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ABSTRACT 

The primary objective of this project is to extend the conveniences of 

deconvolution to non-linear problems of fluid flow in porous media. Unlike 

conventional approaches, which are based on an approximate linearization of the 

problem, here the solution of the non-linear problem is linearized by a perturbation 

approach, which permits term-by-term application of deconvolution. Because the 

proposed perturbation solution is more conveniently evaluated in the Laplace-

transform domain and the standard deconvolution algorithms are in the time-domain, 

an efficient deconvolution procedure in the Laplace domain is a prerequisite. 

For this research objective, a new algorithm is introduced which uses inverse 

mirroring at the points of discontinuity and adaptive cubic splines to approximate rate 

or pressure versus time data. This algorithm accurately transforms sampled data into 

Laplace space and eliminates the Numerical inversion instabilities at discontinuities 

or boundary points commonly encountered with the piece-wise linear approximations 

of the data. 

Applying the algorithm to the field data obtained from published works, we can 

unveil the early-time behavior of a reservoir system masked by wellbore-storage 

effects. The wellbore-storage coefficient can be variable in the general case. The new 

method thus provides a powerful tool to improve pressure-transient-test 

interpretation. 

Practical use of the algorithm presented in this research has applications in a 

variety of Pressure Transient Analysis (PTA) and Rate Transient Analysis (RTA) 

problems. A renewed interest in this procedure is inspired from the need to evaluate 

production performances of wells in unconventional reservoirs. With this approach, 
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we could significantly reduce the complicating effects of rate variations or shut-ins 

encountered in well-performance data 
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1. INTRODUCTION 

In conventional well-test analysis, the pressure response to constant-rate production is 

essential information that presents the distinct characteristics for a specific type of reservoir 

system however, in many cases, it is difficult to acquire sufficient constant-rate pressure-

response data. The recorded early-time pressure data are often hidden by wellbore storage 

(variable sand-face rate) in some cases, outer boundary effects may appear before wellbore-

storage effect disappears. Therefore, it is often imperative to restore the pressure response in 

the absences off wellbore storage effects to provide a confident well-test analysis  

There are three main reasons for sand face rate variation: these are: 

1. Well bore storage (referred to as after flow in buildup) 

2. Lack of control of the surface rate 

3. Cross flow between layers in multilayer testing. 

The main focus of this project is to extend the conveniences of the deconvolution to non-

linear problems of fluid flow in porous media. 

The usual to approach to extend deconvolution procedures to non-linear problems in oil 

and gas reservoirs is to linearize the non-linear diffusion equation in terms of a pseudo-

pressure and then to apply the deconvolution. It is well known that the pseudo-pressure 

approach does not completely remove the nonlinearity, but, for practical purposes, the 

remaining nonlinearity is assumed to be weak and ignored. In this dissertation, the solution of 

the non-linear problem is obtained by a perturbation approach, which presents the solution as 

a series of solutions of linear problems. This approach permits term-by-term application of 

deconvolution. One practical problem still remains: The proposed perturbation solution is 

more conveniently evaluated in the Laplace-transform domain. The standard deconvolution 

algorithms, however, are in the time-domain. Thus, the development of an efficient 

deconvolution procedure in the Laplace-transform domain is a prerequisite to accomplish the 

main objective of this project. The approach taken in this work leads to the deconvolution of 

variable-rate data in the Laplace domain. Specifically, an approximate function is required to 

take sampled (tabulated) production rate and pressure data into Laplace domain. Furthermore, 

the step-changes in the production rate during shut-in periods lead to inaccuracy in 

approximating functions and instability in numerical Laplace inversion algorithms. In this 

study, a cubic-spline method with piecewise linear interpolation and boundary mirroring is 

developed in Laplace domain to approximate and transform the production rate and bottom-

hole pressure into the Laplace domain. This algorithm accurately transforms sampled 

(tabulated) data into Laplace domain and eliminates the numerical inversion instabilities at 

discontinuous points or boundaries commonly encountered in the piecewise linear 

approximations of the data. The developed approach does not require modifications of 

scattered and noisy data or extrapolations of the tabulated data beyond the end values Rate 

and pressure measurements of wells usually include some level of noise, and due to the nature 
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of the deconvolution process (more specifically, deconvolution in Laplace domain), the 

computed underlying constant-rate response will display oscillations, which requires some 

degree of smoothing. To smooth the deconvolved pressure response, an adaptive approach 

using a Gaussian and Epanechnikov kernel regression is proposed. The adaptive kernel 

regression proposed herein is shown to be more successful than the normal kernel regression. 

