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Abstract Cement production has been increasing rapidly leading to energy consumption, with seri-

ous cost implications and environmental challenges. Energy efficiency is a key component required

to maintain the cement company’s environmental strategy. In this study, Aspen Plus process model

and neural networks are used to assess the energetic efficiency of a precalcining rotary kiln in a

cement production process. Aspen Plus process simulator estimated energy efficiency at 61.30 %

using the first law of thermodynamic. Further, for the ANN model, kiln feed, kiln gas, calciner

gas, clinker cooling air, and primary air were the operation parameters inputs. ANN model is val-

idated and demonstrated it is capable of predicting cement rotary kiln energy efficiency accurately

with a correlation coefficient (R2) of 0.991. In conclusion, the Bootstrap aggregated neural network

(BANN) was used to search the optimal operational parameters in achieving the lowest mean

square error (MSE) of the energy efficiency. The MSE for training, testing, and validation data sets

were 3.64 � 10-5, 3.70 � 10-5, and 5.00 � 10-5 for in the estimation of rotary kiln system energy

efficiency. To achieve this optimal condition of 61.5 % energy efficiency, the optimal parameters

as determined by ANN (BANN) were kiln feed of 205050 kg/hr, kiln fuel gas of 2821 kg/hr, calciner

fuel gas of 5648 kg/hr, clinker cooling air of 247463 kg/hr and primary air of 7309 kg/hr. Conse-

quently, it is recommended that ANN should be combined with Bootstrap aggregated neural net-

work (BANN) for effective prediction and monitoring of energy efficiency for precalcining rotary

kiln system.
� 2021 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Alexandria

University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
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1. Introduction

Cement demand in high quantity was initiated by the global
rapid urbanization. Global cement as of 2019 was projected

to be 5.2 billion metric tons and half of the figures were
accrued to Asia/Pacific region being the world’s largest con-
sumer. A developing country like Nigeria has shown a corre-

sponding increase in demand for raw materials and energy
due to considerable evolution in its production capacity of
cement [1]. This necessitates the need for energy evaluation
of the cement industry for both thermal and electrical energy.

Cement rotary kiln is the main equipment commonly used in
the modern cement industry to manufacture cement clinker.
Hence, it becomes essential to study the energy efficiency in

a cement rotary kiln that will satisfy the design and optimiza-
tion of the cement manufacturing process.

Several studies addressing the cement industry’s energetic

efficiency have increased significantly with a focus on thermal
energy reduction. Worrell and Reuter [2] examined over 50
energy-efficient technologies and initiatives. These authors

projected energy reductions, reductions in carbon dioxide
emissions, investment costs, operational and maintenance
costs were analyzed for each of the initiatives. Utlu et al., [3]
study on the raw mill sub-system reported that the energy effi-

ciency of the cement was 84.3% but without consideration of
the precalcining rotary kiln. Fellaou and Bounahmidi [4]
examined the energy efficiency opportunities of a typical

Moroccan cement plant. Energy analysis tool was used by dif-
ferent authors to examined the cement plant precalcining
rotary kiln unit [5–7]. Cement plant pyroprocessing unit using

an energy analysis tool had been studied in different research
works [8–11]. Talaei et al., [12] develop a technological frame-
work and energy model in the cement industry with a focus on

energy savings in the cement sector.
However, the authors did not use a process simulator in the

estimation of the energy assessment. Therefore, due to the
complexity involved in the mass and energy balance; the in-

line precalciner rotary kiln units pose a great challenge for
the plant operators to control. Past studies have reported the
use of software based on computational fluid dynamics

(CFD) to primarily model the process’s rotary kiln segment
[13–14]. Basically, a one-dimensional balance for energy and
material was used that is capable of handling the solid parti-

cle’s behavior in a standard CFD environment [15–16]. Mech-
anistic models have been used for studies on energy efficiency.
However, it may be complicated and time-consuming to
develop such a model for complex processes particularly to

integrate energy efficiency in the second law of thermodynam-
ics [17]. Data-based models such as Aspen Plus [18], artificial
neural network (ANN) and bootstrap aggregated neural net-

work (BANN) models could help resolve these issues [19–21].
An ANN is a field of artificial intelligence that is capable of

identifying non-linear relationships between inputs and out-

puts of a system. An artificial neural network (ANN), which
uses machine-learning to build non-statistical models, func-
tions similarly to the human brain in distributed parallel pro-

cessing [10]. It is evident that the ANN enables diagnoses,
improves control with accuracy and flexibility of forecasting
with data training of the system’s performance [11].

