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Abstract
Globally, cement plants are striving to improve their energy e�ciency. Therefore, it is critical for cement plant
operations to increase the monitoring and control of a vertical raw mill energy process. This technology has
attracted the interest of the cement industry with its proven bene�ts in cement grinding applications. A process
simulator was used to study an industrial-scale vertical raw mill (VRM) with 65.4% energy e�ciency. The paper
proposes further a new model based on grid partitioning, sub-clustering, and fuzzy c-means, which incorporates
genetic algorithms (GAs) and particle swarm optimizations (PSOs). VRM data from a steady plant process
operation, such as raw material output, material moisture, kiln hot gas, mill fan �ow, grinding pressure, and
separator speed, was used as input to the prediction model. ANFIS-based prediction models are compared with
process simulator predictions to determine the most accurate based on prediction performance criteria. Based
on the results, the ANFIS model with sub-clustering assimilated with PSO is the most accurate prediction model
for VRM energy e�ciency. The coe�cient of regression (R2) and root mean square error (RMSE) obtained by this
model are 0.945 and 1.3006. The results also showed that VRM's energy e�ciency decreased from 65.4 to 64.2%
when the separator speed increased from 50 to 75 rpm; product particle size on P90µm decreased from 18.2–
10.8%. Finally, the proposed ANFIS based model can be considered to be an e�cient technique for predicting the
energy e�ciency of VRM production processes.

1.0. Introduction
Cement production globally is estimated at 4.2 billion tons in 2019, and cement grinding consuming
approximately 2.0 percent of the total available electrical energy (Ghalandari, Majd, &Golestanian, 2019; A. I.
Okoji, Anozie, Omoleye, Taiwo, &Osuolale, 2022b). Consequently, cement plants consume an average of 100 kWh
per ton of cement produced, with two-thirds of these kWh utilized by raw material and cement mills (Tsakalakis &
Stamboltzis, 2008). Vertical raw mill processes have become a high priority for all stakeholders in the cement
industry because of the critical role raw mills play in cement production and the quest to make them more energy
e�cient. Thus, cement sustainability depends on increasing the energy e�ciency through driving down on power
consumption of the industry (Cai, Liu, Lai, Li, Cunha, &Hu, 2019; A. I. Okoji, Babatunde, Anozie, &Omoleye, 2018) .

In a study performed by Worrell, Martin, & Price (2000), in the US cement manufacturing sector between 1970
and 1997, it was concluded that the use of blended cement would help in the drive for improved energy e�ciency
and carbon dioxide emission reduction (Kong, Price, Hasanbeigi, Liu, &Li, 2013). Zhang, Zhao, Lu, Ni, & Li (2017)
investigated cement plant waste energy recovery, studied trass mill waste energy recovery leading to a 10
percent increased energy e�ciency and a 56 percent decrease in exergy loss. Consequently, the need for more
energy-e�cient cement industries should consistently be the main focus worldwide. The grinding process and
product quality are greatly affected by particle size, making it a very energy-intensive process in cement
production (Altun, Benzer, Aydogan, &Gerold, 2017). Various techniques were employed by researchers to
optimize the grinding systems for most e�cient production process. A vertical roller mill (VRM) is usually
controlled and optimized in order of importance related to product quality, process throughput, and utility
reductions. A trade-off usually has to be made between these three variables. Optimizing VRM operations is vital
to achieving both product quality and energy e�ciency. It is a major tool for the process industry to make a
decision based on quantitative information. Rather than huge expansion, most industries will focus on
maximizing resources for maximum pro�tability. Consequently, a study of the impact of operational parameters
on ball mill energy e�ciency revealed a low particle collision energy will be a re�ection of coarse particle size
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observed at the mill outlet �ne products (Fernandes, Halim, &Wahab, 2019; Ghalandari & Iranmanesh, 2020;
Simmons, Gorby, &Terembula, 2005). Therefore, to achieve a narrow particle size distribution, applying moderate
energy to particles is necessary for this type of operation over a period of use (Tsakalakis & Stamboltzis, 2008).
Furthermore, the power consumption of the raw mill grinding process was reduced by 6.7 percent by using
exterior hot gas, as suggested in an energy and exergy analysis of the mill by Atmaca & Kanoglu (2012). A. I.
Okoji et al. (2018) also studied the appropriateness of exergy calculation using Aspen Plus Process Simulator,
there was no noticeable variance in the result when compared with conventional methods. In recent studies,
Ghalandari, Esmaeilpour, Payvar, & Reza (2021) evaluated the energy and exergy e�ciency of a cement plant
and was established that the main energy input occurs as thermal energy from the material feed, while
maximum exergy contribution comes from electricity. When it comes to energy e�ciency, the VRM could improve
milling e�ciency while saving a signi�cant amount of energy for cement plants (SCHÄFER, 2002).

