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Most studies undertaken on energy usage in buildings have shown that energy utilization is widely infuenced by occupancy
presence and occupants’ activities relative to the indoor environment, which may be widely dependent on weather conditions and
user behaviors. However, the core drawback that has negated the profcient estimation of energy is the modelling of occupant
behavior relative to energy use. Occupants’ behavior is a complex phenomenon and has a dynamic nature infuenced by numerous
internal, individual, and circumstantial factors. Tis research proposes a computational intelligence-based model for household
electricity usage profle development as impacted by core input variables—household activities, household fnancial status, and
occupancy presence. Te incorporation of these variables and their adaptiveness is expected to address and resolve un-
predictability or nonlinearity concerns, thus allowing for adept energy usage estimation.Temodel addresses issues unresolved in
many other studies, such as occupancy determination (deduction) and the impact on energy consumption. Te performance
precision of this approach has been demonstrated by trend series analysis, demand analysis, and correlation analysis. Based on the
performance indicators includingmean absolute percentage error (MAPE), mean square error (MSE), and root mean square error
(RMSE), the model has shown profcient predictive output with respect to the metered (actual) energy usage data. Te proposed
model, compared to actual data, showed that average MAPE values for the respective day standard, morning peak, and night peak
demand period (TOUs) are 2.8%, 1.88%, and 0.31% for all income groups, respectively. Te aptitude to improve on energy
prediction and evaluation accuracy, especially in these periods, makes it a highly suited tool for demand-side management, power
generation, and distribution planning activity.Tis will translate into power system reliability, reduce operation cost (lowest cost),
and reduce greenhouse emissions (environmental pollution), thereby cumulating into sustainable cities.

1. Introduction

It is well known that energy consumption prediction is a key
element for utility power system planning. Furthermore,
energy management systems can ensure an increase in the
balance between supply and demand while contributing the
issue of peak reduction especially unscheduled energy usage
periods (time-of-use) as widely reported [1]. However, the
accomplishment of such an objective presently in the resi-
dential sector is a challenging task due to the ever-fuctuating
demand profle as a result of human activities and occupant
behavior. Individual occupants’ behavior/activities are

complex and have an impact on energy usage although they
are not refected in many practices resulting in poor energy
prediction [2]. Occupancy of buildings by inhabitants is
a vital aspect in building energy simulation; however, oc-
cupancy is difcult to represent owing to its temporal and
spatial stochastic nature [3, 4].

Occupancy and occupants’ activities are replicated in most
simulation models as simplistic, linear, and predetermined
inputs. Furthermore, occupants’ activities have been reduced to
fxed schedule usage of equipment/appliances and lighting
usage based on existing historical data.Te resultant deduction
is at variance with the actual demand per dwelling in relation to

Wiley
International Transactions on Electrical Energy Systems
Volume 2024, Article ID 6656970, 31 pages
https://doi.org/10.1155/2024/6656970

https://orcid.org/0000-0002-9980-5241
mailto:popoolao@tut.ac.za
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1155%2F2024%2F6656970&domain=pdf&date_stamp=2024-07-08


the occupants’ activities. As a result of misalignment and high
error arising from demand estimation along the time-of-use
periods, interest in the energy load model development in-
vestigation has dwindled since it is almost impossible (due to
associated metering cost, dwelling electrifcation, distribution
board connection, etc.) to obtain individual appliance load
profles for the determination of the dwelling demand profle
per dwelling. Published literature has also shown that occu-
pancy is a critical factor that needs to be considered while
determining domestic household demand. However, most
simulation tools are grounded on fxed design profles, making
these inputs a concerted average of the whole dwelling that
diverges from real occupancy. As a result, the obtained sim-
ulation outcomes are inaccurate due to the defciency of the
internal loads that represent household energy usage. Resi-
dential load profles are essential in a range of planning, design,
and management activities in power utilities.

Te world has been facing challenges due to high energy
demand [5], ever-increasing demand for energy, limita-
tions of fossil fuel resources, and concerns about sus-
tainability [6]. As a result, seasonal load shedding has been
experienced in many developing countries, although
strategies for demand-side management (DSM) are duly
employed. Te demand-side management (DSM) initia-
tives were widely implemented to attempt to modify the
system load profle and for energy demand reduction while
maintaining a tolerable level of electricity generation
without ofsetting occupants’ comfort and service delivery
[7]. Such DSM interventions that were widely employed in
domestic designs and operations include load shifting,
strategic conservation, and peak clipping [7]. Yet, such
methods are not fully efective as it is extremely hard to
choose the optimum DSM technique for a distribution area
without understanding occupants’ activities and occupancy
and energy usage per occupant [8]. Major components or
variables inherent in an energy system make it practically
impossible to analyze without oversimplifcation. Tere-
fore, it is crucial to consider factors that infuence
household energy consumption patterns to ascertain
profcient energy estimation [9]. Such variables are es-
sential in the assessment of demand management initia-
tives and load profle development.

Several prediction models have been presented for
energy building consumption reduction, namely, white
(engineering approaches), grey (statistical or hybrid ap-
proaches), and black-box models (data-driven machine
learning or artifcial intelligence- (AI-) based approaches)
[8, 10]. However, these models are still defcient with
respect to the profcient estimation of building con-
sumption. Irrespective of the progress made in the resi-
dential building sector and building energy performance,
the energy community still lacks a reliable and simple
instrument that can instantaneously address and solve the
energy and environmental balance of buildings. Tis may
be due to current energy simulation tools being de-
pendent on thermal factors such as climate and weather to
predict energy consumption instead of looking into in-
fuential factors such as occupants’ activities and
occupancy.

To bring about an improved solution to address such
an issue, several works have pointed to the need for oc-
cupants’ behavior pattern classifcation based on income
levels, household size, occupancy status, occupants’ ac-
tivities, and possibly the associated vicinity [11]. Te
occupant behaviour is difcult to analyze without ex-
cessive simplicity due to its high complexity [12], as the
current simulation tools have based the occupant be-
haviour on fxed patterns, while they do not take into
account the activities of individual occupants, but instead
adopt unspecifc user schedules, which do not directly
refect the randomness of the occupant’s behaviour over
time [8]. However, it is crucial to consider personalized
occupants’ behavior/activities as they have an impact on
energy loads to eliminate poor energy prediction. Te
incorporation of human behavior such as occupancy-
interlinked inhabitant behavior and their impact on
residential buildings is a necessity; presently there is no
energy program for an all-inclusive and interlinked set of
models that consider every aspect of occupants’ activities
and presence.

Te main objective of this research is to investigate an
appropriate model that can address and solve problems re-
lated to demand forecast accuracy (i.e., reduce errors asso-
ciated with demand profle estimation). Te signifcance of
occupants’ activities, occupancy presence, and income cate-
gories to enhance the energy load prediction accuracy will be
demonstrated. Te research work employs an artifcial neural
network to model residential energy usage profles as infu-
enced by key characteristic variables. Yan et al. in their study,
they concluded that the Al-based approach tends to solve
uncertainties associated with occupant behavior, highly re-
liable, and has the ability to deal with combined variables in
building energy consumption predictions [4]. Another study
indicated that smart optimization techniques based on Al are
the future of optimization due to parallel processing, pattern
recognition, and better decision-making capability [13]. Te
application of such variables reinforces the ANN model to
handle uncertainty and volatility of data to ascertain pro-
fcient forecasting of energy load profles. Te study objective
is expected to be achieved by developing a feed-forward
backpropagation neural network (FFNN) model trained by
the Levenberg–Marquardt learning algorithm with the in-
corporation of input variables, namely, income, occupants’
occupancy, and household actions. Te proposed model has
demonstrated various ways in which occupants occupy their
dwellings and interact with household appliances and the
importance of such interactions on profcient energy usage
profle development. Furthermore, the proposed solution is
expected to assist energy managers/planners in contributing
to the United Nations Sustainable development goals with
emphasis on energy poverty reduction (1), afordable energy
(7), innovation (9), and sustainable cities (11).

Te highlights of the study are as follows:

(i) Te development of an ANN-based residential
energy load profle model hinged on income
grouping and occupancy-interlinked occupant be-
havior variables.
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(ii) Te developed model was able to address and solve
problems related to the accuracy of demand fore-
casting and reduced errors in residential energy load
profles. Te improved accuracy emanated from
various infuential parameters such as occupants’
activities and occupancy presence being considered,
and such parameters impact energy usage.

(iii) For optimal generation and cost-efectiveness rel-
ative to economic dispatch, demand in terms of the
time of use periods (TOU) is of essence (core).
Using average demand deduced from total energy
consumption impacts the power systems network
and laterally translates into error-prone demand
forecast used in generation and distribution plan-
ning, thereby contributing to system strain,
undergeneration or overgeneration, voltage issues,
losses, etc. Furthermore, researchers have high-
lighted the need to bring about improved solutions
around discrepancies arising between the actual and
the predicted energy data as profered in available
resources. Te developed model was able to mini-
mize the discrepancy in energy usage prediction.

(iv) Te proposed model was able to reduce assump-
tions around occupancy periods (fxed schedules of
occupancy), i.e., repeated TOU models.

(v) Te developed model with inclusive characteristic
variables such as income, occupancy, and occu-
pants’ activities was able to derive meaning and
extract patterns from the complex nature associated
with residential energy usage.