Artificial Neural network (ANN) has proven capable of

approximating continuous non-linear functions. ANN helps
in solving complex nonlinear problems and for applications
in automation control, prediction in bioreactor, haloketones
prediction in tap water, pattern recognition, signal processing

prediction, modeling, optimization [22–26]. ANN has been
successfully used in many predictive modeling and optimiza-
tion problems, including enzyme production optimization

[27], biogas production prediction [28] and air pollutant pre-
diction [29]. By implementing a polynomial neural network
in cement plants, Koumboulis and Kouvakas [30] were able

to control the abgasses temperature as well as achieving a
desired precalcination level. Marengo et al., [31] examined
the modeling of pollution emissions from a cement production
plant using PCRegression, partial least-squares, and artificial

neural networks. The results of the study concluded that
ANNs are significantly more effective than PLS and PCR in
prediction and are comparable to experimental uncertainty

of the response, at least for SO2 and dust. Developing a num-
ber of neural network models and combining them is an attrac-
tive method of improving neural network model robustness.

A stacked or bootstrap neural network is such a combina-
tion of two or more individual neural networks [32–34] that
makes predictions based on the combined predictions of each

neural network. Zhang [21] used bootstrap aggregated neural
networks in building of software sensors for a batch polymeri-
sation reactor. It was shown that the models was more accu-
rate and robust than those built from single neural networks.

Osuolale and Zhang [19], have reported that bootstrap aggre-
gated neural network (BANN) is a good search engine for
determining optimal operational parameters in achieving the

lowest mean square error (MSE) of the energy efficiency in a
process plant.

Consequently, this paper is aimed at predicting energy effi-

ciency of a precalcining rotary kiln of a cement plant using
artificial neural networks (ANN). Although, ANN has been
employed in evaluating other processes, however, to the best

of our knowledge, this is the first study that would assimilate
artificial neural network model with Bootstrap aggregated
neural networks to improve the prediction and monitoring of
the energy efficiency of a precalcining rotary kiln.

2. Cement production process description

The production of cement is sub-divided into two processes:

first ‘‘clinker” is produced at a temperature of 1450 �C and sec-
ondly, the clinker is ground to the powder known as cement
with other minerals. Fig. 1 below shows a process flowchart

of a dry cement manufacturing technology. The process simu-
lator using Aspen Plus is described in detail below and repre-
sented using a process flow sheet in Fig. 2.

2.1. Cyclone

The kiln feed material, one of the operation parameters was

introduced into the process through the topmost preheater
cyclone, and this is to assist in raw material ‘preheat’ within
the tower. The preheating tower was simulated as a series of
mixers and cyclones in Fig. 2. The solid (kiln feed-raw meal)

mixed with the gas flow below in each mixer; assumed heat
exchange in the process. The mixture was sent to a cyclone
and separated. The temperatures of the gas and solids assumed

the same in each cyclone stage. The efficiency of each cyclone is



Fig. 1 Schematic layout of a typical cement plant.
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set to reflect the dust emission of the reference cement plant

studied. The separated (preheated) material dropped to the cal-
ciner vessel by gravity.

2.2. Calciner

The calciner gas being an operation parameter was introduced,
and mixed with the combustion air from the clinker cooler
Fig. 2 Aspen Plus process simulator flow s
through both the tertiary and secondary air ducts for calcina-

tion process to be effective. The calcination process is a chem-
ical reaction and is represented in a simulator in two steps. The
calciner process consists of the following sections in Fig. 2:

Separator (Cyclone), Combustor (COMBUST), Calciner
(RStoic). The calciner is where the calcination takes place
and the heat for the process is supplied from the combustor
using natural gas as the main fuel. The combustion occurs in
heet for a typical cement manufacturing.



Table 1 Input parameters for the simulation.