2. METHODOLOGY 

Convolution and deconvolution 

Laplace transformation of a function f(t) , defined for all 𝑡 > 0, is given by  

L {f (t)} =f(s) =∫ 1𝑡0 𝑒−𝑠𝑡𝑓(𝑡)𝑑𝑡      (1) 

Where f(s), is the Laplace transformation of f (t) and s denotes the Laplace transform 

parameter. Convolution of two functions yields the algebraic product of the functions in 

Laplace domain as follows:  𝐿{(𝑓1 ∗ 𝑓2 )(𝑡)} = 𝐿 {∫ 𝑓1(𝑇) ∗ 𝑓2(𝑡 −𝑡0 T)) dT      (2) 

Let g(s) and f(s) be the Laplace transforms of g(t) and  f(t), respectively. Let y (t) be the 

convolution of g(t) and f(t). This can be expressed mathematically as: 𝑦(𝑡) = ∫ 𝑔(𝑡 − 𝑇) ∗𝑡0 𝑓(𝑇)𝑑𝑇      (3) 

Y(s) is defined as the Laplace transform of y (t), so:  𝑦̅(𝑆) = 𝑔̅(𝑆) ∗ 𝑓̅(𝑆)       (4) 

Which is the convolution expression in Laplace space. . 

The convolution theorem can be used to determine a system response to any excitation, 

provided that its response to a step function perturbation is known. In the same way it is 

possible to find the pressure response of a reservoir-fluid system 𝛥p(t) to a variable sandface 

rate q(t), from the pressure response ~p.(t) to a reference constant sandface rate  𝑞𝑟 𝛥𝑝(𝑡) = ∫ 𝑞(𝑇)𝑞𝑟 ∗ 𝛥𝑝𝑟́𝑡
0 (𝑡 − 𝑇)𝑑𝑇     (5) 

or the cumulative production response Q(t) of a system to a sand face pressure history 

~p(t), from the accumulated production response 𝑄𝑟́  corresponding to a constant sandface 

drawdown 𝛥𝑝𝑟  𝑄(𝑡) = ∫ 𝛥𝑝(𝑇)𝛥𝑝𝑟 ∗ 𝑄𝑟́𝑡
0 (𝑡 − 𝑇)𝑑𝑇       (6) 

It should be mentioned that in Equations 4 and 5, the initial conditions are null, i.e.: 𝛥𝑝𝑟(0) = 0 

and 𝛥𝑄𝑟(0) = 0 

The expressions for Equations 4 and 5 in Laplace space are, respectively 𝛥𝑝̅̅̅̅ (𝑠) = 𝑠 ∗ 𝑞̅(𝑠)𝑞𝑟 ∗ 𝛥𝑝𝑟̅̅ ̅̅ ̅      (7) 𝑄̅(𝑠) = 𝑠 ∗ 𝛥𝑝̅̅ ̅̅ (𝑠)𝛥𝑝𝑟 ∗ 𝑄𝑟̅̅ ̅(𝑆)     (8) 
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As can be seen, the deconvolution in Laplace space is reduced to a mere arithmetic 

operation. If deconvolution in real time is desired, the implementation of numerical methods 

to solve Equations (7) and (8) are necessary. 