Te study paper outline (structure) consists of the in-
vestigation approach—ANN structure, model process de-
sign strategy, investigation material and analysis, ANN
prediction model, validation in terms of correlation analysis,
trend analysis, and demand computation analysis. Lastly, the
proposed model’s applicability and efectiveness are
evaluated.

2. Method of Investigation

2.1. Investigation Method: Artifcial Neural Network-Based
Model. Due to volatility and nonlinearity associated with
energy consumption, as well as its dependence on numerous
driving factors, predicting energy consumption remained
a challenging task [8], hence the need to bring into per-
spective methods that can address or be infused with. Te
black-box approach often referred to as data-drivenmachine
learning or artifcial intelligence- (AI-) based approach is
one such method most widely applied in practice [8]. Black-
box models are intelligence-based because of their ability to
learn how to build energy-related output without prior
knowledge of its internal relationship [14]. Al techniques
empower devices, machines, etc. to simulate intellectual
behavior, observe environment, reason, learn, and in-
dependently make decisions. Tese aptitudes make AI an
ideal tool for addressing complexities associated with energy
areas and usage, where massive amounts of data are to be

analyzed, patterns identifed, and decisions made [15].
Among intelligent- (AI-) based family, ANN models have
gained popularity due to their compatibleness with non-
linear and ambiguous systems. A typical ANN has a struc-
ture that has same the structure of “neurons,” also called
processing element, separated into three layers, namely,
input, hidden, and output layer, as illustrated in Figure 1.

Each layer is made of numerous interconnected neurons
that have an activation function [16, 17]. Te input layer
consists of the inputs, namely, x1, x2, and x3, which rep-
resent the input data, i.e., occupants’ activities, income level,
and occupancy presence.Te output layer can be denoted by
yi and it is represented by the total demand (output value to
be predicted). After the identifcation of layers, the next step
will be to move forward through the network; this step is
called a forward pass. Te neurons/nodes for activations a,
weights w, and biases b are designated and this is cumulated
in vectors where

a
M

� φ waM− 1
+ b , (1)

till an output is obtained. Ten all the activations from the
frst layer aM− 1 are taken, and the matrix multiplication is
carried out using the weights connecting each neuron from
the frst to the second layer aM, then a bias matrix is added,
and the whole expression is multiplied by the sigmoid
function. From this, we get a matrix of all the activations in
the second layer. Ten the next step is to fnd the slope of
a tangent line. To evaluate the accuracy of the output Yi, the
mean squared

MSE �
1
n



n

i�1
Xi − Yi( 

2
, (2)

where Xi represents the real measured output while the
predicted output is represented by Yi. Based on the results
(in terms of the error obtained), the weights and biases are
adjusted to minimize MSE to improve the accuracy of our
model; this is called a backward pass. Backpropagation is
used for calculating the gradients efciently (it computes the
gradients). Te propagation begins from the output layer
backward, updating weights and biases per layer. Te ob-
jective of the adjustments of the weights and biases
throughout the network is to obtain the expected/targeted
output in the output layer. For this investigation, the desired
output is the total dwelling demand (weighted), for instance,
if the desired daily energy consumption (output neuron) is
0.3, then the weights and biases are adjusted in such a way as
to obtain an output very close to 0.3.

To determine gradients in the backpropagation algo-
rithm, this study considered the change in the cost function
with respect to the specifc weight, bias, and activation. Te
following expression (3) was used to determine the asso-
ciation between the integrants (weight, bias, and activation)
of the neural network and the cost function:
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where letter m in the above expression refers to the last layer,
whereas m− 1 refers to the second last layer. And each layer is
considered separately where

a
m

� φ p
m

( ,

p
m

� w
m ∗ a + b,

E � a
m

− y( 
2
,

(4)

and function E is considered with its derivative wm. Even
though the cost function is not closely associated with wm, it is
the frst to be considered as as stated in the pm expression.Tis
is followed by looking into the change of pm into am and then
am in the cost function E. Tis is how a change in a particular
weight is efciently measured based on the cost function.

Gradient descent refers to the frst-order iterative op-
timization algorithm that fnds the minimum of a function.
Te gradient can also be defned as the derivative of the rate
of change of a function. All partial derivatives with respect to
weights and biases are expressed in a gradient vector. In this
study, the loss function of the neural network is minimized.
Te main aim is to pass the training set through the hidden
layers of the neural network and then update the parameters
of the layers by computing the gradients using the training
samples from the training dataset. Ten for each weight, in
the output layer, the value of the learning rate is subtracted
from the actual value of that specifc weight by

w
m

� w
m

− learning rate∗
zE

zw
m. (5)

For this study, a mini-batch gradient descent was used as
it helps in updating parameters more often resulting in faster
computations.Tis procedure is repeated moving forward in
the network of neurons, and on this account, the name feed-
forward neural network was established. Te output is
weighted to range from 0 to 1 by an activation function. Te
sigmoid was used in this study and it is represented by

sigmoid function (φ) �
1

1 + e
− x � any value between 0& 1. (6)

2.2. Model Process Design Strategy. Te process design
strategy for energy load profle model development is shown
in Figure 2.

ANN as a random function approximation tool due to its
ability to model compound relations among inputs and
outputs is applied. ANN can be formulated by three processes,
namely, the interconnection pattern between neurons of three
layers; the learning process of weights; and the conversion of
neuron’s weighted input to output by the activation function.
Te number of hidden layer neurons determines the accuracy
of the prediction results of an ANN-based model. Each
training set is represented by corresponding input and output
patterns used for network training. After training, the net-
work produces the corresponding outputs based on input
data. Hence, relevant data will be supplied as a dataset
(learning set) prior to network training. Te progression
encompasses the examination and importing of data, sepa-
rations, and grouping of datasets; input data are propagated
through the network so that it can be learned, and the result is
an output value estimation. For this study, three characteristic
inputs, namely, the income, occupants’ activities, and occu-
pancy of the household, are applied.

2.3. Investigation Material. Data (information) are of im-
mense importance and need to have a good confdence level,
especially in terms of certainty. To ensure that the in-
formation, in this case, the historical data is a true refection of
how energy is being utilized in the environ, there is the need
for a process approach.Te process is as follows.Te frst step
is data collection and verifcation.Tis involves the use of data
acquisition technologies, survey questionnaire tools, and
focus group interviews related to residential buildings, es-
sential for the capturing of adequate information relevant to
energy usage. However, in most cases, raw energy data have
errors such as sudden jumps or missing data which afect the
ultimate simulation results. It is essential to identify missing
or incorrect data-gathering so as to correct the error and avoid
any inaccuracy that may arise from Al models [18]. Conse-
quently, initial data processing should frst be performed to
identify missing or incorrect data-gathering processes. It is
essential to identify and correct the error to avoid the inac-
curacy of AI models. Te characteristics of raw data are es-
sential for the representation of big data.

Hence, after the careful selection of the raw data, it is
very crucial to preprocess the data to identify and remove
outliers to maintain consistency in the data. Te next task is

Output layer

Total demand
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Occupancy
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level 
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Figure 1: A three-layered feed-forward backpropagation artifcial neural network structure.
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data categorization (discretization), whereby smaller data
samples are created from a bigger set though they are ex-
pected to behave/have features like the bigger set of data in
relation to producing same output. Once data are reduced,
they are further transformed, i.e., data are normalized if
necessary. A min-max normalization, which is a widely used
approach in data mining applications, can be used to nor-
malize data [8]. Lastly, the categorized datasets are in-
tegrated to form one dataset. Te end result is a clean (error-
free) fle ready for statistical analyses. Tis entails the ap-
plication of various statistical techniques and elementary
summaries, to gain profound insight into the dataset and to
identify relations between various infuencing factors (such
as income, occupancy presence, and activities) and their
impact on energy consumption. Furthermore, the distinc-
tion is made between the measured data and the three
characteristic variables. Te core statistical analysis to
consider is the correlation test to investigate direct re-
lationships, while the analysis of variance is conducted to
assess the variation among inputs.

In this study, 24-hour energy consumption using his-
torical data gathered from 2008 to 2009 for 35 houses in the
East Midlands, United Kingdom, due to the intensive, well-
coordinated survey question and classifcation of domestic
appliances was applied in the development of the ANN-
based models for low, medium, and high-income earners.
Quality and verifcation checks were applied in terms of the
certainty level of the data.Te 100% reference data were split
into three classes, 70% allotted as training data, 15% as
testing data, and 15% as validation data. Apart from the
information collected based on the questionnaire, each
household had a ftted metering device capturing energy
usage per household. Tis study used 1440minutes of data
beginning from 00: 00 till 23: 59 (one-minute time reso-
lution). Tree infuential parameters were used, namely,

occupant activities, occupancy presence, and income. Te
historical survey data used were collected through physical
door-to-door interactions. Dwellers were required to reveal
every appliance they possess and the appliance range per
household was dependent on income level.Te appliance list
per household was categorized into seven groups, namely, (i)
the consumer electronics which consists of the personal
computer, vacuum cleaner, cassette/CD player, television
(TV), cordless telephone, iron, and printer; (ii) space
heating; (iii) water heating (geyser); (iv) cooking appliances:
microwave, oven, kettle, and hob; (v) lighting; (vi) wet
appliances: dishwasher, washing machine, tumble dryer, and
washer dryer; and (vii) cold appliance category: the re-
frigerator [19]. Te collected data were construed by means
of 0 and 1 format using weights that vary from 0 to 1.

