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The energy recovery of the grate cooler is a significant part of reducing production costs and tackling the
environmental challenges of the cement industry. ASPEN Plus and neural networks predictive model
were used to model, simulate and predict the grate clinker cooler in this paper. First, the process flow
model and thermodynamic efficiency assessment were carried out. A predictive model of neural net-
works was then initiated to evaluate the optimal thermodynamic efficiency using plant operating data,
which includes clinker cooling airflow, clinker mass flow, ambient and clinker temperature. The energy
efficiency was 86.04, 86.1, and 86.5% respectively using the Aspen Plus process model, artificial neural
network (ANN), and Adaptive neural inference systems (ANFIS). Therefore, based on the energy efficiency
achieved, bootstrap aggregated neural network (BANN) was used to search for optimal operating param-
eters with the lowest mean square error (MSE) of the model in view. The MSE for the BANN training, test-
ing, and validation data sets were 2.0 � 10�4, 1.5 � 10�4, and 1.0 � 10�4. The final optimal clinker cooling
air, clinker mass flow, ambient air, and kiln clinker discharge temperature are chosen from the ANFIS
optimal solutions and validated on-site. When compared to actual operating data, the total clinker cool-
ing air decreases by 5%, the energetic efficiency increases by 0.5%, and the ex-clinker cooler discharge
temperature decreases to 120 �C, resulting in a significant reduction in energy consumption.

� 2022 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Ain Shams Uni-
versity. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/

by-nc-nd/4.0/).
For the different equations used to achieve the objectives of this
study, several notations are used to present mathematical expres-
sions. In this study, some of the major notations used are listed as
follows:
1. Introduction

Cement production is one of the highly energy-intensive sectors
and uses about 5 % of global industrial energy with an estimated
30–40 % share of production costs [1,2]. A standard cement plant
with a daily output of around 3000 tons of clinker requires around
2500–4000 kJ/kg of clinker of energy [3]. As a result, different
energy efficiency strategies have been used for this sector, with
marginal reductions in energy use and cost effects [1,4,5]. Clinker
cooler plays a key role in cement production, such as clinker cool-
ing and energy recovery. The units for the cement production con-
sist of a calciner, a rotary kiln, and a grate clinker cooler [1]. Clinker
cooling systems are of various types, subject to technology, and are
grates (most recent technology), planetary coolers (attachment to
the wet or dry long rotary kiln), shafts, and rotary coolers. The
grate cooler has been shown to recover more heat than other forms
of cooling systems and therefore saves energy.

These circumstances offer a prospect of minimizing energy con-
sumption through optimization of operating parameters in a grate
clinker cooler operations. Numerous energetic and exergetic stud-
ies have already been conducted on the individual subsystem, such

http://crossmark.crossref.org/dialog/?doi=10.1016/j.asej.2022.101704&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.asej.2022.101704
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:okoji.anthony@lmu.edu.ng
https://doi.org/10.1016/j.asej.2022.101704
http://www.sciencedirect.com/science/journal/20904479
http://www.sciencedirect.com


Nomenclature

in Inlet stream
out stream
D Change in
o Ambient
HE

m Excess solid enthalpy
R Universal gas constant
_m Mass flowrate
G Gibbs free energy
PV Energy per unit mass (Flow energy)
ci mole fraction of species i
Hi Pure component solid enthalpy
g Energy efficiency
ANN Artificial neural network
ANFIS Adaptive neural inference systems
CFD Computational fluid dynamics

y Predicted model performance
x Vector of neural network inputs
y
�
B BANN model’s vector prediction

MSE Mean square error
AARE Absolute average relative error
GCC Grate clinker cooler
BANN Bootstrap artificial neural network
f(x) Predictor of the aggregated neural network
SSE Sum of squared error
MF Gaussian membership functions
n Number of neural networks
wi Aggregating weight
RMSE Root mean square error
R2 Coefficient of determination
R correlation
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as the raw mill, the rotary kiln, the rotary burner and the entire
cement production process system [6–8].