For deconvolution in Laplace space for constant pressure response: 

:∆𝑝𝑐̅̅ ̅̅ ̅(𝑠) = ∆𝑝(𝑠)̅̅ ̅̅ ̅̅ ̅̅𝑠𝑞(𝑠)      (9) 

3. LAPLACE TRANSFORMATION OF SAMPLED FUNCTIONS USING 

CUBIC SPLINES 

Interpolation by polynomials of degree n is widely used in practice. For various functions, the 

higher quality of the interpolation might be expected with the increasing degree of the 

polynomials. Unfortunately, this is not always true and the interpolation may yield oscillatory 

results by higher-degree of polynomials. Losing the quality of the interpolation by using 

higher-degree polynomials has been discussed by [1] and [8]. To avoid such oscillations, 

spline methods are widely applied. The mathematical idea of the spline is to replace a single 

high-degree polynomial over the entire interval by several low-degree polynomials [2]. This is 

expected to reduce the oscillation of the interpolation. In general, a spline function is a 

function that consists of piecewise polynomials joined together with certain smoothing 

conditions. A spline function also utilizes the degree piecewise polynomials to preserve order 

derivatives at the data points. A spline function is defined by knots and the order of the spline. 

In the theory of splines, the points  𝑡0, 𝑡1 … . . 𝑡𝑛 , at which the character of the function 

changes, are called knots. 

In this work, the most popular piecewise polynomial, called the natural cubic spline, is 

utilized. The cubic spline preserves the first and second derivative continuity at knots. If s(𝑡) 

is given over the interval 𝑎 ≤  𝑡 ≤  𝑏 with knots defined by  𝑎 ˂ 𝑡1 <  𝑡2 < ⋯ … < 𝑡𝑛 

then the cubic spline in each subinterval can be written in the following form: 𝑆𝑖(𝑡) = 𝐴0𝑖𝑡 + 𝐴2𝑖𝑡2 + 𝐴3𝑖𝑡3, 𝑖 = 1,2 … . . 𝑛    (10) 

The simplified cubic splines function for each subinterval with values and at and 

respectively can be address in the form of (Atkinson, 1985)  𝑆𝑖(𝑡) = (𝑡𝑖−𝑡)3𝑀𝑖−1+(𝑡−𝑡𝑖−1)3𝑀𝑖6(𝑡𝑖−𝑡𝑖−1) + (𝑡𝑖−𝑡)𝑦𝑖−1+(𝑡−𝑡𝑖−1)𝑦𝑖(𝑡𝑖−𝑡𝑖−1) − 16 (𝑡𝑖 − 𝑡𝑖−1){(𝑡𝑖 − 𝑡)𝑀𝑖−1 + (𝑡 − 𝑡𝑖−1)𝑀𝑖 
 (11) 

In Eq.(11), M represents the second derivative and . Eq. (11) can also be rearranged as 

follows: 𝑆𝑖(𝑡) =  𝑀𝑖−𝑀𝑖−16(𝑡𝑖−𝑡𝑖−1) 𝑡3 + 3𝑡𝑖𝑀𝑖−1−3𝑡𝑖−1𝑀𝑖6(𝑡𝑖−𝑡𝑖−1) 𝑡2 + [3(𝑡𝑖−12 𝑀𝑖−3𝑡𝑖2𝑀𝑖−16(𝑡𝑖−𝑡𝑖−1) + 𝑦𝑖−𝑦𝑖−1𝑡𝑖−𝑡𝑖−1 + 16 (𝑡𝑖𝑀𝑖−1 − 𝑡𝑖𝑀𝑖 −𝑡𝑖−1𝑀𝑖−1 + 𝑡𝑖−1𝑀𝑖)] 𝑡 + [𝑡𝑖3𝑀𝑖−1−𝑡𝑖−13 𝑀𝑖6(𝑡𝑖−𝑡𝑖−1) + 𝑡𝑖𝑦𝑖−1−𝑡𝑖−1𝑦𝑖𝑡𝑖−𝑡𝑖−1 − 16 (𝑡𝑖2𝑀𝑖−1 − 𝑡𝑖𝑡𝑖−1𝑀𝑖 − 𝑡𝑖−1𝑡𝑖𝑀𝑖−1 +𝑡𝑖−12 𝑀𝑖]   (12) 