Household appliances vary from house to house based
on income level. For instance, low low-income earner (LL)
appliance possessions include cold appliances, lighting,
consumer electronics, water heating appliance, and
cooking appliances. While upper low-income (UL)
earners had in addition to the LL-income group appli-
ances wet appliances. Both emerging high-income
(EH)/low high-income (LH) earners and realized high-
income (RH) earners/high high-income (HH) earners
have cold appliances, lighting, consumer electronics,
water heating appliance, cooking appliances, wet appli-
ances, and space heating appliances. Among those ap-
pliances, active occupant dependent appliances were
distinguished from nonactive dependant appliances. Also,
the time (in minutes) was given when appliances were not
utilized and periods (usage) when appliances are in op-
eration. It must be noted that space heating, water heating,
and lighting use schedules are impacted by the seasons of
the year (summer and winter). Day-to-day activities per
minute of the inhabitants were diarised.Te questionnaire

Data Collection
• Appliance
energy use
• Income level
• Occupancy
information

The selection
of appropriate

learning
technique (e.g.
supervised/uns

upervised)

Assigning
weights to
influential
parameters

The splitting of
data into
training,

validation and
testing sets

Identification of
the type of

building (e.g.
commercial,

academic, office
or residential

building)

The evaluation
of an

ANN-model
performance

(energy
consumption)

Figure 2: Model development strategy and design.
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had keywords/sentences such as (i) regular wake-up time;
(ii) toilette periods; (iii) occupant(s) bedtime schedules;
(iv) appliance/s and lighting utilization periods; (v) in-
habitants not at home; (vi) occupant/s spare time; and
(vii) inhabitants’ arrival at home [19, 20]. Te training
data are fed to the network to learn the appropriate
pattern, while the testing data are employed to evaluate
the generalized patterns in the network. Te validation
data evaluate the performance of the trained network. In
respect of the expected estimation of the building energy
performance, optimization algorithms were used to
support the model decision [8]. In the case where the
output difered, the assigned weights for the input variable
data were transformed in such a way that the error was
minimized to produce accurate output.

Te investigation based on the materials aims to gain
sufcient insight from this dataset to produce simulation
input variables, such as income level, occupancy presence,
and occupant activities. Te inclusion of these variables
ofers a unique dimension to the existing modelling process,
which is expected to address and resolve data volatility and
nonlinearity issues, thereby enabling profcient energy es-
timation and prediction.

3. Investigation Analysis

3.1. Active Occupancy

3.1.1. High-Income Group. Te obtained results with respect
to energy usage and occupancy are illustrated in Figures 3
and 4 for the emerging high-income (EH) earner group also
known as low high-income earners (LH) and realized high-
income (RH) earners also referred to as high high-income
earners (HH), respectively. Based on the results, it can be
inferred that occupants normally occupy houses during the
morning and evening periods with little or no occupancy
during the daytime. Tese results correspond to the his-
torical survey questionnaires. Tis is due to the heavy loads,
e.g., cooking appliances, wet appliances, space heating, and
water heating that are mostly utilized during morning and
evening times when household dwellers prepare to go or
come back from their respective schooling/working places.
Inclusive of the energy usage are the low energy con-
sumption appliances, i.e., lighting (in the morning and
evening). During such periods, the occupants tend to move
from one room to another within their households. As
demonstrated in Figures 3 and 4, there is a strong re-
lationship that exists between energy usage and occupancy
presence. As seen, the occupant/s behavior with respect to
actions/occupants’ activities is very crucial in energy de-
mand.Te switch-on event occurrences are correlated to the
occupant/s presence in the room. Based on the results shown
in Figure 4, it can be seen that between 05: 33 and 11: 06, the
rooms are occupied, and between 11: 06 and 16: 40, there is
little to no occupancy in rooms, as represented by switch-of
events (inactive occupancy). However, from 16: 40 to 22: 13,
occupants occupy respective rooms or engage in activities
that are synonymous with such designated space. Tis is as
a result of occupants returning from their respective

schooling/working areas (active occupancy). Such analysis
was also verifed by the historical data. Based on the results,
occupancy presence infuences energy consumption dis-
parity and it was deduced as shown in Figure 3 that more
occupants occupying a dwelling do not necessarily translate
into an increase in energy usage. As can be noted between 13:
00 and 16: 40, there was high room occupancy for HH/EH
group; however, less energy was consumed around such
hours. Tis investigation has categorized occupancy profles
into six and assigned weights ranging between 0 and 1,
corresponding to the proportion of time (period) when the
utilization of an appliance/lighting can occur due to occu-
pancy by person/s. Tese weights are demonstrated in Ta-
ble 1 and they are prone to be capricious throughout the day.

3.1.2. Low-Income Group. Te obtained results for energy
usage and occupancy are illustrated in Figures 5 and 6 for both
low low-income earners (LL) and upper low-income (UL)
earners, respectively. It can be noted that occupancy as per the
low-income group varies, and this may have been due to
incomparable lifestyles and the diferent job types (i.e., work-
going income earners or working from home income
earners). Just like with the high-income earners’ group, the
switch-ON events represent occupants’ presence in the room.

3.1.3. Middle-Income Group. Likewise, the middle-income
earners’ group was investigated with respect to energy usage
and occupancy. It was found that occupancy as per the
middle-income group varies per income level (EM and RM)
and appliance/lighting usage pattern. Tis may have been
due to incomparable lifestyles and the diferent job types
(i.e., work-going income earners or working from home
income earners). Just like with the low and high-income
earners’ group, the switch-ON events represent occupants’
presence in the room.

3.2. Occupants’ Activities. Household activities have an im-
pact on energy usage. Household activities are grouped based
on appliances utilized by occupants to perform activities. For
example, cooking appliances consist of appliances such as
a kettle, microwave, hob, and oven. Under cooking appli-
ances, any of the mentioned appliances may be ON during
a specifc period or time-of-use. Weights are used to dis-
tinguish the active appliance/s (Pappliance) as represented by
diferent power ranges, where Pu ≠Pv ≠Pw ≠Px ≠Py ≠Pz as
demonstrated in Table 2. Te actual energy usage based on
activities is illustrated in Figures 7, 8, and 9 for high, middle,
and low-income earners, respectively.

3.3. Income. Te study applied the University of South
Africa Bureau of Market Research (2012) to categorize in-
come into six income levels. Due to the nonrevelation of
income by the participants/inhabitants, the investigation
translated the income segment using the number of rooms;
such that the more income the higher the number of rooms.
Te income was grouped into six levels ranging from low to
high-income earner level, i.e.,

6 International Transactions on Electrical Energy Systems
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(i) Low low-income earner (LL) class: 3 rooms or less
(ii) Upper low-income earner (UL) class: 4 rooms or

more than 4
(iii) Emerging middle-income earners (EM): a maxi-

mum of 6 rooms
(iv) Realized middle-income earners (RM): 7 rooms

or more
(v) Emerging high-income earners (EH)/low high-

income earners (LH): a maximum of 10 rooms
(vi) Realized high-income earners (RH)/high high-

income earners (HH): 11 rooms or more

Each income class was allocated a weight to distinguish it
from other income classes as follows: LL-0.166; UL-0.332;
EM-0.498; RM-0.664; EH/LH-0.830; and RH/HH-1.000.

4. Simulation Outputs

Te development of the proposed energy load profle pre-
diction model outputs is presented in this section. Te
MATLAB 2019b development environment was used for
this investigation. Te implemented approach is expected to
reduce the error while maximizing the performance. Te
model development process involves data collection, data
preprocessing, data categorization (discretization), and data
normalization (min-max normalization), and the result is
a clean fle ready for statistical analyses which is then split
into the train-validation-test datasets. Te clean data are
further weighted and they undergo various statistical
techniques and elementary summaries, to gain profound
insight into the dataset and to identify relations between
various infuencing factors (such as income, occupancy
presence, and activities) and their impact on energy con-
sumption. Te distinction is made between the measured
data and the three characteristic variables. Te core statis-
tical analysis to consider is the correlation test to investigate
direct relationships, while the analysis of variance is con-
ducted to assess the variation among inputs. Various per-
formance indicators were used to assess model performance.
For this study, as soon as the model is validated, the testing
dataset also referred to as the predetermined test dataset is
used to identify patterns, defne the associations, and make
decisions. Performance indicators including root mean
square error (RMSE) based on the mean square error (MSE)
and mean absolute percentage error (MAPE) were used to
evaluate the ANN-based model performance, as represented
by

RMSE �
�����
MSE

√
, (7)

MAPE �
1
n



n

i�1

Xi − Yi( 

Xi




∗ 100, (8)

where Xi denotes real energy consumption per time of use
(i) and Yi denotes simulated energy consumption. In this
study, the real output values together with their corre-
sponding predicted outputs produced by the model are
demonstrated by the data series.Te collected data as per the
train-validation-test datasets were interpreted using weights
ranging from 0 to 1. In this study, the network was created
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Figure 3: Occupancy efect on energy usage TOU output for HH-
income level.
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Figure 4: Occupancy efect on energy usage TOU output for LH-
income level.

Table 1: Occupancy characteristics.