Process simulators are essential to optimizing VRM, but the complex nature of these processes has led to a
number of assumptions that may limit their universality (A. I. Okoji et al., 2018). As a result, the majority of
mechanistic models deviate from reality and may not provide an accurate representation of reality. These
mechanistic models are also computationally intensive, making them ineffective for real-time optimization.
Arti�cial intelligence (AI) models can be used to overcome these problems (Bao, Zhu, Du, Zhong, &Qian, 2019;
Gong, Yuan, Liu, &Feng, 2019). ANN is recognized as an effective tool for the development of nonlinear and
multivariable systems that rely on data-driven models (A. I. Okoji, Anozie, &Omoleye, 2022a; A. I. Okoji et al.,
2022b). A neural network can be used to learn complex functional relationships between systems by analyzing
input and output data. This makes them ideal for real-time optimization since their evaluation is much less
computationally demanding. VRM systems often use neural networks to model product speci�cations as
outputs (Inapakurthi, Miriyala, &Mitra, 2020; Pani & Mohanta, 2014, 2015; Wang, Jia, Huang, &Chen, 2010). Other
mill types, such as ball mills, have already been investigated using energy and exergy analyses, and our results
will allow other researchers to compare the thermodynamic performance of another mill type with VRM.

According to this study, arti�cial intelligence with optimization algorithms were used in order to model the energy
e�ciency of vertical raw mills. Despite this, ANFIS has been used to optimize enzyme synthesis (Kumar, Singh,
Arya, Bhatti, &Sharma, 2018; Uzuner & Çekmecelioğlu, 2016), biogas production prediction (Asadi, Guo,
&McPhedran, 2020), air pollutant prediction (Noori, Hoshyaripour, Ashra�, &Araabi, 2010; Shamshirband,
Hadipoor, Baghban, Mosavi, Bukor, &Várkonyi-Kóczy, 2019), raw meal process exergy e�ciency(A. I. Okoji,
Anozie, &Omoleye, 2021), biomass prediction using grid partitioning, sub-clustering, and fuzzy cmeans clustering
algorithms (Akkaya, 2016), to predict DBP (trihalomethanes) levels in the water treatment plant (C. N. Okoji,
Okoji, Ibrahim, &Obinna, 2022) and vertical raw mill product quality (Fernandes et al., 2019), however, we know of
no other study that utilizes this model to predict and optimize vertical raw mill energy e�ciency in cement
processing plants. The focus of this work was to create different models to predict vertical raw mill energy
e�ciency while taking plant operating data into account in order to avoid the problems of experimental testing. A
unique correlation model is presented here, as well as ANFIS-based models. The fuzzy inference system is
generated using grid partitioning, sub-clustering, and fuzzy cmeans clustering algorithms. A number of model
structures are built for each approach by varying their associated parameters. Furthermore, arti�cial intelligence
methods such as PSO-ANFIS-GP, PSO-ANFIS-FCM, PSO-ANFIS-SC, PSO-ANFIS-GP, PSO-ANFIS-FCM, and PSO-
ANFIS-SC were applied to determine the vertical raw mill energy e�ciency regarding the plant operating data. To
develop the proposed models, 1026 plant operating data was collected over a range of 2020 to 2021 of a steady
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state operating data to avoid a misrepresentation of data. To the best of our knowledge, no one has used the
PSO-ANFIS-GP, PSO-ANFIS-FCM, PSO-ANFIS-SC GA-ANFIS-GP, GA-ANFIS-FCM, and GA-ANFIS-SC model in this
context. To demonstrate their precise capacity, the obtained results were compared to the plant audit.
Furthermore, the resilience of the suggested system was tested with 2022 plant operational data to evaluate the
model's precision, accuracy, and reliability.