4. GOVERNING EQUATIONS IN LAPLACE DOMAIN 

Applying Eq. (1) on cubic spline over the interval 𝑡1 <  𝑡 <  𝑡𝑛 for tabulated data, such as 

pressure or production rate, yields  
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𝐿{𝑆(𝑡)} = 𝑆̅(s) = ∫ 𝑆(𝑡)𝑒−𝑠𝑡𝑑𝑡 =∞0− ∫ 𝑆(𝑡)𝑒−𝑠𝑡𝑑𝑡 + ∫ 𝑆(𝑡)𝑒−𝑠𝑡𝑑𝑡 + ∫ 𝑆(𝑡)𝑒−𝑠𝑡𝑑𝑡 =∞
𝑡𝑛

𝑡𝑛
𝑡1

𝑡1

0− ∫ 𝑆(𝑡)𝑒−𝑠𝑡𝑑𝑡𝑡𝑛𝑡1   (13) 

For the set of tabulated data for both terms and vanish because the cubic spline becomes 

zero outside the interval. Application of Eq.(13) to individual terms of Eq.(12) yields: 

The Laplace transform of the first term: 𝐿 { 𝑀𝑖−𝑀𝑖−16(𝑡𝑖−𝑡𝑖−1) 𝑡3} =
∫ 𝑀𝑖−𝑀𝑖−16(𝑡𝑖−𝑡𝑖−1) 𝑡3𝑒−𝑠𝑡𝑑𝑡 =𝑡𝑛

𝑡0∫ 𝑀1−𝑀06(𝑡1−𝑡0) 𝑡3𝑒−𝑠𝑡𝑑𝑡 + ∫ 𝑀2−𝑀16(𝑡2−𝑡1) 𝑡3𝑒−𝑠𝑡𝑑𝑡 +𝑡2𝑡1
𝑡1

𝑡0 … . ∫ 𝑀𝑛−𝑀𝑛−16(𝑡𝑛−𝑡𝑛−1) 𝑡3𝑒−𝑠𝑡𝑑𝑡 =𝑡𝑛𝑡𝑛−1∑ 𝑀𝑖−𝑀𝑖−16(𝑡𝑖−𝑡𝑖−1)𝑛𝑖=2 {[− 𝑡𝑖3𝑠 − 3𝑡𝑖2𝑠2 − 6𝑡𝑖𝑠3 − 6𝑠4] − [− 𝑡𝑖−13𝑠 − 3𝑡𝑖−12𝑠2 − 6𝑡𝑖−1𝑠3 − 6𝑠4]𝑒−𝑠𝑡𝑖−1}    (14) 

The Laplace transform of the second term: 𝐿 {3𝑡𝑖𝑀𝑖−1−3𝑡𝑖−1𝑀𝑖6(𝑡𝑖−𝑡𝑖−1) 𝑡2} =
∫ 3𝑡𝑖𝑀𝑖−1−3𝑡𝑖−1𝑀𝑖6(𝑡𝑖−𝑡𝑖−1) 𝑡2𝑒−𝑠𝑡𝑑𝑡 = ∫ 3𝑡1𝑀0−3𝑡0𝑀16(𝑡1−𝑡0) 𝑡2𝑒−𝑠𝑡𝑑𝑡 +𝑡1𝑡0 … . . ∫ 3𝑡𝑛𝑀𝑛−1−3𝑡𝑛−1𝑀𝑛6(𝑡𝑛−𝑡𝑛−1) 𝑡2𝑒−𝑠𝑡𝑑𝑡 =𝑡𝑛𝑡𝑛−1

𝑡𝑛
𝑡0∑ 3𝑡𝑖𝑀𝑖−1−3𝑡𝑖−1𝑀𝑖6(𝑡𝑖−𝑡𝑖−1) {[− 𝑡𝑖2𝑠 − 2𝑡𝑖𝑠2 − 2𝑠3] 𝑒−𝑠𝑡𝑖 − [− 𝑡𝑖−12𝑠 − 2𝑡𝑖−1𝑠2 − 2𝑠3] 𝑒−𝑠𝑡𝑖−1}𝑛𝑖=2     (15) 