Efficient cost measures Potential and thirty energy efficiency
technology measures in the US cement industry were identified
by Worrell, Martin and Price [9]. The estimated amount of invest-
ment costs for energy-saving measures has been investigated by
the US EPA sector [10]. In addition, despite several studies by the
clinker cooler system to calculate thermal efficiency, there have
been a limited comprehensive analysis effects on thermodynamic
efficiency with process simulator software and neural networks
using plant operating parameters.

Various studies have been carried out over the past twenty
years to improve the efficiency of the grate clinker cooler; how-
ever, analyses in Europe [11], China [12–15], Ethiopia [16], Mor-
occo [17], and Columbia [18] have shown that significant energy-
saving and emissions reduction opportunities still exist. The grate
clinker cooler system was investigated in both numerical and
experimental studies. Ahamed, Madlool, Saidur, Shahinuddin,
Kamyar and Masjuki [19] developed a mathematical model for
the energy, and energy recovery efficiency of the clinker cooling
system using experimental operating parameters. Using the theory
of convection of heat transfer, Touil, Belabed, Frances and Belaadi
[20] developed a heat transfer clinker model that was compared
to experimental data.

In order to establish and validate a heat transfer cooler model
using published experimental data, Ahmad, Khan and Agarwal
[21] used the initial thermodynamic and gas–solid convective heat
transfer theory. Rasul, Widianto and Mohanty [2] introduced a
simple model for thermal power assessment and obtained data
from the cement cooler grate plant. Rasul, Widianto and Mohanty
[22], Atmaca and Yumrutas� [23], Atmaca and Yumrutas� [24] and
Mujumdar, Ganesh, Kulkarni and Ranade [25] established inte-
grated real plant models, Shao, Cui and Ma [26] investigated the
application of experimental approach and numerical simulation
on grate clinker cooler system; however, operating parameters of
the grate clinker cooler have not been discussed extensively, which
are important for the performance and thermal utilization assess-
ment, which guide thermal recovery and energy conservation..
However, the utilization of plant operational data combined with
soft computing technologies to predict the energy efficiency of a
grate clinker cooler system is limited in detail and resources.

Soft computing techniques consist of various computational
models, algorithms and artificial intelligence methods used in
science and engineering optimizations. Soft computing techniques
involve but are not limited to fuzzy logic, an artificial neural net-
2

work (ANN), adaptive neuronal inference systems (ANFIS), systems
experts, algorithms for progressive development, other naturally
optimizing algorithms.

Mechanistic models were used for energy efficiency studies.
However, the development of such a model for complex processes
can be complicated and time consuming, particularly with a view
to incorporating energy efficiency into the second thermodynamics
legislation. Data-based models such as Aspen Plus, the artificial
neural network (ANN) and the BANN models could help to solve
these problems [27,28].

Most recently, ANN and ANFIS have been used extensively for
several processes as a predictive models but more still need to be
done in cement production processes. Considering the following
references for more in-depth discussion of other solutions, Priya-
darshi, Padmanaban, Holm-Nielsen, Blaabjerg and Bhaskar [29]
examined the effectiveness of ANFIS-based hybrid multipoint
power metering via particle swarm optimization (MPPT) to achieve
rapid and maximal PV power with zero oscillations. The proposed
hybrid ANFIS–PSO training technique was able to track PV power
more effectively, has the lowest RMSE execution period, and is free
from constraints for determining antecedent parameters under
uniform, non-uniform, and partial shading conditions compared
to other training techniques. On the dSPACE platform, Priyadarshi,
Padmanaban, Mihet-Popa, Blaabjerg and Azam [30] showed BLDC-
driven PV pumping with ANFIS-FPA MPPT using Luo converters
under varying conditions. The results of the performed experi-
ments suggested that the ANFIS-FPA had superior power tracking
capability, rapid convergence velocity and accurate system
response compared to other bio-inspired, swarm-intelligent and
classical MPPT techniques. In addition, the study by Priyadarshi,
Azam, Sharma and Vardia [31] showed that the use of an adaptive
neuro-fuzzy inference system based algorithm for photovoltaic
(PV) applications allows rapid convergence velocity with low
implementation costs. Using a back propagation supervised learn-
ing algorithm, Priyadarshi, Ramachandaramurthy, kumar Padman-
aban, Azam, Sharma and Kesari [32] applied artificial neural
networks (ANNs) to an energy conversion system with water
pumping. Induction motor coupled centrifugal pumping applica-
tions requiring sensor less ANN were found to provide accurate
influenced with acceptable estimation.

