ + Bu + L x − x̂( ). (60)

ŷ � Cx̂. (61)

FIGURE 4
Linearized block diagram for the rotor flux linkage control loop.

FIGURE 5
Loci of poles for Equations 43, 55 with Trd = 3/fs, 3/fs, and 7/fs.
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The error (e) between the actual state-space and state-observer
models is given in Equation 62, where ~x � e � x − x̂. In the
expanded form, Equation 62 translates to Equation 63.

_~x � A − L( )~x. (62)

[ _~ωr

_~Tm

] � −L1 − P

2J

−L2 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ ~ωr
~Tm

[ ]. (63)

λI − A − L( )2×2
∣∣∣∣ ∣∣∣∣ � 0. (64)

The matrix (A–L) in Equation 62 and consequently Equation 63
gives the characteristic equation in Equation 64, which predicts the
regions of stability (Awelewa et al., 2016) and instability (if any).
Solving Equation 64 gives the loci of eigenvalues at a given operating
condition. Specifically, Equation 64 is further evaluated as Equation
65 that bifurcates into two distinct roots given in Equation 66. As
such, stability can only be guaranteed when the eigenvalues λ1 and λ2
given in Equation 66 are negative definite along the real axis of the

eigenvalue locus. When L1 is selected as positive values, L2 must be
selected as negative to maintain the negative definite eigenvalues in
Equation 66. The stability limit of the observer, therefore, occurs at
L2 = 0, which locates λ2 at the marginal stability of 0, while λ1 is
placed at a locus of -L1. Making L2 > 0 yields λ2 to be positive definite
and thereby throws the system into instability.

λ2 + L1λ − L2P

2J
� 0. (65)

λ1, λ2 � −L1

2
±









L2
1 + 4L2P

2J

√
2

. (66)

Figures 8A, B were obtained from Equation 64 and give the loci
of the eigenvalues that indicate stable dynamics of the observer when
L1 is fixed at 50 and L2 is varied from –0.1 to –40. Notice that at
L21 � −4L2P/(2J), λ1 and λ2 become co-located on the real axis, and
it implies that L2 � −2JL21/(4P) � −27.8125 from the parameters
given in Appendix A. Therefore, at L2 = –27.8125 in Figures 8A, B,
the loci of λ1 and λ2 can no longer extend further than –L1/2 = –25
into the negative real axis but rather diverge into the imaginary axis
as L2 becomes more negative.

6.3 Primary rotor speed estimation for the
observer model

Referring to (59), ω̂r is the estimated rotor speed by the
Luenberger observer, while ωr could be the rotor speed measured
by a speed encoder when only the mechanical torque is of interest
for estimation. However, when both the mechanical torque and
the rotor speed are desired to be observed, then ωr in Equation 59
becomes an estimate from other means, as implied in Zorgani
et al. (2016) when mechanical observers are not required. In
consideration of the latter, a lower-order observer can be

FIGURE 6
Block diagram of the overall control scheme on the motor drive.

FIGURE 7
Block diagram of the Luenberger observer for load torque and
rotor speed.
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FIGURE 8
Eigenvalues from |λI-(A–L)2x2| = 0: (A) real of eigenvalue loci of λ1 against L2. (B) Real of eigenvalue loci of λ2 against L2.

FIGURE 9
(A) Rotor speed: actual and estimated. (B) Load torque: actual and estimated. (C) Rotor flux linkage: reference and actual.

FIGURE 10
(A) Steady-state rotor speed: reference and actual. (B) Optimal stator angular velocity.
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developed from Equation 3, as given in Equation 67, for ωr, which
can be substituted in Equation 59. The stator angular velocity, ω,
may be determined by developing a flux phase-locked loop (flux
PLL) that will give the slip angular velocity and corresponding
slip angular displacement that will ensure that λqr = 0.
Consequently, the reference rotor speed can be added to the
slip angular velocity to extract out the precise ω and θ that
achieves such an orientation. Alternatively, using Equation 3 to
dynamically regulate the q-axis of the rotor flux linkage to 0 will
give ω, such that ωr in Equation 59 is taken as the rotor reference
speed. The two methods have been explored during the project of

this paper. However, the details of the two methods are not within
the scope of this article.