5. INVERSE MIRRORING AT BOUNDARIES 

Discontinuous points in sampled data, such as step changes in production rate or build up in 

the pressure data, may cause oscillations in the approximation functions obtained (for 

example, by cubic spline). Transforming the data into the Laplace domain with such 

oscillations in the approximation function increases the error in the deconvolved constant 

pressure response. Figure 1 shows an example of the oscillatory behavior around 

discontinuous points caused by the application of cubic-spline approximation of the data. In 

addition, sampled functions are normally available over a finite interval while Laplace 

transformation requires the function be defined over the positive semi-infinite domain. To 

take the sampled data to Laplace domain, extrapolation from zero to the first sampling point 

and from the last sampling point to infinity is required. If the behavior of the tabulated 

function beyond the endpoints is known [e.g. constant wellbore storage, radial flow, pseudo 

steady state, etc. [3], then the Laplace transform of the function can be generated by the 

procedures suggested by [4] and [5]. As previously noted, however, due to the property of the 

cubic spline, the Laplace integration over the regions of extrapolation vanishes. To remove 

the remaining oscillations of the approximating function at discontinuity points, we propose 

the use of inverse mirroring at these points. In this approach, the function is extended beyond 

the points of discontinuity by using its inverse mirror image and the cubic-spline interpolation 

is applied to each extended function obtained by individual inverse mirroring. This reduces 

the oscillations of the function known as the tail effect. Figure 2 shows an example of inverse 
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mirroring at discontinuous points. Figure 3 shows the interpolation results from the 

application of the inverse mirroring and cubic spline. (50,100,200)  

6. ADAPTIVE CUBIC SPLINE 

Inverse mirroring at discontinuous points can be also used to extend the sampled data at both 

ends of the table where the behavior of the function is unknown. In this case, the two 

discontinuous points are the two ends of the data set. Figure 2 shows an example of inverse 

mirroring at the data boundaries of an arbitrary function. The inverse mirroring at the first 

data point may create negative values. These data points are rejected while transforming the 

extended function into the Laplace domain. 

Field data may not be as smooth as was shown in Figure 3. The oscillatory nature of the 

field data may cause the same effect as discontinuities on the cubic spline interpolation. The 

application of inverse mirroring for the entire set of data in these cases would make the 

procedure impractical. Using inverse mirroring only at the two ends of the data set as shown 

in Figure 4 may be a partial solution for this problem. Inverse mirroring at the first data point 

is used to fill the gap from zero to first data point. However, It is used in the last data point to 

shift the tail effect may occur during Laplace inversion to the right.  

An alternative solution for data with discontinuity at any point between the first and last 

data points is to use an adaptive cubic spline approach. In the adaptive cubic spline approach, 

piecewise linear approximations are substituted for the function in intervals where the cubic 

spline approximation causes large oscillations. The mathematical expression of the Laplace 

transformation of the piecewise linear approximations used in selected segments are as 

follows:  

The equation of a straight line over a segment can be written as: 𝑦 = 𝑚𝑥 + 𝑏      (16) 

Where m is the slope of the line passing through knots over a particular segment, and  b 

represents the intercept of the line. 

Slope for a particular line between two knot can be determined from the following relation 𝑚 = 𝑦𝑖−𝑦𝑖−1𝑡𝑖−𝑡𝑖−1        (17) 

Similarly, the intercept of the line can also be found as follow 𝑏 = 𝑦𝑖−1 − 𝑚𝑡𝑖−1 = 𝑦𝑖−1 − 𝑦𝑖−𝑦𝑖−1𝑡𝑖−𝑡𝑖−1 𝑡𝑖−1    (18) 