Number of occupants Occupancy weight
Zero person 0.00
One person 0.15
Two persons 0.30
Tree persons 0.45
Four persons 0.60
Five persons 0.75
Six persons 1.00

International Transactions on Electrical Energy Systems 7
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using a nonlinear input-output wizard. Te nonlinear
wizard was chosen based on the nonlinearity and complex
nature dealt with in this study together with the expected
output. Te historical data are fltered and imported into the
MATLAB workspace. Such data are made up of three input
characteristic variables, namely, income, occupants’ occu-
pancy, and activities. In this investigation, the criterion used
is the “input time series” tool. A matrix column was used as
the data consisting of fve columns whereby the frst column
in the dataset represents time (using 1-minute interval)
followed by the three columns representing the three input
variables (income, activities, and occupancy) while the ffth
column represents the output (real measured energy usage)
and 1440 rows representing 24 hours using a 1-minute
interval.

Te train-validation-test datasets were separated into
70%, 15%, and 15%, respectively. Te model was further
trained by loading the training data into the ANN graphic
user interface (GUI) from MATLAB workspaces. Te gra-
dient descent method was employed in this study, as an
ordinary backpropagation learning algorithm together with

the Levenberg–Marquardt algorithm for training a feed-
forward network. Troughout the training process, an
input-output mapping was created by the network, and the
weights and biases were adjusted to minimize the produced
output error till the targeted output was achieved. Based on
the obtained error from the output layer, the error is
backpropagated through the network enabling the adjust-
ment of the neurons’ weights and threshold values, to reduce
the error in the next iteration [21]. Te output layer consists
of one neuron as a representative of the output variable
being the total demand value. On completion of the network
training process, the prediction outputs of the ANN-based
model are demonstrated in Tables 3, 4, 5, 6, 7, and 8 per
income level. Also, to evaluate the model’s performance
accuracy, some statistical analyses were used per income
level (EM, RM, HH, LH, LL, and UL, respectively).

4.1. Model Validation. Te model’s performance validation
was observed by learning the relationship between the actual
measured data and the forecast outputs using the graphical
plots and statistical analysis/inferences. Such technical and
numerical procedures will be demonstrated in this section
per income level.

4.1.1. Correlation Analysis. For this investigation, one of the
numerical procedures used is correlation analysis. Te
correlation analysis was carried out to observe any associ-
ation between the actual and forecasted outputs so as to
establish any trend or substantial pattern existing among
these two variables. For correlation analysis, both Pearson’s
correlation coefcient r and the coefcient of determination
R2 were used for the analysis. Pearson’s coefcient corre-
lation measures the strength of the linear relationship
existing among the simulated outputs y and measured data
x. Pearson’s coefcient correlation was deduced by

r �

������������

n(Σx) − (Σx)
2



∗
�������������

n(Σxy)∗ (Σy)
2



n( xy)∗ (Σx)(Σy)
, (9)

where x denotes real energy consumption, y denotes sim-
ulated energy consumption, and n represents the number of
pairs of data. Te coefcient of determination (R2) was
deduced using

R
2

� r
2
. (10)

Te correlation coefcient (r) measures the strength and
direction of the linear relationship between two variables
(i.e., actual (x) and predicted output (y)) [5]. Te value of r is
expected to range between − 1≤ 0≥+1. Te signs − and +
denote negative and positive correlations, respectively. A
negative correlation shows that as the value of x increases, y
also decreases. However, for positive correlation, the re-
lationship is denoted by an increase in values of x results to
increase in y values. For this analysis, the r-values were
deduced using (9). Tis can also be validated by fnding the
square root of R2 as stated in (10). R2 known as coefcient of
determination or goodness of ft determines the “strength of
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Figure 5: Occupancy efect on energy usage TOU output for LL-
income level.
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Figure 6: Occupancy efect on energy usage TOU output for UL-
income level.
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certainty of prediction” [5].Te deductionsmade from using
randomly selected data for low, middle, and high-income
earners applying (9) and (10) are demonstrated in Table 9
(see Appendix B).

Based on these results, the proposed developed model
demonstrated a good relationship and a positive ft. Te r-
values show strong positive correlation as defned by
Schober et al. [22] in their study of correlation coefcient
interpretation.

To further determine the strength of the linear re-
lationship between the actual and predicted outputs, the
regression analysis for the ANN training, validation, and
testing, respectively, per income level, LL, HH, and EM, is
shown in Figures 10, 11, and 12.

4.1.2. Te Regression Model. For additional validation, the
model’s reliability was analyzed per income level.

(1) Low Income. Tis was carried out based on the technical
and numerical procedures, using randomly selected minute
interval predicted output values for both low low-income
and the upper low-income group. Based on the obtained
results, the ANN-based model predicted very well with high
R2 values per income earners groups. Te R2 values for low
low-income earners are as follows: 0.9637, 0.9428, 0.9432,
1.000, and 0.9704, while the R2 values for upper low-income
earners are as follows: 0.8934, 0.8316, 0.6987, 0.9704, and
0.7841. Te root mean square error values for low low-
income earners are as follows: 0.0349, 0.0362, 0.0687, 0.0391,

Table 2: Power assigned weights.

Activities Appliance power (W) Weight
No appliance utilized (Pu) 0 0
Very low energy consumption appliances (Pv) 1–99 0.2
Low energy-consuming appliances (Pw) 100–300 0.4
Medium energy-consuming appliances (Px) 400–900 0.6
High energy-consuming appliances (Py) 1000–1400 0.8
Very high energy-consuming appliances (Pz) 1500–4000 1.0
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Figure 7: Te high-income daily actual demand profle.
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and 0.0492, while those for upper low-income earners are
0.0072, 0.0383, 0.0324, 0.037, and 0.0109, respectively. Te
FFNN model computational time is better reduced while
fewer neurons in the hidden layer are used for better ac-
curacy. To discover the impact of the FFNN structure on
prediction accuracy, the performance of various neuron

sizes was investigated. Firstly, the three-layer FFNN model
was investigated with 10 neurons in the hidden layer till 160
neurons were used. During the training process, the network
creates an input-output mapping, and the weights and biases
are adjusted to reduce the produced output error until the
desired/acceptable output is achieved. At this stage, the

Table 3: Typical prediction for EM-income earners.

Time, GMT+ 01: 00
Input Output

Income level/weight-EM Active occupancy Total dwelling appliance
usage ANN-based output

02: 30: 00 0.498 0 0.052287215 0.06264922
05: 00: 00 0.498 0.15 0.060829793 0.074883255
06: 00: 00 0.498 0.60 0.029393307 0.029624214
16: 00: 00 0.498 0.30 0.063916661 0.037970025
20: 00: 00 0.498 1 0.158565135 0.147527939
21: 00: 00 0.498 0.75 0.186823155 0.205742271
23: 30: 00 0.498 0 0.003331833 0.00644806

Table 4: Typical prediction for RM-income earners.

Time, GMT+ 01: 00
Input Output

Income level/weight-RM Active occupancy Total dwelling appliance
usage ANN-based output

00: 00: 00 0.664 0 0.00152975 0.001608746
04: 00: 00 0.664 0.15 0.044084529 0.0482291121
10: 00: 00 0.664 0.60 0.086107608 0.075346084
18: 30: 00 0.664 1 0.933396596 0.921076683
21: 00: 00 0.664 1 0.849660966 0.860230713
21: 30: 00 0.664 0.30 0.174076839 0.182890749
23: 00: 00 0.664 0 0.058800702 0.045092318

Table 5: Typical prediction for HH-income earners.

Time, GMT+ 01: 00
Input Output

Income level/weight-HH Active occupancy Total dwelling appliance
usage ANN-based output

01: 30: 00 1 0 0.048810250 0.042414582
02: 00: 00 1 0.15 0.034980679 0.030433611
08: 00: 00 1 0.15 0.077282896 0.078396274
17: 00: 00 1 0.60 0.135245068 0.160734906
19: 00: 00 1 1 0.387227984 0.387437314
21: 30: 00 1 0.45 0.134838316 0.146613894
22: 30: 00 1 0 0.055318283 0.062042771

Table 6: Typical prediction for LH-income earners.

Time, GMT+ 01: 00
Input Output

Income level/weight-LH Active occupancy Total dwelling appliance
usage ANN-based output

05: 30: 00 0.830 0.30 0.380729112 0.382415873
07: 30: 00 0.830 0.15 0.007086941 0.006942033
17: 30: 00 0.830 0.60 0.092820181 0.082415579
19: 00: 00 0.830 1 0.140038809 0.124848206
21: 30: 00 0.830 0.75 0.185640362 0.194924760
22: 30: 00 0.830 0.15 0 0
23: 30: 00 0.830 0 0 0

International Transactions on Electrical Energy Systems 11
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network can result in accidental samples showing false
performance measures. Hence, it is crucial to retrain the
network at least ten times, instead of considering the “so-
called” good performance indices that could be achieved
straightaway to evaluate the robustness of the performance.
Te retraining was done to eradicate the ramifcations of the
randomness of the initial setting of weights and bias on the
prediction accuracy. Based on the obtained error from the
output layer, the error was backpropagated through the
network enabling the adjustment of the neurons’ weights
and threshold values, to reduce the error in the next iter-
ation. Tis process was repeated until a satisfactory pre-
diction result (acceptable output) was attained. Te outputs
were considered to be satisfactory/acceptable based on the
MAPE values; the lower the MAPE, the more accurate the
forecast model. Te benchmark for the accuracy of the
model based on the MAPE evaluation was developed by
Lewis [22] and is demonstrated in Table 10.