2.0. Theoretical analysis and method
The vertical raw mill process was modelled in this study using ASPEN Plus V10.2 for minimising Gibbs free
energy. Eq. 1 describes equilibrium at constant temperature and pressure for a system.

The Gibbs free energy of species  is , the number of molecules of species  is , the number of chemical
species in the reaction mixture is  and the chemical potential of species . A set of  values must be found
that result in the smallest  value. The stoichiometric approach and the non-stoichiometric approach are both
possible. A stoichiometrically independent reaction system describes the former case, which is usually chosen
arbitrarily from a set of possible reactions. By directly minimising the Gibbs free energy for a given species, this
approach determines the equilibrium composition. Most open-source literature uses a non-stoichiometric
approach [Adeniyi & Ighalo 2019]. Several advantages result from this, such as the absence of having to select
the possible set of reactions, the absence of divergence during computation, and the lack of having to estimate
precisely the composition of the initial equilibrium.

It is necessary to ensure that  is in mass balance in order to estimate the smallest value of  for .

In this equation,  determines how many gram atoms of element l are in one mol of specie ,  determines how
many gram atoms there are in the reaction mixture and M represents the total number of atoms in the reaction
mixture. Therefore, Eq. 4 can be written as follows:

It is the expression in which  represents temperature,  represents pressure, and  represents standard
Gibbs free energy of the formation of species .  represents the mole fraction of that species. The objective
function is expressed in Eq. 4.
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Thermodynamic predictions are obtained with the help of process simulation software like ASPEN Plus utilizing
this method to minimize Gibbs free energy.

A steady-�ow process is analyzed using the following equations to determine work, heat interactions, and energy
e�ciency.

Mass balance

Eq. (5) depicts the mass balance of the system, expressed in terms of mass.

5

According to Bejan (2016), mass �ow rate is expressed, while the subscript 'in' signi�es inlet and 'out' signi�es
outlet.

Energy balance

Eqs (6) and (7) can be used to express energy balance equations.

6

7

 The rate of (net heat input) is expressed as; 
, and the rate of (net work output) is

represented as; , given h, the speci�c enthalpy. With both kinetic and potential energy
constant, we can further simplify Eq. (8) to express only enthalpy �ow:

8

Equations (7) and (8) summarize the energy balance around the vertical raw mill

9

10

Equation (7) de�nes the system's e�ciency equation

Σṁin = Σṁout

ΣEin = ΣEout

Qnetin + Σṁinhin = Wnetin + Σṁouthout

Therateof (energytransferin) isrepresentedasEin

Qnetin = Qin − Qout whiletherateof (energytransferout) isEout,

Wnetin = Wout − Win

Σṁinhin = Σṁouthout

∑Ein = Erawmaterial + Ecombustionair + Ehotgasgenerator + Ematerialmoisture + Ekilnhotgas

∑Eout = Efinalproduct + Erawmillexitair + Esteam

Ė
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2.1. Process Simulation Model of Raw Mill
A vertical raw mill plant operating at 240,000 kg per hour requires a process model containing physical property
parameters. The vertical raw mill process consists of three steps: drying, grinding, and separation. An air stream
transports �ne particles entrapped in crushed raw materials upward in the upper part of the mill. Despite Aspen
Plus being a two-phase stream, this stream is treated as a "Solid-Liquid" and "Solid-Vapour" together. As soon as
the mill stream leaves, �ne dust and coarse dust are separated in a screen (separator). Each is used for further
processing. The product (�ne dust) and gas mixtures are transported to cyclones for separation into �ne dust in
gas streams and to be used as the kiln as feed. While �ne dust is trapped in electrostatic precipitators, clean gas
is allowed to escape into the atmosphere.