The Laplace transformation of a piecewise-linear function over an interval from to is then 

written as follow:  𝐿{𝑦(𝑡)} = 𝑦̅(𝑠) = ∫ 𝑦(𝑡)𝑡1𝑡𝑖−1 𝑒−𝑠𝑡𝑑𝑡 = ∫ (𝑚𝑡 + 𝑏)𝑡1𝑡𝑖−1 𝑒−𝑠𝑡𝑑𝑡 = ∫ 𝑚𝑡𝑡1𝑡𝑖−1 𝑒−𝑠𝑡𝑑𝑡 + ∫ 𝑏𝑡1𝑡𝑖−1 𝑒−𝑠𝑡𝑑𝑡 =𝑚 [(−𝑡𝑖𝑠 − 1𝑠2) 𝑒−𝑠𝑡𝑖 − (−𝑡𝑖−1𝑠 − 1𝑠2) 𝑒−𝑠𝑡𝑖−1] − 𝑏𝑠 [𝑒−𝑠𝑡𝑖 − 𝑒−𝑠𝑡𝑖−1]   (19) 

Where m and b are given in Eq. (18) and Eq.(19), respectively.  

7. ISEGER ALGORITHM 

A newer algorithm presented by [6] removes the restriction on discontinuities. The Iseger 

algorithm is based on Poisson’s summation formula in the form of Fourier series. In this 
algorithm, Poisson’s summation relates an infinite sum of Laplace transform values to Z-

transforms of the function’s values. The infinite sum is approximated by a finite sum based on 

the Gaussian quadrature rule, and the time domain values of the function are computed by a 
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Fourier Transform algorithm [3]. The practical application of Iseger’s algorithm in transient-
flow problems was introduced by [3]. 

Den Iseger algorithms derive from the inverse Laplace transform definition: 𝑓(𝑡) = 12𝜋𝑖 ∫ exp(𝑝𝑡) 𝐹(𝑝)𝑑𝑝𝛾−𝑖∞𝛾−𝑖∞     .(20) 

Where 𝛾 is such that the contour of integration is to right-hand side of any singularities of 

F. 

After algebraic manipulation, (6) may be expressed as follows: 𝒇(𝒕) = 𝟏𝟐𝜋𝑖 𝒆𝒙𝒑(𝛾𝑡) ∫ 𝑅𝑒{𝐹(𝑝) exp(𝑖𝑤𝑡)}𝑑𝑤+∞0     (21) 

Where P is 

solution can be approximated by: 𝑓(𝑡) ≈ 12𝜋 exp (𝛾𝑡)[𝐹(𝛾)2 + ∑ 𝑅𝑒 {𝐹 (𝛾 + 𝑖𝑘𝜋𝑇 ) exp (𝑖𝑘𝜋𝑡𝑇 ))+∞𝑘=1 }]𝜋   (22) 

7.1. SIMULATED EXAMPLES 

7.1.1. Deconvolution of Pressure Responses for a Sequence of Step-Rate Changes  

To demonstrate the use of the adaptive cubic spline in deconvolution applications, we 

consider the step-rate sequence and corresponding bottomhole pressure in Figure 5 and Figure 

6, respectively. The pertinent data for this example are given in Table 1. For this variable-rate 

(step-rate changes) example, we used the Laplace domain deconvolution given in Eq. (9) to 

generate the constant rate responses (with wellbore storage) shown in Figure 7. The Laplace 

transformation of the tabulated pressure responses,∆𝑝𝑤(𝑡) , were generated by the adaptive 

cubic spline algorithm combined with an analytical solution for tabulated production rate. The 

Iseger numerical Laplace inversion algorithm is utilized in this example.  

7.2. FIELD EXAMPLES 

One field examples of the adaptive cubic-spline deconvolution will be presented herein. It is a 

the classical examples of [7] which deal with variable sandface flow rate due to wellbore 

storage effect. 

7.3. Sandface Rate Deconvolution – [7] Example 

The first standard example is an 8-hour buildup test with after flow effects considered by [7]. 

In this example, the underlying dual-porosity reservoir behavior is masked by wellbore 

storage and the objective of deconvolution is to reveal the underlying reservoir behavior. 