Priyadarshi, Ramachandaramurthy, Padmanaban, Azam,
Sharma and Kesari [33] conducted an experimental analysis of a
200 W standalone PV system controlled by an ANFIS system. Based
on an assessment of the analyzed system, it was found to be effi-
cient and to possess excellent steady-state and dynamic perfor-
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mance, which confirms the validity of the proposed system. Fur-
thermore, ANFIS (Adaptive Neuro-Fuzzy Inference System) was
used by Priyadarshi, Padmanaban, Holm-Nielsen, Ramachandara-
murthy and Bhaskar [34] to achieve peak solar power output.
ANFIS produces robust, rapid, and precise results under various
operating circumstances, while classical methods suffer from oscil-
latory behavior and a long settling period to maximize PV power.

Artificial Neural network (ANN) and adaptive neuro-fuzzy infer-
ence systems (ANFIS) have proven capable of approximating con-
tinuous non-linear functions. Both ANN and ANFIS helps in
solving complex nonlinear problems and for applications in
automation control, pattern recognition, signal processing predic-
tion, modeling, optimization [35]. Osuolale and Zhang [27], have
reported that bootstrap aggregated neural network (BANN) is a
good search engine for determining optimal plant operational
parameters in achieving the lowest mean square error (MSE) of
the energy efficiency in a process plant. This present work was
aimed at evaluating the energy performance of cement grate clin-
ker cooler using the steady operating data using Aspen Plus process
model and neural networks as a predictive model with optimiza-
tion intents. This will help to eliminate the mechanistic approach
to energy assessment of cement plant. In addition, manual calcula-
tion or estimates are bound to be error prone. Several experimental
data were used to validate and improved the clinker grate cooling
model presented in this study. The proposed approach provides
both the ability to generate training data, which helps train a net-
work, and to make early predictions. The early stopping of ANN
and ANFIS means that the results are constantly monitored during
training. As a result, their predictions on testing data are stopped
when the predictions do not further decline. Predicted target val-
ues close to experimental values enhance a model’s prediction
accuracy.
2. The grate clinker cooler operations

Fig. 1 shows the experimental data acquisition position with a
simple two-dimensional cooler for a 3000 t/d cement plant. The
operating functions of the grate clinker cooler include: on the
inclined fixed grid plate, the clinker in the rotary kiln is dropped
and the moving grate plate moved the clinker forward with the
aid of the moving bar. The cooling air passes through the clinker
layer to cool it and this is supplied in stages to five air chambers
Fig. 1. Schematic diagram of rota
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numbered one to five, along the direction of clinker motion to
improve the cooling effect and reduce the energy power consump-
tion. The exhaust air is recovered after exchange of heat with the
clinker in order for efficiencies to be improved. The heat recovered
is supplied to the rotary kiln as secondary air, while the tertiary air
duct moves directly to the lower part of the calciner to support the
heat required for the process.
3. Methodology and theoretical analysis

