1. <u>Home</u>

- 2. Information Systems for Intelligent Systems
- 3. Conference paper

Development of IoT Based Controlled Bench Power Generation System

- Conference paper
- First Online: 27 February 2024
- pp 601–614
- <u>Cite this conference paper</u>

Information Systems for Intelligent Systems (ISBM 2023)

- Imhade P. Okokpujie,
- Kien-Olali A. Kinggs,
- Adedotun Adetunla,
- Kennedy Okokpujie &
- Morayo E. Awomoyi

Part of the book series: <u>Smart Innovation</u>, <u>Systems and</u> <u>Technologies</u> ((SIST,volume 379)) Included in the following conference series:

- World Conference on Information Systems for Business Management
- 170 Accesses

Abstract

The need for automation in the power sector is growing as technological advancement increases. Automatic control is required for tasks like turning on and off a power supply unit (inverter, generator, etc.). Therefore, this project aims to develop an IoT-based controlled bench power generation system. The study employed php scripting language, MySQL, and other web technologies to develop an IoT-based control program to resolve the issue and create a web application for interaction with the bench power supply used in this project. The web application interacted with a database which was the driver responsible for sending the Boolean values for switching or off to the physical power supply controller. The experimental findings showed that the IoT-based controlled bench power generation system is viable and fast in operations. From the analysis of the results compared with the manually operated generator, the performance is excellent, with a 75% deviation. The average time to start the IoT system is 28.28 s, and the manually operated power system with 261.6 s. This made it possible to develop a web application that, depending on the Wi-Fi network's availability, allowed users to manage a bench power supply from various locations with very little time and ease.

This is a preview of subscription content, <u>log in via an institution</u> to check access.

References

 Ghasempour, A.: Internet of things in smart grid: architecture, applications, services, key technologies, and challenges. Inventions 4(1), 22 (2019)

Article Google Scholar

 Hauser, S., Redström, J., Wiltse, H.: The widening rift between aesthetics and ethics in the design of computational things. AI Soc.Soc.. 38(1), 227–243 (2023)

Article Google Scholar

3. Sam, D., Velanganni, C., Evangelin, T.E.: A vehicle control system using a time synchronized hybrid VANET to reduce road accidents caused by human error. Veh. Commun. **6**, 17–28 (2016)

Google Scholar

 Ryalat, M., ElMoaqet, H., AlFaouri, M.: Design of a smart factory based on cyber-physical systems and internet of things towards industry 4.0. Appl. Sci. **13**(4), 2156 (2023)

Google Scholar

- Gokhale, P., Bhat, O., Bhat, S.: Introduction to IOT. Int. Adv. Res. J. Sci. Eng. Technol. 5(1), 41–44 (2018). <u>https://doi.org/10.17148/IARJSET.2018.517</u>
- Chiaradonna, S., Di Giandomenico, F., Lollini, P.: Definition, implementation and application of a model-based framework for analyzing interdependencies in electric power systems. Int. J. Crit. Infrastruct. Prot.Infrastruct. Prot. 4(1), 24–40 (2011). <u>https://doi.org/10.1016/j.ijcip.2011.03.001</u>

Article Google Scholar

 Zambrano, H., Milena, L., Calderón, A.J., Calderón, M., González, J.F., Pinzón, R., Fábrega Duque, J.R.: Design, development and testing of a monitoring system for the study of proton exchange fuel cells and stacks. Sensors 23(11), 5221 (2023)

Google Scholar

8. Heydarov, S., Aydin, M., Faydaci, C., Tuna, S., Ozturk, S.: Low-cost VIS/NIR range hand-held and portable photospectrometer and evaluation of machine learning algorithms for classification performance. Eng. Sci. Technol. Int. J. **37**, 101302 (2023)

Google Scholar

 Delsing, J.: Local cloud internet of things automation: technology and business model features of distributed internet of things automation solutions. IEEE Ind. Electron. Mag. **11**(4), 8–21 (2017). <u>https://doi.org/10.1109/MIE.2017.2759342</u>

Article Google Scholar

 Oztoprak, K., Tuncel, Y.K., Butun, I.: Technological transformation of telco operators towards seamless IoT edge-cloud continuum. Sensors 23(2), 1004 (2023)

Article Google Scholar

11. Fadrinaldi, D., Ramadhani, S.R., Wahyuni, R.T.: Application of microservice architecture in the development of website-based drainage system for Rumbai Area (Case Study: PUPR Service Pekanbaru). In: International ABEC, pp. 149–159 (2023)