Figure 8 shows the original data and the deconvolved pressure response. Adaptive cubic 

spline, inverse mirroring, adaptive kernel regression, and Iseger numerical inversion 

algorithm are employed in this example. The results from adaptive cubic spline deconvolution 

and adaptive kernel regression display the valley in derivative responses, which is 

characteristic of dual-porosity systems (the depth of the valley is used to estimate the 

storativity ratio of the dual-porosity medium). The valley in the derivative responses was 

masked in the original data by wellbore storage. The results of both the fixed and the adaptive 

bandwidth utilized in kernel regression are shown in Figure 8. The fixed bandwidth value 

used in kernel regression was obtained from cross-validation to avoid over smoothing. A 

discussion on how over smoothing can affect the storativity estimation in this example is 

given by [3]. 
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8. CONCLUSION 

Laplace transformation is an important tool for the solution of transient fluidflow 

problems in porous media and the,existence of accurate numerical Laplace,inversion 

algorithms greatly  

Enhances its utility. In the study, the main objective was to improve the deconvolution of 

variable-rate data in the Laplace domain. The main hypothesis of the first objective was that 

the limited success of Laplace-domain deconvolution and transformation of tabulated data 

into Laplace domain was due to algorithmic issues.  Laplace transform was applied to the  

cubic spline equation to get the governing equation in laplace space. A governing equation 

can also be derived by implementing a design of experiment on all the functioning 

parameters. This will generate a response surface equation as described by [9] and can be 

applied to a cubic spline.  

8.1. NOMENCLATURE 

b  intercept on y axis used in equation 𝑓𝑖  Value of at time f(t) at Ti 𝑓(𝑡) Arbitrary function 𝑓(𝑠)̅̅ ̅̅ ̅̅  Laplace transform of 𝑓(𝑡)  𝑓𝑠′  Linear slope of the data in the interval 𝑡𝑖 ≤ 𝑡 ≤ 𝑡𝑖+1 

h  Constant kernel bandwidth parameter and reservoir thickness 𝑔(𝑥|ℎ) Nadaraya-Watson kernel estimator ℎ(𝑥𝑖) Adaptive bandwidth 

J  Arithmetic average of data 𝑘  Kernel function 𝐿  Characteristic length, ft 𝔏  Laplace transform operator 𝔏−1 Inverse Laplace transform  

M  Number of points at which the inverse Laplace transforms are computed 

m  slope of a straight line used in eq. (3.15) 

n  parameter used in the stehfest algorithm 𝑃𝑖  Initial reservoir pressure, psi 𝑃𝑤𝐷 Dimensionless bottom hole pressure ∆𝑝𝑤𝑐 Constant rate pressure response, psi ∆𝑝̅̅̅̅ (𝑠) Pressure changes in Laplace space 𝑄̅(𝑠) Production rate in Laplace space, rbbl/d, stb/d 𝑞  Production rate 𝑆𝑖  Cubic spline over a segment 

S  skin factor 

T  Period for which the inversions are computed 

t  Time, hrs 
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8.2. GREEKS 𝛼   Constant used in Eq. (2.3) 𝛼0  Constant used in Eq. (2.3) 𝛾  Contour of integration 𝐵  Constant used in Eq. (2.3) 𝛽0  Constant used in Eq. (2.3) 𝜇  Viscosity, cp 𝜂  Diffusivity constant, md-psi/cp 𝜆𝑖  Bandwidth adaptive parameter 𝜎  Standard deviation and dispersion parameter Δ  Parameter used in Iseger algorithm Γ  Gamma function 

 

Figure 1 Interpolation of discontinuous pressure data 
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Figure 2 inverse mirroring at discontinuous point 

 

Figure 3 Application of inverse mirroring at discontinuous points using cubic spline interpolation. 

Table 1 Data for deconvolution example 
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Figure 1 step-rate changes 

 

Figure 5 Pressure corresponding to step-rate sequence shown in Figure 4 
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Figure 6 Pressure changes corresponding to step-rate sequence shown in Figure 4 

 

Figure 7 Deconvolution of pressure response 

 

Figure 8 Sand face-rate deconvolution to remove wellbore storage effect; Muenuier et al. (1985)  

example 

 

Figure 9 Numerical inversion of sand face rate from tabulated data. Muenuier et al. (1985) example. 
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