ASPEN Plus V10.0 was the process simulator used in the study.
It is capable of assessing mass and heat, quantifying material and
energy balance, and determining phase and chemical balances,
among other things. Solid mixture of enthalpy is expressed as:
Hm ¼
XK
i¼1

niHi þ HE
m ð1Þ

Excess solid enthalpy, HE
m , Hi, Pure component solid enthalpy at

T is related to the activity coefficient through the expression:
HE
m ¼ �RT2

XK
i¼1

ni
@Inci
@T

ð2Þ

To find this solution, ASPEN Plus uses a non-stoichiometric
approach. When assuming mass balance, the term Eq. (3), the
Gibbs energy, known as objective function, is written as:
G ¼
XK
i¼1

niDG
0
i þ RT

XK
i¼1

niInci þ RT
XK
I¼1

niInP ð3Þ
where G is the Gibbs free energy, ni is number of moles of species i,
K is the total number of chemical species in the reaction mixture,
and ci is the chemical potential of species i. The objective is to find
the set of ni values that minimizes the value of G. where T is the
temperature, P is the pressure, DG0

i is the standard Gibbs free
energy of the formation of species i and ci is mole fraction of species
i. The software uses this as a framework for computing to determine
thermodynamically feasible results.
ry kiln and Grate cooler [36].
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3.1. First law of thermodynamics performance of clinker cooler

The energy balance of the system, for which the sum of energy
input of the system should be equal to the sum of the energy out-
put of the processX

_Ein �
X

_Eout ð4Þ
Regarding Fig. 2, the total sum of the input energy is defined as:X
_Ein ¼ _Ehotclinkerfeedin þ _Ecoolingair ð5Þ
A total sum of the output energy is defined as:X
_Eout ¼ _Eclinkerfeedout þ _ETertiaryair þ _ESecondaryair þ _Ecoolerexhaust ð6Þ
The following calculations are used to estimate the performance

of the cooler and the amount of energy that can be extracted from
the cooler. Energy efficiency is the ratio of system energy output to
input, which can be expressed as [16,21]:

g1 ¼
P _EoutP _Ein

ð7Þ

Secondary and tertiary air recovery energetic efficiency can be
expressed as [2]:

grecovery;cooler ¼
_ETertiaryair þ _ESecondaryair

_Ehotclinkerfeedin

ð9Þ

The cooling efficiency of a cooler can be expressed as:

gcoolingefficiency ¼
_EHotclinkerin � _EHotclinkerout

_EHotclinkerfeedin

ð10Þ

3.2. Process model

The process model using Aspen Plus simulator is described in
detail below and represented using a process flow sheet in Fig. 2.
Fig. 2. Cement grate clinker cooler flow sheet repr
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3.2.1. Grate clinker cooler process
The grate clinker cooler was simulated as a set of five heat

exchangers. The first two heat exchangers represent secondary
and tertiary air to 950 �C and 805 �C, respectively, while the last
three heat-exchanger cool the clinker to 125 �C and the heat recu-
perated is used for the drying of raw meal in vertical roller mill.
Before each heat exchanger, a part of the solid split out from the
mainstream as recuperated hot gas rotary kiln operation while
the noodle-like clinker; a combination of this four-component
(2CaO � SiO2, 3CaO � Al2O3, CaO � Al2O3 � Fe and 3CaO � SiO2) as fin-
ished products.

3.3. Modeling of the grate clinker cooler process

Table 1 shows the design parameters used for the Aspen Plus
process modeling, while the plant’s operating data was used to
simulate the energy efficiency of the cooler clinker grate. Based
on the thirty (30) days steady state plant operating data simulated
in Aspen Plus, a steady state energy analysis of the streams was
performed using Eqs. (1), (2) and (2). (3). The energy efficiency of
the cement grate clinker cooler was evaluated with Eq.4. The tem-
perature, pressure, enthalpy and internal energy of each stream
was generated in Aspen Plus. In both the basic working conditions
and the references, the energy was evaluated from each stream via
the Aspen Plus process simulator. Maximum energy was measured
for the network input and output by Eq. (2) and (3) and the energy
efficiency estimate by Eq. (4).