Rotary kiln properties Operational data Units

Kiln feed 205,000 kg/h

Kiln primary air fan 8500 kg/h

Gas flow in calciner 59.72 %

Gas flow in kiln 40.28 %

Raw meal/clinker factor 1.58 –

Preheater exit gas temperature 385 �C
Oxygen in preheater exit gas 3.85 %

Operation capacity 125,000 kg/h

Cooler total length 72 M

Cooling fans/total airflow 5/252500 kg/h
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combustor (RGIBBS reactor) while calcination takes place in
Calcinator (RStoic reactor) of Aspen Plus simulator. These
are endothermal reactions and the heat provided by the flue

gases of natural gas combustion from the combustor are made
to pass through the calciner (RSTOIC reactor of Aspen Plus)
where the calcination reaction process occurs:

2.3. Rotary kiln

The precalcining kiln is simulated as a series of linked RGIBBS

Equilibrium reactor and YIELD blocks (reactor) with counter-
current gas and solids flow in Fig. 2. Both the primary air and
the kiln gas fuel were introduced at the kiln section, while the

introduced combustion air was maintained 10% excess air and
calcined raw meal enters the rotary kiln. First, the remaining
CaCO3 is converted to CaO in RGibbs reactor. A fraction of
the solids as dust split out from the main solid stream and

mixed with the rotary kiln flue gas. Kiln reactions simulated
are 2CaO � SiO2 , 3CaO �Al2O3 , and 3CaO � SiO2 and there
are clinker components that are available in the Aspen Plus

library. While (4CaO �Al2O3 � Fe2O3) is unavailable but rep-
resented with CaO �Al2O3 � Fe was the fourth clinker compo-
nent in the Aspen Plus library. Combustion in the main burner

was simulated with RGibbs reactor.

2.4. Clinker cooler

The clinker cooler was simulated as a set of five heat exchang-

ers in Fig. 2. Here, the clinker cooling air parameter was intro-
duced to cool the clinker as well as provide combustion air for
the rotary kiln. The first two heat exchangers heat secondary

and tertiary air to 1050 �C and 704 �C, respectively, while
the last three heat-exchanger cools the clinker to 105 �C and
the heat recuperated is used for the drying of raw meal in a ver-

tical roller mill. Before each heat exchanger, a part of the solid
split out from the main stream as recuperated hot gas rotary
kiln operation while the noodle-like clinker; combination of

these four components (2CaO � SiO2 , 3CaO �Al2O3 ,
CaO �Al2O3 � Fe and 3CaO � SiO2) as finished products.

3. Method and theoretical analysis

3.1. Thermodynamics balance equations

For a steady-flow process to find work, heat interactions, and
energy efficiency, the following equations are applied to
steady-state.

Mass balance
Eq. (1) represent mass balance of the system, which is

expressed below

R _min ¼ R _mout ð1Þ
Bejan [35], expressedṁ as the mass flow rate, while the sub-

script ‘in’ is inlet and ‘out’ for outlet.
Energy balance

Energy balance equations can be expressed as Eq. (2) and
(3) respectively.

REin ¼ REout ð2Þ

Qnetin þ R _minhin ¼ Wnetin þ R _mouthout ð3Þ
The rate of (energy transfer in) is represented as Ein while
the rate of (energy transfer out) is Eout The rate of (net heat
input) is expressed as; Qnetin ¼ Qin �Qout; while the rate of

(net work output) is represented as; Wnetin ¼ Wout �Win ,
and the specific enthalpy is h. The energy balance expressed
in Eq. (2) can further be simplified to enthalpy flow only,

assuming constant kinetic and potential energies represented
as Eq. (4):

R _minhin ¼ R _mouthout ð4Þ
A summary of an energy balance around the rotary kiln

and grate cooler is given as Eq. (5) and (6)X
Ein ¼ Ekilnfeed þ Ecalcinerfuel þ Eclinkercoolingair þ Ekilnfuel ð5Þ

X
Eout ¼ Ecoolerexhaustair þ Epreheaterexitair þ Eclinkerexit ð6Þ
The system’s efficiency equation is defined as Eq. (7)

g ¼ R _Eout

R _Ein
ð7Þ
3.2. Process simulation of the cement rotary kiln

Table 1 shows the input parameters used for simulation in
Aspen Plus. Based on the data simulated in Aspen Plus, energy
analysis of the streams was performed at the steady-state using
Eqs. (1), (2), and (4). Cement rotary kiln energy efficiency was

calculated using Eq. (7). In Aspen Plus, each stream was cre-
ated with temperature, pressure, enthalpy, and internal energy.
The energy of each stream was captured using the Aspen Plus

process simulator at the fundamental operational conditions as
well as at the reference states. Maximum energy was measured
for both inlet and outlet of the network using Eq. (5) and (6),

while Eq. (7) was used for estimating energy efficiency.