ωr est � ω + rriqr
λdr

. (67)

7 Results and discussion

The dynamic sensorless efficiency optimization-based vector
control with the torque observer developed in this paper for the

FIGURE 11
Stator current vectors (A) q-axis (B) d-axis.

FIGURE 12
Copper and core losses when rotor flux linkage is (A) at optimal, λr = 0.208Wb; (B) below optimal, at λr= 0.15Wb; (C) above optimal, at λr = 0.25Wb.
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induction motor drive was simulated in the MATLAB/Simulink
environment. The simulation was carried out in two different
operations. The results obtained for both operations are
presented herein.

In the first operating condition, the reference rotor speed was set
at 200 rad/s, while the load torque was set at 3.8 N.m. Under this
condition, the rotor flux was set to pick its reference from the
optimal value in Equation 20, which emanated from the
optimization procedure. Then, at steady state between 4.5 s and
5.5 s, the rotor speed was ramped down from 200 rad/s to
approximately 160 rad/s. After the duration of 2 s, the rotor
speed was ramped back up to 200 rad/s between 7.5 s and 8.5 s.
In Figures 9A–C, the rotor speed, load torque, and rotor flux linkage
from the start-up to steady-state are shown. The Luenberger load

torque observer gives the estimated rotor speed and estimated load
torque in Figures 9A, B, respectively. In Figure 9A, the actual and
observed ωr are seen to follow the reference command closely
despite the ramp from the reference. Similarly in Figure 9B, the
estimated load torque can be seen to follow the actual value closely.
In Figure 10A the ramped rotor speed is shown at steady state only.

The corresponding stator angular velocity (ωs) to Figure 10A
that will guarantee optimal operation is shown in Figure 10B. The ωs

at the stator in Figure 10B is at a trajectory that gives a constant slip
operation at the minimal copper and core loss regime. The q–d
stator currents controlled in the inner-loop regulation are seen in
Figures 11A, B respectively. Notice that in Figure 11A, the q-axis
stator current maintained a steady value before and after the
ramping down and ramping up. As such, a constant

FIGURE 13
Stator stationary q–d reference frame currents in vector control: (A) Iqs and (B) Ids.

FIGURE 14
Rotor stationary q–d reference frame currents in vector control: (A) Iqr and (B) Idr.

FIGURE 15
Electromagnetic torque: (A) from vector control and (B) from model predictive control.
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electromagnetic torque build-up is achieved for picking up the load
torque that has been maintained constant. Therefore, it can be
inferred in the optimization procedure developed that the load
torque and not the rotor speed trajectory influences the choice of
optimal rotor flux linkage. It can be deduced in the denominator of
Equation 20 that if constant slip is maintained, as shown in Figures
11A, B, the load torque principally determines the choice of
optimal rotor flux.

In the second operation, the rotor speed and the load torque
were maintained constant at 200 rad/s and 3.8 N.m, respectively, for
the entire simulation. Then, the simulation was carried out with the
rotor flux linkage set at the optimal value given in Equation 2 and
later changed to values below and above the optimal. The reason for
such is to investigate the influence of the rotor flux on the loss
regime. Figures 12A–C give the loss regime for the three rotor flux
values. In Figures 12A–C, therefore, the copper and core losses are
seen to be less distorted in Figure 12A where the rotor flux linkage
was set at optimal. As such, setting the rotor flux linkage to an
optimal value conserves energy consumption by the
induction motor.

Furthermore, the efficacy of the developed efficiency-optimized
vector control scheme was tested by comparing its results to those
obtained from an equivalent induction machine drive on a model
predictive control (MPC) scheme with the same set values of the
optimal stator angular velocity and optimal rotor flux linkage. The
MPCwas developed in the stationary reference frame, but the details
of developing the MPC are not within the scope of this article, but
may be derived from previous studies (Agoro et al., 2018; Zhou et al.,
2018; Mao et al., 2021; Rodas et al., 2021; Ouari et al., 2022; Wen

et al., 2022; Yang et al., 2022; Liu et al., 2019; Zhang et al., 2019).
Consequently, the stator currents and rotor currents in the
developed energy-saving vector control scheme were transformed
from the synchronous reference frame into the stationary reference
frame for comparative analysis with those obtained from the MPC.