3.4. Artificial neural network modeling

The artificial neural network (ANN) was used to model and pre-
dict the energy efficiency of the grate clinker cooler of the cement
plant. The information was shown through the neurons of the
input layer and the results. As input data for Aspen plus, thirty
esented with Aspen Plus process model [36].



Table 1
Statistical models for evaluation.

Equations Number

R2 ¼ 1�
Pn

i¼1
Yi;pre�Yi;expð Þ2Pn

i¼1
Yi;exp�Ymð Þ2

(11)

AdjustedR2 ¼ 1� d 1� R2
� �

x n�1
n�k�1e (12)

MSE ¼
Pn

i¼1
ðYexp�YpreÞ2

n
(13)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1
ðYexp�YpreÞ2

n

r
(14)

SSE ¼ Pn
i¼1ðYexp � YpreÞ2 (15)

AARE ¼ 1
n

Pn
i¼1

Ypre�Yexp

Yexp

h i
(16)
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(30) days of steady-state cement plant operating data were used to
assess energy efficiency for each data operation. For this work, six
hundred and twenty-six (626) plant operating data samples were
selected, four hundred and thirty-eight (438) plant data were
selected as predictive training models, while ninety-four (94) plant
data were collected as a validation data. The training process will
then be used to find the best model for prediction. Finally, the
accuracy of the predicted model was tested using the remaining
ninety-four (94) data from six hundred and twenty-six (626) plant
operational data. The neural network model for energy efficiency
output is defined using the Eq. (7) expression.

y ¼ x1; x2; x3; x4; � � � ::; xnð Þ ð7Þ
where y is energy efficiency, x1; x2; x3; andx4 are clinker mass flow,
clinker temperature, clinker cooling airflow, and ambient tempera-
ture respectively. ANN simulation parameters used in the learning
and training are the backpropagation algorithm, four input layers,
two hidden layers with nine and six nodes, and one output layer
(4–9–6–1), as shown in Fig. 3 [37].

3.5. Adaptive neuro-fuzzy inference system (ANFIS) model

Using ANFIS, a multi-input single-output (MISO) fuzzy model
was developed using four input variables and one output variable
to predict the energy efficiency of the cement grate clinker cooler
process. The architecture of the proposed model for ANFIS is
described in Fig. 4 [40].
Fig. 3. The ANN architectures used as a p
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The hybrid learning algorithm combines the least squares with
the gradient descent approximation to find a reasonable range of
contexts and consequent parameters.

The development of the ANFIS model in MATLAB follows the
below steps:

Step 1. Import the training group and test group data using
import instruction syntax as follows:

Traindata = xlsread(‘‘traindata.xlsx”)
Testdata = xlsread(‘‘testdata.xlsx”)

Step 2. Create the ANFIS prediction model. This study explores
32 different types of ANFIS prediction models: four membership
functions with eight types of membership functions. For the pur-
pose of this study, several membership functions made available
by MATLAB were applied including triangles, trapezoids, bells,
gausses, bilateral Gausses, double S-shaped, and so on.

Step 3. Model is trained using a hybrid train FIS method with a
tolerance of zero errors and an epoch of 5000.

Step 4. As soon as the training model is complete, the prediction
value is exported using the following syntax:

Out_value = evalfis (testdata, fis1)

In this analysis, the ANFIS modeling was performed in MATLAB
R2013a to train and test data. For this work, six hundred and
twenty-six (626) plant operating data samples were selected, 532
plant operational data were used as training group data (train data)
for a fuzzy inference method based on neurons. The best predictive
model was defined by model training. In order to calculate the
average absolute error percentage, the remaining 94 data were
used as test data in the best predict model. The estimated energy
efficiency of the grate clinker cooler using the model was com-
pared to the actual energy efficiency from the grate clinker cooler
while the plant was in steady operation.

The validation of the model identified with the actual energy
efficiency of the grate clinker cooler system while the plant was
in steady operation was then carried out. Lately, for its predictive
purposes, ANFIS has adapted the hybrid learning process, which
is a rapid learning method. Many scientists have established the
hybrid algorithm as an effective algorithm [38].
redictive model for energy efficiency.