3.3. Artificial neural network modeling

An artificial neural network (ANN) was used to model the
energy efficiency and product composition of the precalcining
rotary kiln in a cement plant. The input data are presented
through the input layer neurons and the corresponding results.

The thirty (30) days of steady operational data (856 data) from
the cement plants was used as input data for the Aspen plus to
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evaluate energy efficiency. The energy efficiency output neural
network model is defined using the expression in Eq. (8).

y ¼ ðx1; x2; x3; x4; x5::::xnÞ ð8Þ
where y is energy efficiency, x1, x2, x3, x4, and x5 are kiln feed

mass flowrate, kiln gas flowrate, calciner gas flowrate, clinker
cooling air, and primary air flowrate respectively. ANN simu-
lation parameters used in the learning and training are the

backpropagation algorithm, five input layers, thirty hidden
layers, and one output layer, as shown in Fig. 3.

3.3.1. Data collection and preprocessing

This study focused on a cement precalcined rotary kiln process
located in Ewekoro, Nigeria, and the data collected includes
input variables and output variables. The distributed control

system database was sampled once every minute, and approx-
imately one month of data was collected. Ewekoro cement
plant’s operational parameters for the year 2019 were analysed

and obtained from its records. These operational parameters
include fuel gas, calciner temperature, secondary air pressure,
raw feed material, and damper opening for the fan. The mea-
sured field data will be affected by the disturbance, especially

for the cement calcination process, which will see high noise
due to the gas–solid reaction entailed. The collected data were
screened in order to determine which operational parameters

should be considered relevant and consistent in the develop-
ment of ANN and BANN model. Data gaps were identified
and missed data was interpolated using the selected data based

on statistical analysis. As shown in Table 2, a set of opera-
tional parameters were selected that each included 856
monthly data points.

Simulations of the neural network used similar model
inputs for product compositions. Single hidden layer feedfor-
ward neural networks from MATLAB 2007 (MathWorks
Inc., Natick, USA) are used for modeling the efficiency of

energy and composition of products. In order to train, test
and validate the ANN and BANN models in this study,
70% experimental datasets were used as training data (train

data), while 15 % each was for testing and validation data.
Fig. 3 The ANN architectures are used as
The ANN model was trained to establish a mapping function
relationship between a condition and the outcome, with a tar-
get error for the actual and expected output values. If the out-

put layer result is in advance greater than the target value of a
given error, ANN must retrace step by step the original route
of this signal and change the weighted value between the differ-

ent neurons. During the model training process, the hidden
layer constantly adjusts the weights between numerous neuron
nodes through a transfer function to reduce the error of the

model until reaching the set value. The network on the test
data that gives the lowest squared error sum (SSE) is perceived
to have the right number of hidden neurons. Network prepa-
ration, due to the various sizes of network’s input layers and

output layers, validation and test data is scaled to a range [-
1, 1]. Conversely, when applied to unknown data due to over-
fitting noise in the data, traditional neural networks may lack

generalization capability [36].
Levenberg-Marquardt was the choice training algorithm

compared to conjugate gradient and resilient back-

propagation. The choice of algorithm was done with a view
to produce better results and with faster training for the appli-
cation under consideration. With Levenberg-Marquardt algo-

rithm, the goal of faster training to reduce global error was
achieved with adjustments to weights and biases.

3.4. Bootstrap artificial neural network modeling (BANN)

To enhance the ANN and to decrease the value of error during
the simulation process, the simulation was conducted by using
BANN data learning model output. There is a possibility that

different neural network models will perform well in different
regions of the input space even when they are based on the
same data set. Therefore, combining neural networks could

enhance predictions on the whole input space. A bootstrap
aggregates neural network model consists of different neural
networks that are developed to model the same relationship.

From bootstrap resampling replications of the original train-
ing data, an individual neural network models are developed.
To improve model accuracy and robustness, several neural net-
a predictive model for energy efficiency.



Table 2 Plant operating parameters that are used in the development of ANN and BANN model.