Based on the one-minute interval outputs, the mean
absolute percentage error values for low low-income earners
are as follows: 1.77%, 1.36%, 2.28%, 1.54%, and 1.81%,

whereas those for the upper low-income earners are 0.75%,
1.4%, 0.85%, 1.09%, and 1.24% compared to the real value
output, which indicates a high accuracy. Based on these
results, the upper low-income group outperformed the low
low-income group, yielding a low error varying from 0.75%
to 1.4% (MAPE), while the MAPE of the low low-income
group varies from 1.36% to 2.28%. Te lowest MAPE is
achieved when 120 neurons in the hidden layer are applied,
and this hidden-neuron size is viewed as the best confgu-
ration of this model. Based on MAPE values, it can be
concluded that the ANN-based model has forecasted with
high accuracy since the MAPE values are all below 10 which
translates into highly accurate forecasting.

(2) High Income. Likewise, the model’s reliability in contrast
with the actual values was observed for both low high-
income earners and high high-income earners using ran-
domly selected minute interval predicted output values. Te
ANN-based model forecasts accurately with high values of
R2. Te R2 values for low high-income earners are as follows:
0.9966, 1.0000, 0.7518, 0.7889, and 0.7542, whereas the R2

Table 7: Typical prediction for LL-income earners.

Time, GMT+ 01: 00
Input Output

Income level/weight-LL Active occupancy Total dwelling appliance
usage ANN-based output

00: 00: 00 0.166 0 0 0
04: 30: 00 0.166 0.15 0.058558558 0.053547842
06: 00: 00 0.166 0.75 0.058558558 0.053547842
06: 30: 00 0.166 1 0 0
16: 00: 00 0.166 0.45 0 0
20: 30: 00 0.166 1 0.113577863 0.1224899289
23: 00: 00 0.166 0 0.005855855 0.005354784

Table 8: Typical prediction for UL-income earner.

Time, GMT+ 01: 00
Input Output

Income level/weight-UL Active occupancy Total dwelling appliance
usage ANN-based output

01: 00: 00 0.332 0 0 0
04: 30: 00 0.332 0.15 0 0
06: 00: 00 0.332 1 0.344604952 0.343686531
07: 00: 00 0.332 0.60 0.137971981 0.136278341
18: 30: 00 0.332 0.75 0.296108490 0.309637894
21: 00: 00 0.332 1 0.133254716 0.135941353
22: 30: 00 0.332 0 0.066185141 0.05447203

Table 9: Correlation coefcient analysis.

Income class Pearson’s coefcient
correlation (r)

Coefcient of
determination (R2)

EM 0.8310 0.6905
RM 0.8401 0.7058
HH/RH 0.9936 0.9872
LH/EH 0.9983 0.9966
LL 0.9817 0.9767
UL 0.9452 0.8934

12 International Transactions on Electrical Energy Systems
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values for high high-income earners are as follows: 0.9872,
1.0000, 1.0000, 0.7017, and 0.6613, respectively. Te root
mean square error values for low high-income earners are as
follows: 0.0356, 0.0044, 0.0402, 0.005, and 0.0052, while
those for high high-income earners are 0.01437, 0.0351,
0.0159, 0.04, and 0.0366, respectively. Te root mean square
error level for low high-income earners is lower than that of
high high-income earners as the LH group ranges from 0.005
to 0.0402 while the HH group ranges from 0.01437 to 0.04.
Based on the one-minute interval outputs, the mean absolute
percentage error values for low high-income earners are as
follows: 2.69%, 0.16%, 1.36%, 0.16%, and 0.17%, whereas
those for the high high-income earners are 1.21%, 1.29%,
0.61%, 1.25%, and 1.13% compared to the real value output,

which indicates a high accuracy. Similar to the low-income
grouping, based on the obtained results, the high high-
income group outperformed the low high-income group,
yielding a low error varying from 0.61% to 1.25% (MAPE),
while the MAPE of the low high-income group varies from
0.16% to 2.69%. Going by the MAPE values, it can be
concluded that the ANN-based model has forecasted with
high accuracy.

(3) Middle Income. Te model’s reliability in contrast with
the actual values was observed for both emerging middle-
income earners (EM) and realized middle-income earners
(RM) using randomly selected minute interval predicted
output values. Te ANN-based model estimated accurately
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Figure 10: Correlation between the actual and the predicted outputs for LL-income level.

International Transactions on Electrical Energy Systems 13

 itees, 2024, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1155/2024/6656970 by N

igeria H
inari N

PL
, W

iley O
nline L

ibrary on [20/11/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



with good values of R2. Te R2 values for emerging middle-
income earners are as follows: 0.6903, 0.6111, 0.6514,
0.6969, and 0.7014, whereas the R2 values for realized
middle-income earners are as follows: 0.7058, 0.5804,
0.6191, 0.5535, and 0.7313, respectively. Te root mean
square error values for emerging middle-income earners
are as follows: 0.0238, 0.0156, 0.0042, 0.0076, and 0.0936,
while those for realized middle-income earners are 0.0085,
0.0148, 0.0062, 0.0196, and 0.0071, respectively. Te root
mean square error level for emerging middle-income
earners is higher than that of realized middle-income
earners as the EM group ranges from 0.0042 to 0.0238
while EM group ranges from 0.0062 to 0.0196. Based on the
one-minute interval outputs, the mean absolute percentage
error values for emerging middle-income earners are as
follows: 1.71%, 1.09%, 2.08%, 0.06%, and 2.55%, whereas

those for the realized middle-income earners are 0.67%,
0.79%, 0.82%, 0.02%, and 1.47% compared to the real value
output, which indicates good accuracy. Based on these
results, the realized middle-income group outperformed
the emerging middle-income group, yielding a low error
varying from 0.02% to 1.47% (MAPE), while the MAPE of
the emerging middle-income group varies from 0.06% to
2.55%. As indicated by the MAPE values, it can be con-
cluded that the ANN-based model forecasted with good
accuracy.

5. Trend Analysis and Demand Computation

5.1. Trend Analysis. Te trend analysis was also carried out
per income level to spot a pattern from each income earner’s
predictor TOU outputs to the actual output.
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Figure 11: Correlation between the actual and the predicted outputs for HH-income level.
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5.1.1. High-Income Earners. Te ANN-based model dem-
onstrated better accuracy with respect to the actual output.
Te household usage pattern per income (for both EH and
RH) levels for time series analysis is shown in Figures 13 and
14.

As exhibited in these fgures, income earnings have
a substantial impact on energy usage output. From the
results, RH earners are more comfortable and do not pay
much attention to their energy usage. Both groups start their
day around 5: 33: 20 as they utilize the water heater for
bathing purposes and from that period their consumption
slightly decreases. However, the demand for RH group
gradually rises again from 11: 06: 40, whereas the EH group
is more conservative in their energy usage during this period,

unlike the RH groups. Tis rise in demand in RH group is
due to occupants performing various activities within
a household at such periods as illustrated in Figure 8. Again
from 16: 40, both EH and RH groups have a sudden increase
in demand as occupants return from their respective
workplaces. However, the RH group’s demand based on the
predictor is higher than EH demand.

5.1.2. Low-Income Earners. Figures 15 and 16 show the
profles for low-income earners (both LL and UL).

Based on the results, it can be seen that income earnings
afect energy usage. Tere is an abrupt rise in the energy
output (load) mostly experienced by UL group from 5: 33: 20
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Figure 12: Correlation between the actual and the predicted outputs for EM-income level.
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which is a bit higher than that of the LL group during
morning standard and peak hours. However, the LL group
mostly experiences a sudden rise during evening peak hours.
Going by the results, it can be seen that profles for the low-
income earners difer; this may be due to diferent occu-
pations within the groupings. Te LL earners’ households
were mostly unoccupied from 07: 00, and this may be due to
occupants heading to their respective workplaces. As a result
of unoccupied periods, there is a sudden decrease in energy
usage from that time up until 16: 40 as occupants return to
their respective homes. Also, this can be due to occupants
available in their home but performing non-energy-related
activities, and LL-income class lacks a variety of appliances,
unlike the UL-income class. A steady rise is experienced after
16: 40 as the LL group arrives at their respective homes and
engages in energy-related activities (appliances/lighting
usage). Such appliances utilized include the use of cooking
appliances, consumer electronics, and lighting. After 22: 13:
20, a sudden decrease in energy usage is experienced by the
LL class; this can be as a result of the LL group going to bed.
On the contrary, the UL group experienced a sudden de-
crease after 23: 00 to 5: 33: 20, unlike LL grouping.

(1) Demand Analysis. Te demand analysis was also carried
out and the developed model provided a good depiction of
the morning standard/peak time of use together with the
evening peak time of use periods as demonstrated in Fig-
ures 17, 18, 19, 20, 21, and 22 per income level.

Te MAPE results for the demand were deduced using
(8) per income group (evening peak TOU periods were

deduced between 16: 00 and 20: 00 and morning standard
TOU periods from 09: 00 to 12: 00, whereas the morning
peak TOU periods were deduced between 04: 00 and 08: 00).
Table 11 shows the MAPE values for the demand during the
evening peak, morning standard, and morning peak TOU
periods per income level in contrast with the real output.
Tese MAPE values prove highly accurate forecasting; the
scale of interpretation for prediction accuracy is demon-
strated in Table 11.

Tese MAPE values prove highly accurate forecasting;
the scale of interpretation for prediction accuracy is dem-
onstrated in Table 10.

6. Comparative Study of the
Proposed Technique

Comparative performance study of the proposed model with
two existing models (Sections 6.1 and 6.2) not having
interlinked household behavior variables as inputs was
undertaken. Te comparative study is expected to bring into
perspective occupancy interpretation, its dependence, and
impact quantifcation in relation to load profle develop-
ment. Te income level focus of the study is the low-
income group.