Fig. 4. ANFIS model architecture with four input variables.
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The ANFIS model developed in MATLAB R2013a follows the
phases below (see Fig. 5):
3.6. Performance criteria

In this analysis, statistical goodness-of-fit parameters were pro-
vided to compare the results between the two separate predictor
namely, ANN and ANFIS models. The best predictor is the coeffi-
cient of determination R2 with Adjusted R2 to verify the correlation
efficiency of the model. Besides, some statistical models have been
used to measure the size of the error between the experimental
values and expected values. These include mean square error
(MSE), root mean square error (RMSE), sum square error (SSE),
Fig. 5. ANFIS model architecture with four inpu
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and absolute average relative error (AARE) as shown in equation
[38,39].
4. Results and discussion

4.1. Process model using Aspen plus

Monthly average operating data from consistent steady-state
running conditions of the cement plant were compared with sim-
ulation results to validate the process model. This includes the
physical and chemical properties of each stream from the thermo-
dynamic data that has been developed. The results of the valida-
tion were summarized in Table 2. There is a slight discrepancy
between the operating data and the simulation results, which falls
t variables and optimum energy efficiency.



Table 2
Material streams, operational and simulation data of model validation.

Materials Unit Operational data Simulated data

Main stream
Clinker output kg/h 125,000 125,500
Clinker cooling air flow kg/h 255,000 252,500
Gas stream
Clinker outlet temperature �C 125 127
Secondary air temperature �C 905 880
Tertiary air temperature �C 810 805
Exhaust air temperature �C 283 289
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within an acceptable limit of ±2%. Although the energy efficiency of
the plant studied does not in any way affect the expressed results.
The results of the model validation showed that the process model
is consistent and can be helpful in predicting plant performance
with a different set of operating parameters.

The process model was further carried out by reference plant
data, which identified an area for improving the energy efficiency
of the cement grate clinker cooler. Table 3 shows the mass and
energy balance of the process of cement grate clinker cooler which
provides information on the input and outlet streams of the grate
clinker cooler process. The energy efficiency for the cement grate
clinker cooler system as indicated in Table 3 is 86.04%. The per-
centage of energy efficiency achieved in this study was the same
trend with an estimated 70.8 to 87.5 % [19]. Based on the results
shown in the Aspen Plus process simulator (Table 3), the exhaust
energy can be used either to dry the raw material for grinding pro-
cess or to generate energy in turbine operation. This could help to
minimize a significant source of thermodynamic inefficiency.
4.2. Artificial neural network (ANN) models

The estimation of energy efficiency was based on ANN models.
ANN performance depends on the method used to train data sets,
network structure and minimal error results. The mean square
error (MSE) of the individual power efficiency network sets for
training, testing and validation is shown in Fig. 6. It is a useful
resource for process engineers and operators to evaluate the effects
of the cement grate cooler process on energy performance. Table 4
expresses the model performance indicators for ANN and process
model energy efficiency. The Sum of square Error (SSE) on the data
sets training, testing, and unseen data (validation) are given in
Table 4. Model performance indicators for ANN models achieved
a mean square error (MSE) of 0.4 � 10�3 and 0.2 � 10�3 for the
training and validation respectively. While the R2 gives 0.9999
and 0.9899 for both the training and validation respectively. The
sum of square error (SSE) is estimated as 0.00126 and 0.00128
for both the training and validation respectively. Aspen Plus gener-
ates mass, enthalpy and internal energy from all streams of energy
efficiency assessment, while ANN uses data training and tests to
Table 3
Simulated data for energy analysis of a cement grate clinker cooler.