Unit Parameter No. of data Mean Maximum Minimum SD Mode

Precalcining rotary kiln Kiln feed mass flowrate (kg/hr) 856 205,002 210,000 200,000 3739 206,700

Kiln gas flowrate (kg/hr) 856 2821 3500 2000 543 3500

Calciner gas flowrate (kg/hr) 856 5648 6500 4500 700 6500

Clinker cooling air (kg/hr) 856 247,263 255,000 240,000 5598 240,000

Primary air flowrate (kg/hr) 856 7296 8500 6000 934 8500

Energy efficiency (%) 856 61.3 67.0 55 2.3 *NA

* NA: Not Applicable
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works are combined instead of choosing one that is considered
to be the best. These models can be developed on different
parts of the data set. The bootstrap aggregated neural network

can also be used to calculate model prediction confidence
bounds from individual network predictions [Zhang J, 1999].
A diagram of a bootstrap aggregated neural network is shown

in Fig. 4. A bootstrap aggregated neural network can be rep-
resented mathematically in Eq. (9)

f Xð Þ ¼
Xn

i¼1

wifi Xð Þ ð9Þ

where f Xð Þ is the aggregated neural network predictor, fi Xð Þ is
the ith neural network, wi is the aggregating weight for com-
bining the ith predicted neural network, n is the number of

neural networks and X is a vector of neural network inputs.
The overall output of bootstrap aggregated network is a com-
bination of the weighted individual neural network output.

An assessment of the developed mathematical models: The
statistical indices used in evaluating the neural networks model
are defined in Eqs.(10) - (12):

R2 ¼ 1�
Xn

i¼1

yi � ydið Þ2
ydi � ymð Þ2 ð10Þ
Fig. 4 A bootstrap aggre
MSE ¼ 1

n

Xn

i¼1

yi � ydið Þ2 ð11Þ

SSE ¼
Xn

i¼1

yi � ydið Þ2 ð12Þ

AARE ¼ 1

n

Xn

i¼1

yi � ydi
ydi

� �
ð13Þ

R2; coefficient of determination; MSE; mean square error;
SSE: the sum of square error and absolute average relative
error (AARE). Where n is the number of points, yi is the pre-
dicted value obtained from the neural network model and

Aspen Plus simulator, ydi is the experimental value, and ym
is the average of the experimental values.

4. Results and discussion

4.1. Process simulator using Aspen plus

Selected operational data from consistent steady running con-
ditions of the cement plant were equated with simulation

results to validate the process simulator. This includes the
gated neural network.
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physical and chemical properties of each stream from the
developed thermodynamic data. The validation results were
summarized in Table 2. There is a slight deviation between

the operational data and simulation results, which falls in
the range of an acceptable limit of � 2%. Although this does
not in any way affect the result of the energetic efficiency of the

plant studied. The results of the process simulator validation
suggest that the process simulator is in good agreement and
could be useful in predicting plant performance with an oper-

ating parameter of different sets.
The process simulator was further conducted using refer-

ence plant data to identify an area of improvement of the
cement rotary kiln plant’s energy performance. The mass

and energy balance of the rotary kiln process is shown in
Table 3, which provides the data for both inlet and outlet
streams of the rotary kiln network. The energy efficiency for

the cement rotary kiln system as indicated in Table 3 is
61.3%. The percentage of energetic efficiency obtained in this
study was of the same trend with an estimated range of 60–70

% [4]. Based on the results presented on the Aspen Plus pro-
cess simulator (Table 3), it was discovered that the Preheater
/ Calciner unit is linked with a high energy loss or dissipation.

This mainly was due to decarbonation (calcination) taking
place during the production process. Calcination, which is a
chemical reaction is a significant source of thermodynamic
inefficiency.

4.2. Artificial neural network (ANN) models

ANN models were used to estimate energy efficiency. ANN’s

performance depends on the method used in training the data
Table 3 Material streams, operational and simulation data of proc