6.1. Modelling the Residential Buildings’ Electrical Energy
ConsumptionProfle in Iran [23]. Sepehr et al.’s investigation
[24] deduced that the more the occupants, the larger the
random behaviors, thereby translating to high demand
peaks. In the study, to ascertain the impact of household
energy consumption, the authors developed a bottom-up
method using a one-minute time interval and two infuential
factors, namely, the number of occupants (occupancy) and
how occupants interact with various appliances. Te key
concept was to determine the probability of switching on
appliances and addition of all kinds of consumption to
determine the household total energy consumption.

Te domestic energy consumption model developed is
established on the energy consumption hours and the
product of the nominal power and frequency of the domestic
appliances. Whenever an appliance is turned ON, the
nominal power of the appliance is measured during the
operational cycle (a crucial part of the study).

Sepehr et al. [24] model approach was applied in the
estimation of energy consumption/demand profles for fve
diferent households within the low-income earner category,
based on the number of occupants as illustrated in Table 12.
Te domestic energy consumption is deduced from the
power (W) and the operational utilization of the appliance
based on the following equation:

E1 �
3600∗Wstby + 

napp
n�1f∗ Wcycle,n ∗ tcycle,n

3600000
kWh
day

, (11)

where E1 � the household energy consumption per day
(kWh/day); Wstby � is standby power consumption (W);
Wcycle,n � nominal power consumption (W); f �mean
starting frequency of each appliance; tcycle,n � the average
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Figure 13: Measured vs predicted demand profle for EH-
income level.

Table 10: A scale of interpretation for prediction accuracy.

MAPE Interpretation
≥10 Highly accurate forecasting
10≥ 20 Good forecasting
20≥ 50 Reasonable forecasting
>50 Inaccurate forecasting
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length of a cycle per appliance; and napp � the total number of
appliances.

Te various appliances per household were assigned
nominal power, their standby power, along with the dura-
tion of their operational cycle. For low-income households,
a 24-hour 30-minute time resolution simulation was carried
out using Table 13. Te simulated energy profle for the low-
income earner group is illustrated in Figure 23, while Fig-
ure 24 represents the demand output during the night peak
period. Te demand MAPE of these models in contrast to
the actual demand is demonstrated in Table 14.

Equation (8) was applied in the determination of the
MAPE result. Using selected TOU values from Table 13,
evening peak TOU periods were deduced between 16: 00 and
20: 00. Based on the MAPE result obtained, the ANN-based
model outperformed the Sepehr et al. [24] technique, i.e.,
bottom-up approach.

According to the obtained outcomes/results, the number
of inhabitants in the dwelling is correlated to the behavioral
pattern; the energy consumption per occupant as applied in
Sepehr et al. [24] seems inaccurate in relation to occupancy
utilization. Observations show that the lighting estimation
yielded inaccurate prediction results in most cases using the
bottom-up approach. Tis was due to the lighting being
found to be active almost every time/hour of the day, thereby
providing an unrealistic performance of dwellers’ utilization;
also, the lighting wattage rating breakdown for each room of
the house was not considered in terms of calculation/esti-
mation. Te actual daily average consumption is 4.614 kWh,
while the monthly consumption is 138.406 kWh and the
annual energy consumption is 1660.876 kWh. Te estima-
tion arising from the models (i.e., ANN and Sepehr et al.
[24]) is stated in Table 15.

Based on certain intervals arising from the model’s
application at time-of-use periods, e.g., 16: 00: 19: 00, a high
error disparity is seen with the Sepehr et al. [24] model and
the actual data-graphical representation. Tis may be due to
the increase in occupant activity and their various impulsive
behaviors arising from the shortcomings of the model [24].
It can be inferred that the more the occupants’ random
behaviors, the greater the inaccuracy in various existing
model prediction as demonstrated by the models’ estimation
outputs and the high MAPE value. Tis invariably supports
the need for interlinked behavioral variables in model
development.

6.2. Modelling European Electricity Load Profles Using an
Artifcial Neural Network Method [24]. Behm et al.’s study
[25] entailed the use of an artifcial neural network to
generate weather-dependent, energy load profles for Eu-
ropean countries using 60-minute intervals. In the work,
annual peak load and weather data were used as input
parameters. Infuential factors such as direct irradiance,
outdoor temperature, difuse irradiance, and wind speed
were considered in the generation of the weather data. Te
authors are of the opinion that both cloudiness and humidity
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Figure 14: Measured vs predicted demand profle for RH-
income level.
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Figure 15: Measured vs predicted demand profle for LL-
income level.
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Figure 16: Measured vs predicted energy profle for UL-
income level.
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have an impact on weather. However, data for both pa-
rameters (cloudiness and humidity) were not available
during the study period, although the authors believed that
they could be deduced from the ratio of the irradiances. Te
load and the weather data from the year 2006 to 2016 (over
ten years) were applied. Table 16 shows the input parameters
of Behm et al.’s study [25].

Given the fact that the proposed model is computational
intelligence-based, it will be very enlightening and insightful
to compare the proposed study (ANN-based model using
low income) with another ANN-based model that is not
based on occupancy and interactions or activities in resi-
dential buildings. Te Behm et al. [25] model is comparable
to this current study, although the methodology (approach)
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Figure 17: Morning standard/peak period demand for LI-earners.
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Figure 18: Evening peak period demand for LI-earners.
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and variables used difer. Since most of the input variables
used in the Behm et al. [25] model are not unavailable, the
demand profle was developed using only the irradiance
model, that is, ANN 2 model. Te irradiance data used were
weighted as illustrated in Table 17.

A comparative analysis of the two models’ results was
undertaken based on their expected adaptive accuracy and
input parameters associated with energy consumption. Te
efcacy of the models was based on estimation of the two
weighted ANN-based models’ electrical load profle

prediction. To determine the impact of weather as applied in
Behm et al. [25] and other studies, a trend analysis was
carried out for the ANN 2 model. Te prediction TOU
outputs “with” and “without” irradiance input for the model
are shown in Figure 25. It can be noted from the graphical
result that indeed irradiance infuences energy usage;
however, irradiance being applied wholly (without income,
activities, and occupancy) is not sufcient/adequate to bring
about good energy consumption estimation in residential
buildings (using 30-minute interval).
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Figure 19: Morning standard/peak period demand for MI-earners.
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Figure 20: Evening peak period demand MI-earners.
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Figure 21: Morning standard/peak period demand for HI-earners.
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Figure 22: Evening peak period demand estimators—HI.

Table 11: TOU MAPE-ANN in comparison with actual value output.

Category Low-income (%) Middle-income (%) High-income (%)
Evening peak 0.061 0.398 0.474
Morning standard 3.755 1.659 3.005
Morning peak 2.489 1.167 1.989
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Table 12: Household category.

House category No. of inhabitants
(occupancy) Frequency

A single adult having no kid(s) or a single retired adult 1 0.2
A single adult having a kid or 2 adults having no kids or 2 retired adults 2 0.24
2 adults and a child or 3 adults 3 0.19
2 adults having 2 kids or 3 adults and a child or 4 adults 4 0.28
2 adults with 3 or more kids or 3 adults with 2 or more kids ≥5 0.19

Table 13: Comparative study demand TOU output.

Time, GMT+ 01: 00 ANN-based Actual Sepehr et al. [24] Behm et al. [25]
00: 00: 00 0 0 0 104.218
00: 30: 00 140.15072 190.7336 233 109.325
01: 00: 00 232.816865 304.5045 345 124.831
01: 30: 00 788.095141 950 1009 693.628
02: 00: 00 232.81686 304.5045 345 104.853
02: 30: 00 0 0 0 260.943
03: 00: 00 0 0 0 138.028
03: 30: 00 0 0 0 52.390
04: 00: 00 140.15072 159.4764 173 104.39
04: 30: 00 232.81686 254.6026 310 104.390
05: 00: 00 0 0 310 521.950
05: 30: 00 414.235806 471.3555 310 1393.804
06: 00: 00 232.81686 254.6026 310 4997.980
06: 30: 00 0 0 6800 5644.181
07: 00: 00 0 0 6800 5473.747
07: 30: 00 4584.05704 3659.588 1850 6403.909
08: 00: 00 3843.5686 2530.893 1850 4567.500
08: 30: 00 10281.4736 9546.495 9010 4939.733
09: 00: 00 1064.4805 1533.205 1000 6756.341
09: 30: 00 496 462.7523 520 6621.061
10: 00: 00 1324 1229.612 1003 6644.825
10: 30: 00 2476 428.1938 500 3714.000
11: 00: 00 208 173.9132 160 1565.85
11: 30: 00 1376 1272.515 1500 460.387
12: 00: 00 208 173.9132 195 104.390
12: 30: 00 208 173.9132 360 104.390
13: 00: 00 208 173.9132 183 104.390
13: 30: 00 208 173.9132 183 104.390
14: 00: 00 548 514.0256 550 321.265
14: 30: 00 208 903.4145 450 121.940
15: 00: 00 548 514.0256 0 321.265
15: 30: 00 208 173.9132 233 121.940
16: 00: 00 1036 977.9478 1010 518.000
16: 30: 00 5892.08325 6604.505 8860 1219.400
17: 00: 00 11379.3324 10406.85 10900 7480.550
17: 30: 00 11646.26 9879.59 6600 8576.838
18: 00: 00 9515.46497 10806.57 6200 5848.562
18: 30: 00 11098.4155 9827.622 3800 9218.664
19: 00: 00 8450.40136 9985.405 1010 12567.324
19: 30: 00 7632.74806 8039.189 7090 8975.800
20: 00: 00 8753.16417 9291.248 8500 8908.865
20: 30: 00 6527.66328 6463.063 1000 4829.028
21: 00: 00 8326.60752 8258.687 1000 1993.580
21: 30: 00 7558.46131 8169.884 1000 1231.105
22: 00: 00 4610.57007 4872.973 315 618.310
22: 30: 00 2601.86597 3873.555 127 1283.555
23: 00: 00 1309.17512 1516.667 0 519.943
23: 30: 00 140.15072 190.7336 0 104.390
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Figure 23: Average daily demand profle—LI.
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Figure 24: Evening peak period demand estimators—LI.
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Table 14: MAPE result comparison of the bottom-up approach and ANN-based approach.