Equipment/ N� of input stream Mass (kg/kg Cl) Energy (kJ/kg)

Clinker feed (1) 1.000 1404.8

Cooling fans (2, 3, 4, 5, 6) 2.018 86.2
Total 3.018 1491.0

Energy Efficiency

Cl-clinker; N�-Number; 1, 2, 3, 4, 5, 6, 13, 15, 20, and 23 are denoted in Fig. 2. Process fl
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predict energy efficiency without first undertaking string mass,
enthalpy and internal energy measurement rigor.

4.3. Aggregated neural network in bootstrap

The energy efficiency of each system was modeled, and a boot-
strap aggregated neural network (BANN) containing 30 neural net-
works was created. Every single network has one layer hidden in it.
The simulation algorithm Levenberg-Marquardt was used to train
the networks. Training data varies for each network. Several non-
perfect models combined increase the accuracy of predictions for
the entire input space. The actual values obtained from Aspen Plus
simulation and Bootstrap aggregated neural network (BANN)
model efficiency for training, testing and validation for the cement
grate cooler process are shown in Fig. 7. Fig. 8 shows MSE values
for aggregated neural networks with different numbers of steady
networks. The effectiveness of individual networks on different
data sets can be seen to be inconsistent. A low MSE network on
training data can have a wide MSE on validation information. It
indicates that a single neural network is not robust [20]. The
MSE for BANN models on training and testing data sets for the
cement grate clinker cooler system energy efficiency is
2.0 � 10�4 and 1.5 � 10�4 respectively, this is an improvement
compared to the minimum MSE set out in Table 4 for the single
ANN neural network model. Fig. 9. The energy efficiency predicted
for the cement grate cooler model BANN is shown. The value of this
cannot be overemphasized within a processing plant, especially in
the decision-making area for the most energy efficient operating
conditions in the system [27]. This can serve as a reference for
engineers and process operators.

4.4. Adaptive neuro-fuzzy inference system (ANFIS) model

The plots of four inputs (raw material feed, primary airflow, hot
gas generator gas flow, moisture mass flow, and kiln hot gas flow)
using Gaussian membership functions (MF) are displayed in Fig. 4.
Table 4 expresses the model performance indicators for ANFIS and
process model energy efficiency. The Sum of square Error (SSE) on
the data sets training, testing, and unseen data (validation) are
given in Table 4. Model performance indicators for ANFIS models
achieved a mean square error (MSE) of 2.6 � 10�2 and
7.4 � 10�2 for the training and validation respectively. While the
R2 gives 0.9996 and 0.9887 for both the training and validation
respectively. The sum of square error (SSE) is estimated as
0.0649 and 0.1795 for both the training and validation respec-
tively. The calculated R and R2 of the ANFIS model were 0.9941
and 0.9884 respectively. The value of R, which is near unity, indi-
cates a strong good agreement between the operational data and
predicted values. This is also an indication that a relationship exist
between the operational data input and the actual output. Besides,
the value of R2 shows 98.84 % of the variation in the plant opera-
tional data and the predicted values can be explained by the model.
Equipment/ N� of output stream Mass (kg/kgCl) Energy (kJ/kg)

Cooler clinker exit (20) 1.000 40.5
Secondary air (23) 0.235 598.9
Tertiary air (13) 0.895 533.5
Cooler exhaust (15) 0.888 110.0
Total 3.018 1282.9

86.04%

ow sheet.
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Fig. 6. Model errors of individual networks for energy efficiency of cement grate clinker cooler.

Table 4
ANN and ANFIS model performance assessment.

Model indicators ANN ANFIS

Training set Testing set Validation set Training set Testing set Validation set Energy efficiency (%)

R 0.9999 0.9998 0.9949 0.9998 0.9994 0.9887 Process model 86.0

R2 0.9999 0.9998 0.9899 0.9996 0.9989 0.9775 ANN 86.1
MSE 2.0 � 10�4 1.5 � 10�4 1.0 � 10�4 0.0265 0.0262 0.0748 Optimal 86.5
RSME 0.02 0.0141 0.0122 0.1627 0.1650 0.2735
SSE 0.00126 0.00126 0.00128 0.0649 0.0295 0.1795
AARE 0.05 � 10�5 0.11 � 10�5 0.02 � 10�5 1.5 � 10�5 2.5 � 10�5 3.1 � 10�5
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4.5. Evaluation of the predictive potential of the models developed