Google Scholar

 Pandey, A., Kumar, D., Priyadarshi, R., Nath, V.: Development of smart village for better lifestyle of farmers by crop and health monitoring system. In: Microelectronics, Communication Systems, Machine Learning and Internet of Things: Select Proceedings of MCMI 2020, pp. 689–694. Springer Nature Singapore, Singapore (2022)

Google Scholar

 Uzal, G.: The use of Arduino in physics laboratories. Turk. Online J. Educ. Technol.-TOJET **21**(3), 88–100 (2022)

Google Scholar

14. Merugu, S., Kumar, A., Ghinea, G.: Hardware, component, description. In: Track and Trace Management System for Dementia and Intellectual Disabilities, pp. 31–48. Springer Nature Singapore, Singapore (2022)

Google Scholar

 Mendez-Monroy, P.E., Cruz May, E., Jiménez Torres, M., Gómez Hernández, J.L., Canto Romero, M., Sanchez Dominguez, I., Bassam, A.: IoT system for the continuous electrical and environmental monitoring into Mexican social housing evaluated under tropical climate conditions. J. Sensors (2022)

Google Scholar

16. Furlong, A.J., Pegg, M.J.: Low-cost heat exchanger benches for remote operation. Educ. Chem. Eng. **44**, 14–20 (2023)

Article Google Scholar

17. Adedotun, A., Emmanuel, E., Adeoye, A., Okokpujie, I.P.: An IoT controlled smart grid system for theft detection and remote power redirection. In: 2023 International Conference on Science, Engineering

and Business for Sustainable Development Goals (SEB-SDG), vol. 1, pp. 1–6. IEEE (2023)

Google Scholar

 Okokpujie, K., Jacinth, D., James, G.A., Okokpujie, I.P., Vincent, A.A.: An IoT-based multimodal real-time home control system for the physically challenged: design and implementation. Inf. Dyn. Appl 2(2), 90–100 (2023)

Google Scholar

Download references

Author information

Authors and Affiliations

- 1. Department of Mechanical and Mechatronics Engineering, Afe Babalola University, Ado Ekiti, Nigeria Imhade P. Okokpujie, Kien-Olali A. Kinggs & Adedotun Adetunla
- Department of Mechanical and Industrial Engineering Technology, University of Johannesburg, Johannesburg, 2028, South Africa Imhade P. Okokpujie
- 3. Department of Electrical and Information Engineering, Covenant University, Ogun State, Ota, Nigeria Kennedy Okokpujie
- 4. School of International Service, American University, Washington, USA

Morayo E. Awomoyi

Corresponding author

Correspondence to Imhade P. Okokpujie.

Editor information

Editors and Affiliations

- 1. Department of Computer Science, Khon Kaen University, Khon Kaen, Thailand Chakchai So In
- 2. National Institute of Technology Raipur, Raipur, Chhattisgarh, India

Narendra D. Londhe

3. Institute of Management, Nirma University, Ahmedabad, Gujarat, India

Nityesh Bhatt

4. Estonian Business School, Helsinki, Finland Meelis Kitsing

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Okokpujie, I.P., Kinggs, KO.A., Adetunla, A., Okokpujie, K., Awomoyi, M.E. (2024). Development of IoT Based Controlled Bench Power Generation System. In: So In, C., Londhe, N.D., Bhatt, N., Kitsing, M. (eds) Information Systems for Intelligent Systems. ISBM 2023. Smart Innovation, Systems and Technologies, vol 379. Springer, Singapore. https://doi.org/10.1007/978-981-99-8612-5_49

Download citation

- <u>.RIS</u>
- <u>.ENW</u>
- <u>.BIB</u>
- DOIhttps://doi.org/10.1007/978-981-99-8612-5_49
- Published27 February 2024
- Publisher NameSpringer, Singapore
- Print ISBN978-981-99-8611-8
- Online ISBN978-981-99-8612-5
- eBook Packages<u>Intelligent Technologies and RoboticsIntelligent Technologies</u> and Robotics (R0)

Publish with us

Policies and ethics

Access this chapter

Log in via an institution

Chapter

EUR 29.95 Price includes VAT (Nigeria)

Buy Chapter eBook

EUR 234.33

Hardcover Book

EUR 279.99

Tax calculation will be finalised at checkout Purchases are for personal use only

Institutional subscriptions

- Sections
- References

165.73.223.224

Covenant University Ota (3006481499)

© 2024 Springer Nature