In obtaining the comparative results, the rotor speed was
maintained constant at 200 rad/s, while the load torque was
stepped from 5 N.m. to 3.8 N.m at 4 s. The stator currents, rotor
currents, and electromagnetic torque obtained from the developed
energy saving vector control scheme are shown in Figures 13, 14, 15A
respectively. However, Figures 15B, 16, 17 show the electromagnetic
torque, stator currents, and rotor currents. In comparing Figures
13–17, smooth transitions were noticed when the step change in the
load torque was introduced from at 4 s. The vector control effectively
dampened the overshoots, which were evident in theMPC.Moreover,
the harmonic contents from the vector control scheme were not as
significant as those from the MPC scheme. As such, the ripples in the
electromagnetic torque from the vector control scheme shown in
Figure 15A are much lower than those in Figure 15B from the MPC.
The reason for such could be because the switching actions in the
switching semiconductor devices (e.g., MOSFET and IGBT) of the
inverter–motor drive on the vector control are symmetrical, but the
switching actions by the MPC are asymmetrical, which could result in
the more significant ripples in the machine’s electromagnetic torque
from the MPC. However, it is seen from Figures 14, 17 that the rotor
currents from MPC are lower than those from the vector control,
which may be due to the cost function minimization inherent in the
MPC that selects the optimal switching states that gives the minimal
cost function. Consequently, more reduction in the electrical loss

FIGURE 16
Stator stationary q–d reference frame currents in model predictive control: (A) Iqs and (B) Ids.

FIGURE 17
Rotor stationary q–d reference frame currents in model predictive control: (A) Iqr and (B) Idr.
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profile can still be experienced in the MPC, but the symmetrical
switching in vector control gives the edge of healthier electromagnetic
torque development.

8 Conclusion

A vector control scheme for an induction motor drive has been
presented in this paper. The scheme guarantees an optimal
operating regime for the induction motor based on an
appropriate choice of optimal reference for the rotor flux linkage,
as any choice of the rotor flux linkage, which is above or below the
optimal values, will lead to more copper and core losses and more
harmonic distortions in the machine variables. Since the machine
load torque aids the determination of this optimal reference, and the
rotor speed does not play any active role in the choice of such
optimal rotor flux linkage if the slip is maintained constant, a
Luenberger observer is developed to estimate the load torque. In
the comparative analysis with the MPC, though the energy-saving
vector control yielded more rotor currents that may imply a slight
increase in the loss regime, the vector control gave lower ripples and
consequently healthier electromagnetic torque in the induction
machine. Furthermore, the vector control scheme rode through
the step change in load torque smoothly, which the MPC was unable
to attain.
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Appendix

Machine parameters

A 3 hp, 1,710 rpm, 220–V line-line (rms), 60 Hz, 4-pole squirrel
cage induction machine; stator resistance (rs) 0.435Ω; rotor referred

resistance (rr) 0.816Ω; stator leakage inductance (Lls) 0.002 H; rotor
referred leakage inductance (Llr) 0.002 H; magnetizing inductance
(Lm) 0.0693 H; core loss resistance (rc) 850Ω; inertia (J) 0.089 kg.m2;
rated torque 11.9 N.m.
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Nomenclature
vqs, vds q and d stator voltages

iqs, ids q and d stator currents

iqs′, ids′ Torque producing q and d stator currents

λqs, λds q and d stator flux linkages

vqr, vdr q and d stator referred rotor voltages

iqr, idr q and d stator referred rotor currents

λqr, λdr q and d stator referred rotor flux linkages

icq, icd q and d core loss currents

ω, ωe Angular velocity in arbitrary and synchronous frames

ωr, ωs Rotor speed and stator angular velocity

Ls, Lr Stator and stator referred rotor self-inductances

rs, rr Stator and stator referred rotor resistance

rc Core loss resistance

Lm Magnetizing inductance (3/2 in value)

VSI Voltage source inverter

Te, Tm Electromagnetic torque and mechanical torque

PL Core and copper losses

mqr, mdr VSI’s q and d modulation index for CB-PWM

vdc direct current (DC) link voltage

Cd DC link capacitor

io Rectifier’s DC output current

id VSI’s DC input current

P, J Machine’s number of poles, machine’s inertia

P Operator, p = d/dt
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