By determining their R, R2, adjusted R2 mean square error
(MSE), root mean square error (RMSE), sum square error (SSE),
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and average absolute relative error (AARE), The effectiveness of
the ANN and ANFIS models developed to predict the energy effi-
ciency of the cement grate clinker cooler system has been evalu-
ated. Table 4 presents the results obtained. The value of R should
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fficiency for the cement grate clinker cooler.
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be close to unity (1) for a strong correlation between experimental
and expected values. The two predictive models, shows high R2

almost 1, indicating strong compatibility. Moreover, for the mod-
els, the RMSE, which is the MSE square root, was also determined.
All of the values obtained were low for both MSE and RMSE, con-
firming the models’ good fit. AARE (also known as the average
absolute relative error) calculates a model’s precision and accu-
racy. The lower the values, the higher the model’s performance.
These were determined for the tested models and their values
are shown in Table 4. The model of ANN was more closely followed
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by ANFIS, based on statistical index results. This current work
shows that the findings from the predictions are reliable and accu-
rate. This work showed that the results were similar in terms of
prediction accuracy but ANN was better than ANFIS, even though
the results obtained by ANN and ANFIS were very similar.

After comparing the models, the final choice is determined by
the least calculated error andmaximum energy efficiency. The final
choice is determined by the maximum energetic efficiency, which
is a function of cooler heat recovery and clinker ex-cooler dis-
charge temperature. Although the models perform well in practice,
20 25 30

20 25 30 35

20 25 30 35
f networks

ergy efficiency of cement grate clinker cooler.

r cement grate clinker cooler BANN model.
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predictive models by the ANN may not be used to produce optimal
solutions of which ANFIS has the advantage in this regards. It is
worth noting that in the case study, the energy efficiency of the
clinker grate cooler process of the optimal design point achieved
was increased by 0.5 % of energy savings

5. Conclusion

This study shows that ANN and ANFIS can accurately model
energetic efficiency of grate clinker cooler process in cement man-
ufacturing plant from process operational data. ASPEN plus, ANN,
and ANFIS, the proposed process and prediction model, were able
to achieve the experimental results faster and more accurately
than thermodynamics methods which are typically done by hand
or semi-automatically. The excellent relationship between opera-
tion parameters and the energetic efficiency using ANN and ANFIS
suggests the non-linearity of the process [31]. In addition, ANFIS
model predicted optimal energy efficiency of 86.5% with optimal
condition of 122500 kg/h of clinker mass flow, clinker temperature
of 1350 �C, clinker cooling air flow of 242500 kg/h and ambient
temperature of 25 �C. The condition was validated in triplicates
and 86.4% was obtained with optimized results indicating 0.5%
gain in energy efficiency of the grate clinker cooler. The improve-
ment is based on changing the operating conditions of the system
and has no additional capital costs. A reliable strategy based on
BANN for improved generalisation of the predicted model is also
presented, which enhances model prediction accuracy. However,
the predictive error of the ANN model was enhanced by BANN,
and this was observed to be lower compared to ANFIS model in
terms of error measures, such as RMSE, MSE and AARE [40]. Based
on this, it suggests that there is a good correlation between grate
clinker cooler operation parameters and energetic efficiency of
the systems. The energetic analysis is a much effective way of eval-
uating the performance of processes and hence the importance of
this study to process and design engineers. Furthermore, ANN,
ANFIS and BANN predictive based modeling and optimization can
aid the decision making of energy efficient operations and control
of grate clinker cooler of cement manufacturing process. The opti-
mal energy efficiency can still be validated using different opti-
mization techniques such as genetic algorithm (GA), particle
swarm optimization (PSO) and sequential optimization program-
ming which will be the focus of subsequent study.
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