Materials Unit

Main stream

Kiln output kg/h

Raw meal kg/h

Percentage of fuel in calciners %

Percentage of fuel in kiln %

Preheater exit gas dust %

Raw meal/clinker factor %

Gas stream

Specific blowing density Nm3/kg clink

Kiln inlet oxygen gas %

Preheater exit oxygen gas %

Heat stream

Preheater exit gas temperature oC

Clinker outlet temperature from kiln oC

Secondary air temperature oC

Tertiary air temperature oC

Cooler exhaust air temperature oC

Clinker cooler exit temperature oC

Cooling efficiency %

Chemical composition of clinker

Tricalcium silicate (3CaO�SiO2) wt%

Dicalcium silicate (2CaO�SiO2) wt%

Tetra-calcium aluminoferrite (4CaOAl2O3Fe2O3) wt%

Tricalcium aluminate (3CaO�Al2O3) wt%
sets, network structure, and results obtained at minimal error.
Fig. 5 display the mean square error (MSE) for the training,
testing, and validation data sets of the individual networks

for energy efficiency. Table 5 expresses the model performance
indicators for ANN and process simulator energy efficiency.
The Sum of square Error (SSE) on the data sets training, test-

ing, and unseen data (validation) are given in Table 4. Model
performance indicators for ANN models achieved a mean
square error (MSE) of 3.77 � 10-5 and 4.628 � 10-5 for the

training and validation respectively. While the R2 gives 0.991
and 0.984 for both the training and validation respectively.
The sum of square error (SSE) is estimated as 0.0084 and
0.0091 for both the training and validation respectively. The

produced model was validated using a set data for another 5
operating days that were not used in the training of the origi-
nal model. The inference from this predictor shows that the

model has a tendency to be used easily at various operating
conditions to assess the energy efficiency of the rotary kiln pro-
cess considering the error achieved compared to the Aspen

Plus simulated value. Usually, the mass, enthalpies, and inter-
nal energy, of all the streams involved have to be generated by
Aspen Plus in evaluating the energy efficiency while ANN

brings an improvement since it does not involve the rigors of
measuring stream mass, enthalpies, and internal energy.
4.3. Aggregated neural network in bootstrap

The energy efficiency of each system was modeled, a bootstrap
aggregated neural network (BANN) that contains 30 neural
networks was created. Every single network has one layer con-
ess simulator validation.

Operational data Simulated

data

AARE

125,000 125,500 0.004

213,000 217,000 0.0184

59.72 63.07 0.056

40.28 36.93 0.083

8.3 7.3 0.12

1.58 1.62 0.025

er 2.2 2.1 0.045

2.8 2.08 0.26

3.9 4.2 0.077

364 398 0.093

1350 1380 0.022

1050 1080 0.029

902 854 0.053

275 302 0.098

110 105 0.045

95 95.7 0.007

61.1 62.2 0018

16.6 18.4 0.110

9.5 8.3 0.126

8.0 6.0 0.250



Fig. 5 Model errors of individual networks for energy efficiency of cement rotary kiln.

Table 4 Simulated data for energy analysis of a cement rotary kiln.

Equipment/ No of input stream Mass

(kg/kg Cl)

Energy

(kJ/kg)

Equipment/ No of output stream Mass (kg/kgCl) Energy(kJ/kg)

Feed (108) 1.68 1549.49 Cooler clinker exit (67) 1.0 1263.97

Calciner fuel (3) & Calciner primary air (1) 0.42 722.83 329

Kiln fuel (43) & Kiln primary air (45) 0.10 6743.17 Preheater exit (13) 2.3 148.9

Cooling fans (34, 58, 60, 63, 68) 2.10 82.3 Cooler exhaust (73) 0.99 115.1

Total 4.30 3029 Total 4.30 1857

Energy Efficiency 61.3%

Cl-clinker; No-Number; 1, 3,13,34,43,45,58,60,63,67,68 73, and 108 are denoted in Fig. 2. process flow sheet.
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cealed in it. The simulation algorithm Levenberg-Marquardt
had been used to train the networks. Training data vary for
each network. Several non-perfect models combined increase

the prediction accuracy of the entire input space. For the
rotary kiln process, the actual values obtained with the pre-
dicted from Bootstrap aggregated neural network (BANN)

model efficiency for the training, testing and validation is
shown in Fig. 6. Fig. 7 shows the MSE values for aggregated
Table 5 Model performance indicators for ANN and process simu

Model indicators Training

Set

Testing

Set

SSE 0.00840 0.00540

MSE 3.77 � 10-4 3.94 � 10-4

R2 0.991 0.990

SSE: Sum of square error; MSE: Mean square error; R2: Coefficient of d
neural networks with different numbers of steady network,
while the efficiency of individual networks on various data sets
may be seen as inconsistent. A network with low MSE on the

training data can have a wide MSE on validation information,
which is an indication of non-robust for a single neural net-
work [37]. The MSE for BANN models on training and testing

data sets for the rotary kiln system energy efficiency is
3.64 � 10-5 and 5.00 � 10-5 respectively, this is an improvement
lator (Aspen Plus) energy efficiency.