MAPE (low-income)

Model Evening
peak period (%)

ANN-based model 0.061
Bottom-up method 3.202

Table 15: Comparative energy consumption.

Comparison of energy consumption (low-income)
Category Actual (kWh) ANN (kWh) Satre-Meloy [11] (kWh)
Daily 4.614 4.654 3.193
Monthly 138.406 139.627 95.782
Annually 1660.876 1675.527 1149.385

Table 16: Te input parameters (Sepehr et al. [24]).

No Characteristic input Value range
1 Yearly peak load (MW) 72.974–79.884
2 Temperature (°C) − 16.38–34.30
3 Wind speed (ms− 1) 0–17.64
4 Direct irradiance (Wm− 2) 0–845.66
5 Difuse irradiance (Wm− 2) 0–397.83

Table 17: Irradiance weight.

Irradiance level Weight Time
No natural lighting 0 00: 00–05: 30
Medium natural lighting (difuse irradiance) 0.5 05: 31–08: 00
High natural lighting (direct irradiance) 0.75 08: 01–10: 30
Very high natural lighting (direct high irradiance) 1 10: 31–17: 29
Low natural lighting (direct normal irradiance) 0.25 17: 30–17: 59
No natural lighting 0 18: 00–23: 59
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Figure 25: Comparison of energy profle for an ANN 2-based model with/without irradiance input.
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Figure 26 depicts the average daily demand profle for
ANN 1 (ANN model based on occupancy, income, and
interactions or activities) and ANN 2 (weather-dependent
ANN model).

MAPE was applied to evaluate the performance and
estimation prowess of both ANN-based models, and the
resultant result is shown in Table 18.

Te proposed ANN-based model showed a better ac-
curacy outlook in comparison with the ANN model-based
weather-dependent variables. Te annual energy con-
sumption for the ANN-based models to the actual energy
consumption is shown in Table 19. Te proposed technique
was able to predict even better in comparison with ANN
2 weather-dependent method.

6.3. Comparative Inference. Te proposed ANN-based
technique has shown its ability to solve volatility and
nonlinearity issues. Te ANN-based model having charac-
teristic inputs such as income level, household activities, and
occupancy presence works better and produces accurate
predictions. Tis can attested to by Figure 27 where the

demand profles of the various studies are compared to the
actual.

Furthermore, a summary of the fndings of the com-
parative study in terms of the methods applied, the in-
fuential factors (variables), the yearly energy consumption,
and the averaged MAPE of demand is shown in Table 20.

Te proposed technique, i.e., ANN model based on
occupancy and interactions or activities in residential
buildings, has the ability/capacity to reduce TOU errors way
better than other approaches such as the deterministic
method as well as the ANN model that is based on weather
variables. Tis thereby proves that it is a better solution/
approach for energy profle development in comparison
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Figure 26: Average daily demand profle for ANN 1 vs ANN 2.

Table 18: Comparison of the ANN-based model result.

MAPE (low-income)

Model Evening
peak period (%)

Morning
standard period (%) Morning peak (%)

ANN (proposed model) 0.061 3.755 2.489
ANN (comparative model) 1.781 10.336 7.518

Table 19: Household annual energy consumption LI.

Comparison of energy consumption (low-income)
Category ANN 1 (kWh) Actual (kWh) ANN 2 (kWh)
Daily 4.654 4.614 5.809
Monthly 139.628 138.406 174.29
Annually 1675.53 1660.876 2091.51

24 International Transactions on Electrical Energy Systems

 itees, 2024, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1155/2024/6656970 by N

igeria H
inari N

PL
, W

iley O
nline L

ibrary on [20/11/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



with most existing methods, including probabilistic
methods.

Te shortcomings arising from existing models which
bring about error-prone load profle estimation include the
following:

(i) Assumption and inference that more occupants in
relation to occupancy translate to high demand and
energy utilization in residential homes, which in
actual case (scenario) seems incorrect to a good
degree.
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Figure 27: Demand TOU comparative prediction output—LI.

Table 20: Comparative analysis of the various model performances.

Model Method applied Input parameters Energy consumption/year (kWh) MAPE (%)
Proposed
model ANN-based 1 Income level, occupancy presence and activities 1675.527 1.951

Sepehr et al.
[24]

Bottom-up
method Number of occupants and activities 1149.385 3.915

Behm et al.
[25] ANN-based 2 Direct irradiance, outdoor temperature, difuse

irradiance, and wind speed 2091.512 6.200

Table 21: Te evaluation indicators for the prediction accuracy of LL-income earners.

Data (x and y values) r R2 RMSE MSE MAPE (%)
1.104599484 1.214537887 0.9817 0.9637 0.0349 1.2169∗10− 3 1.77
1.046205370 1.133644035 0.9710 0.9428 0.0362 1.3126∗10− 3 1.36
1.118176244 1.271891253 0.9712 0.9432 0.0687 4.7257∗10− 3 2.28
1.126601684 1.209311828 1.0000 1.000 0.0391 1.5291∗ 10− 3 1.54
1.112311227 1.193322862 0.9851 0.9704 0.0492 2.4173∗10− 3 1.81

Table 22: Te evaluation indicators for the prediction accuracy of UL-income earners.

Data (x and y values) r R2 RMSE MSE MAPE (%)
1.499239609 1.562499998 0.9452 0.8934 0.0072 5.1401∗ 10− 5 0.75
1.541865677 1.627471915 0.9119 0.8316 0.0383 1.4657∗10− 3 1.4
1.620876986 1.693326006 0.8359 0.6987 0.0324 1.0498∗10− 3 0.85
1.43579147 1.518548597 0.9851 0.9704 0.037 1.3697∗10− 3 1.09
1.460028454 1.556916509 0.8855 0.7841 0.0109 1.2076∗10− 4 1.24
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Table 23: Te evaluation indicators for the prediction accuracy of LH-income earners.

Data (x and y values) r R2 RMSE MSE MAPE (%)
0.510324353 0.589909443 0.9983 0.9966 0.0356 1.2668∗10− 3 2.69
1.171146275 1.161282964 1.0000 1.0000 0.0044 1.9457∗10− 5 0.16
1.414037242 1.324174122 0.8671 0.7518 0.0402 1.6151∗ 10− 3 1.36
1.36919186 1.357999009 0.8882 0.7889 0.005 2.5056∗10− 5 0.16
0.855776045 0.716214623 0.8685 0.7542 0.0052 2.7095∗10− 5 0.17

Table 24: Te evaluation indicators for the prediction accuracy of HH-income earners.

Data (x and y values) r R2 RMSE MSE MAPE (%)
1.20416685 1.248118771 0.9936 0.9872 0.01437 2.0649∗10− 4 1.21
1.13858445 1.217039263 1.0000 1.0000 0.0351 1.231∗ 10− 3 1.29
1.20279327 1.167046437 1.0000 1.0000 0.0159 2.5559∗10− 4 0.61
1.33892876 1.428436197 0.8377 0.7017 0.0400 1.6023∗10− 3 1.25
0.527006671 0.574766248 0.8132 0.6613 0.0366 1.3376∗10− 3 1.13

Table 25: Te evaluation indicators for the prediction accuracy of EM-income earners.

Data (x and y values) r R2 RMSE MSE MAPE (%)
1.237528375 1.639299612 0.8313 0.6903 0.0238 5.6859∗ 10− 4 1.71
1.359416329 1.587821785 0.7818 0.6111 0.0156 2.4513∗ 10− 4 1.09
1.317545872 1.561431528 0.8070 0.6514 0.0042 1.7323∗ 10− 5 2.08
1.248392178 1.485004342 0.8348 0.6969 0.0076 5.8282∗ 10− 5 0.06
1.240860208 1.478555162 0.8375 0.7014 0.0936 8.7647∗ 10− 3 2.55

Table 26: Te evaluation indicators for the prediction accuracy for RM-income earners.

Data (x and y values) r R2 RMSE MSE MAPE (%)
1.287963713 1.152673432 0.8401 0.7058 0.0085 7.3587∗ 10− 5 0.67
1.643272256 1.502106404 0.7618 0.5804 0.0148 2.2032∗ 10− 4 0.79
0.337268095 0.32341220 0.7868 0.6191 0.0062 3.8397∗ 10− 5 0.82
1.473002040 1.394922326 0.7439 0.5535 0.0196 3.8552∗ 10− 4 0.02
1.287954062 1.150037841 0.8552 0.7313 0.0071 5.0766∗ 10− 5 1.47

Table 27: Randomly selected low low-income earner predictor output.

x y xy
0.036679537 0.032234645 0.001182351
0.058558559 0.053547843 0.003135684
0.094936709 0.101637919 0.000855662
0.801480051 0.879483621 0.704888577

4 0.112944628 0.147633859 0.016677445
Σ 1.104599484 1.214537887 0.726736725
3 0.054550514 0.066740007 0.003640702
Σ 1.04620537 1.133644035 0.713702976
2 0.126521388 0.204987165 0.025935261
Σ 1.118176244 1.271891253 0.735997535
1 0.134946828 0.142407800 0.019217481
Σ 1.126601684 1.209311828 0.729279755
0 0.120656371 0.126418834 0.015253237
Σ 1.112311227 1.193322862 0.725315511
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(ii) Te likelihood of switched-ON does not necessarily
bring about the usage of electricity (power). Te
probability of such an event is mathematically in-
tuitive. Behavior that arises from occupant activity

should be learned, identifed, and used for esti-
mation. Tis can be extracted from historical data.

(iii) Weather data overreliance, e.g., direct irradiance,
outdoor temperature, difuse irradiance, wind

Table 29: Randomly selected high high-income earner predictor output.

x y xy
0.0297637395 0.034167175 0.001016042
0.499085832 0.531218222 0.265123488
0.084470251 0.078909904 0.006665539
0.225742881 0.228798048 0.228798048

4 0.527006671 0.574766248 0.302905647
Σ 1.366079375 1.447859597 0.804508764
3 0.499892404 0.555342848 0.2776116713
Σ 1.338928763 1.428436197 0.7792147883
2 0.363756915 0.293953088 0.1069274684
Σ 1.202793274 1.167046437 0.6085305854
1 0.299548096 0.343945914 0.1030283427
Σ 1.138584455 1.217039263 0.6046314597
0 0.365130491 0.375025422 0.136933216
Σ 1.20416685 1.248118771 0.638536333

Table 30: Randomly selected low high-income earner predictor output.

x y xy
0.029737395 0.092820181 0.002760230
0.12992073 0.131630013 0.017101467
0.164924431 0.163971539 0.010550469
0.199149539 0.263232319 0.0524225949

4 0.855776045 0.716214623 0.6129193174
Σ 1.37950814 1.367868675 0.6957540784
3 0.134615385 0.1886796 0.025399177
Σ 1.36919186 1.357999009 0.6722376374
2 0.179460767 0.154854713 0.0277903455
Σ 1.414037242 1.324174122 0.674637495
1 0.792345854 0.708178178 0.5611220432
Σ 1.171146275 1.161282964 0.5950454072
0 0.131523923 0.136804657 0.017993085
Σ 0.510324353 0.589909443 0.051912228

Table 28: Randomly selected upper low-income earner predictor output.

x y xy
0.362478341 0.379716981 0.1376391813
0.343256293 0.380454009 0.1305932328
0.410413244 0.426444575 0.1750184912
0.249625639 0.251474056 0.0627743719

4 0.094254937 0.118826888 0.0112000208
Σ 1.460028454 1.556916509 0.5799996699
3 0.070017953 0.080458976 0.0056335728
Σ 1.43579147 1.518548597 0.51165885
2 0.255103469 0.255236385 0.0651116872
Σ 1.620876986 1.693326006 0.5711369644
1 0.17609216 0.189382294 0.0333487372
Σ 1.541865677 1.627471915 0.5393740144
0 0.133466092 0.124410377 0.0166045668
Σ 1.499239609 1.562499998 0.522629844
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speed, etc., without taking cognizance of actual
behavior and occupancy activity and interrelated
variables brings about inaccurate outcome/
prediction.

7. Conclusion

Tis study proposed a computational intelligence model for
load profle prediction in residential dwellings based on
input variables, including activities and occupancy presence
(interlinked variables), that infuence energy usage. Based on
the obtained results discussed previously in other sections,
the proposed ANN-based model is inclusive of the three
characteristic variables predicted (estimated) with high ac-
curacy. Te proposed model performance was attested to by
the trend series analysis, demand analysis, and correlation
analysis results obtained. Furthermore, a comparative study
was undertaken using two existing techniques in terms of
operational efcacy and the need for interlinked behavioral
variables. Te performance indicators—mean absolute
percentage error (MAPE), mean square error (MSE), and
root mean square error (RMSE)—showed good confdence

levels with respect to the actual data. Te ANN-based model
further demonstrated its profciency in management of
extra-large and very multifaceted systems with many in-
terrelated variables. Tere were also concerns that the
majority of energy simulation tools are based on assump-
tions, thus providing a weak instrument and nonreplication
of the efect occupants’ activities and occupancy on load and
energy profles in residential buildings, thereby resulting in
poor energy prediction and energy demand profle. Te
proposed model showed its adeptness in handling such
problems as demonstrated in the graphical representation of
the energy usage outputs. Furthermore, the result obtained
showed that applied variables, income class, occupants’
occupancy, and their interactions with households, are
major determinants of energy usage estimation for profle
development especially when interlinked. Te ANN-based
model has proven to be a more reliable and profcient tool
for predicting residential energy load profles.

Te proposed model contribution validates and supports
the study review undertaken by Stracqualursi et al. that the
energy sector can optimize resource allocation, improve grid
management, and enhance energy efciency among others

Table 32: Randomly selected realized middle-income earner predictor output.

x y xy
0.536567496 0.505465808 0.2712165229
0.121900178 0.117779546 0.0143573476
0.353903103 0.280849643 0.0993935601
0.058800702 0.045092318 0.0026514599

4 0.216792234 0.203486117 0.0441142098
Σ 1.287963713 1.152673432 0.816700531
3 0.572100777 0.552919089 0.3163254404
Σ 1.643272256 1.502106404 0.7039443309
2 0.337268095 0.32341220 0.4363064664
Σ 1.408439574 1.272599515 0.8238304863
1 0.401830561 0.445735011 0.4776265321
Σ 1.473002040 1.394922326 0.8652454226
0 0.216782583 0.200850526 0.4005762417
Σ 1.287954062 1.150037841 0.7881951322

Table 31: Randomly selected emerging middle-income earner predictor output.

x y xy
0.003331833 0.003448065 0.0000114884
0.647165765 0.657851088 0.4257387026
0.55763747 0.781183735 0.4356173216
0.029393307 0.029624214 0.0008707536

4 0.111087023 0.16719251 0.0185729182
Σ 1.237528375 1.639299612 0.8808112205
3 0.121887954 0.115714683 0.01410422596
Σ 1.359416329 1.587821785 0.8763424922
2 0.080017497 0.089324426 0.007147516989
Σ 1.317545872 1.561431528 0.8693857832
1 0.010863803 0.01289724 0.000140113075
Σ 1.248392178 1.485004342 0.8623783793
0 0.003331833 0.00644806 0.000021483859
Σ 1.240860208 1.478555162 0.8622597501
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by harnessing AI [14], ultimately translating to power system
reliability, reduced operational cost, and reduced environ-
mental pollution, thereby contributing to Sustainable De-
velopment Goals 9, 11, 12 (emphasis on responsible
production), and 13 [26–28].

7.1. FutureWorks. Having demonstrated that the developed
technique is a profcient tool that can be used to achieve
better prediction accuracy for energy loads, it is, therefore,
necessary to look into the optimization of the ANN-based
technique, i.e., the proposed model.

Appendix

A. Prediction Accuracy Evaluation of the
Developed Models

Tis section describes Tables 3, 4, 5, 6, 7, 8, 21, 22, 23, 24, 25,
and 26.

B. Randomly Selected Data Using Equations (8)
and (9)

Tis section describes Tables 27, 28, 29, 30, 31, and 32.
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5(1.20416685) − (1.20416685)
2



∗
����������������������������

5(0.638536333)∗ (1.248118771)
2



5(0.638536333)∗ (1.20416685)(1.248118771)
,

r � 0.9936,

(B.3)

r �

������������

n(Σx) − (Σx)
2



∗
�������������

n(Σxy)∗ (Σy)
2



n( xy)∗ (Σx)(Σy)
,

r �

���������������������������

5(0.510324353) − (0.510324353)
2



∗
����������������������������

5(0.051912228)∗ (0.589909443)
2



5(0.051912228)∗ (0.510324353)(0.589909443)
,

r � 0.9983.

(B.4)

r �

������������

n(Σx) − (Σx)
2



∗
�������������

n(Σxy)∗ (Σy)
2



n( xy)∗ (Σx)(Σy)
,

r �

���������������������������

5(1.237528375) − (1.237528375)
2



∗
�����������������������������

5(0.8808112205)∗ (1.561431528)
2



5(0.8808112205)∗ (1.237528375)(1.561431528)
,

r � 0.831,

(B.5)
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r �

������������

n(Σx) − (Σx)
2



∗
�������������

n(Σxy)∗ (Σy)
2



n( xy)∗ (Σx)(Σy)
,

r �

���������������������������

5(1.287963713) − (1.287963713)
2



∗
����������������������������

5(0.816700531)∗ (1.152673432)
2



5(0.816700531)∗ (1.287963713)(1.152673432)
,

r � 0.8401.

(B.6)

Data Availability

A 24-hour energy consumption historical data, i.e., gathered
from 2008 to 2009 for 35 houses in the East Midlands,
United Kingdom, was applied in the development of the
models.
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