Validation

Set

Energy efficiency (%)

0.00910 Process simulator 61.3

4.63 � 10-4 ANN Model 61.5

0.984

etermination



Fig. 6 Actual and BANN model predicted energy efficiency for the cement rotary kiln.
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on the minimum MSE set in Table 4 for the single neural net-

works of ANN model. Fig. 8 shows the predicted and actual
values of the energy efficiency as well as the confidence
bounds. The prediction error lies between �0.024 and 0.025

as shown in Fig. 9. An advantage of BANN model is that it
can offer model prediction confidence bound. A narrower con-
Fig. 7 Model errors of aggregated networks
fidence bound indicates that the associated model prediction is

more reliable. Fig. 10. shows the plot between the predicted
and actual energy efficiency of the cement rotary kiln produc-
tion process. The accuracy of the model is shown to be

enhanced with the use of an aggregated neural network model
in bootstrap.
for energy efficiency of cement rotary kiln.



Fig. 8 The predicted and actual values of the energy efficiency as well as the confidence bounds.

Fig. 9 Predictions and confidence bound of energy efficiency for cement rotary kiln BANN model.
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4.4. Parametric study of precalcining rotary kiln

Maintaining a good energy efficiency is dependent on some of
the operation parameters for the precalcining cement rotary
kiln. Consequently, operation parameters such as kiln feed
mass flowrate, kiln gas flowrate, calciner gas flowrate, clinker
cooling air, and primary air flowrate were considered. Further,

increasing and decreasing the kiln feed mass flow rate respec-
tively would cause a change in energy efficiency of the cement
rotary kiln system. A rise of 5 % above the optimal value in



Fig. 10 Predicted and actual energy efficiency for cement rotary kiln BANN model.
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the kiln feed mass flow rate with constant maximum calciner
gas mass flow rate, would produce a rise in 1.2 % energy per-

formance. Consequently, an increase of the primary airflow
rate, leads to excess combustion air, which in turn cools down
the temperature meant for calcination and clinker reaction
processes. This corresponds to a 1.5 % reduction of energy

performance. With a constant primary air flow rate in the cal-
ciner, a 5 % rise above the optimal value of calciner gas flow
will increase the calciner temperature, which is equivalent to

a 1.4 % rise in energy performance. However, a continuous
rise in the gas causes the calciner’s temperature to cool down
due to incomplete combustion in the calciner. To compensate

for the loss of primary air for calcination, an increase in pri-
mary air will be required in the calciner vessel to aid in com-
plete combustion. Consequently, this would lead to

operation instability and a loss of kiln operation resulting in
poor clinker quality (off-spec). An attempt at operating the
precalcining rotary kiln above the optimal parameters will be
with a cost in terms of instability, and ultimately affect the

quality of the product.

5. Conclusion

This paper uses BANN to improve non-linear models’ robust-
ness of individual artificial neural network. Consequently, the
optimal operation parameters established for the precalcining

rotary kiln using ANN were raw feed material of 205050 kg/
hr, kiln fuel gas of 2821 kg/hr, calciner fuel gas of 5648 kg/
hr, clinker cooling air of 247463 kg/hr and primary air of

7309 kg/hr at optimum predicted energy efficiency of 61.5
%. The operation parameters were validated experimentally
using the Aspen process simulator and confirm through the
plant process audit. Several sets of neural network training
data can be created via bootstrap sampling when neural net-
work models are being built. Using this technique, robustness

of neural network models can be significantly improved. A fur-
ther benefit of developing multiple neural networks based on
bootstrap re-sampled data sets is that confidence bounds for
neural network model predictions can be calculated. The ener-

getic efficiency predicted by the use of BANN model with an
estimated MSE of 3.64 � 10-5, 3.70 � 10-5, and 5.00 � 10-5

for training, testing, and validation data sets, respectively.

The studies on energy efficiency become a useful resource for
investors, process design engineers, and plant operators in
the assessment of the operating conditions on the rotary kiln

of a cement plant.
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