It is assumed that the inlet feed is homogeneous, with different particle size distributions (PSDs) in the
simulation. The vertical raw mill is modelled by three stages, and the crusher (mill) model is a continuous dry
grinding operation. A classi�er forms the upper part of the mill, which entrains �ne material from the raw
material as it is crushed/milled. No chemical reaction occurs between the feed and outlet particle streams. A �ne
particle size reduction operation is all that is involved as shown in Fig. 1.

This simulation model was built using Aspen Plus version 10.2 "SOLID Model" inbuilt template as the basis for
simulating the vertical raw mill operation in cement manufacturing. Modeling a process relies heavily on
selecting a property package that accurately replicates the various physical properties of the system. Henry's
Law is being used to determine the supercritical components present in the liquid phase, while Redlich-Kwong
equation of state method is used to �nd the properties of the vapor phase. Kent-Eisenberg method is used to
solve equilibrium constants and enthalpies. In every simulation, steady-state conditions are assumed.

A new feature of Aspen Plus makes it easy to model solids anywhere in a process sheet and the model was
represented as blocks in Table 1. For solids handling equipment, a variety of unit operation models are available
including crushers (mills), screens (separators), cyclones, and electrostatic precipitators. A �owsheet represents
the streams of material and energy using blocks as shown in Fig. 2. Physicochemical properties were
incorporated into the simulation calculation using a large databank. The 'Solids Template' reports properties and
components �ows for various types of particles, such as liquids, solids, and vapours. MIXCIPSD represents
mixed conventional solids with particle sizes distributed. Models were developed based on the following
assumptions: a) There is no pressure loss, turbulent motion, or air leakage because the process is in steady
state. b) As a result of the process, neither atmospheric nor pressure drop occurs. c) No heat losses through the
system

These processes could lead to the development of the ASPEN Plus model:

Stream classes and the method of property selection are described.

An extensive database for the description of system components.

Based on unit operations of blocks, process �ow sheets are created by connecting material and energy
streams. Additionally, the blocks' chemical and physical reactions affect the thermodynamic conditions.

η = (11)
ΣĖout
ΣĖin
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Describes the �owrate, the feed components, and the distribution of particle size in the feed stream.

RGIBBs assist the combustion process to provide heat for the drying process. It is not necessary to comply with
the speci�cation reaction stoichiometric rules when using RGIBBS blocks Fine dust are separated from coarse
dust in a screen (separator) after the mill, and the coarse is recycled back to the mill. The separation e�ciency of
the screen is determined by simulating the screen sizes of entrained �ne material and determining how much of
it is recycled or permitted to pass as �nal product. A cyclone separator is also used for further dust-laden gas
separation, which respects the 90% pass on the 10 micrometer scale. The centrifugal force of a gas vortex
obtained from a cyclone helps remove �ne dust particles from a dust-entrapped gas stream. Before the clean air
is released into the atmosphere, the entrained dust particles are separated from the gas stream using an
electrostatic precipitator (ESP). Electrostatic �elds generated by collecting plate electrodes can effectively
remove the dust particles from gas streams when the wires are placed parallel and in between the plates as
shown in Fig. 2.

Table 2 displays the simulation input settings used in Aspen Plus. On the basis of the simulation data from
Aspen Plus, equations (5), (6), and (7) were used to analyze the energy of the streams at steady state. Eq. 7 was
used to calculate the e�ciency of a cement vertical raw mill. Each stream in Aspen Plus was constructed with
temperature, pressure, enthalpy, and internal energy. At both the fundamental operational and reference stages,
Aspen Plus was used to measure the energy of each stream. Eqs. (8) and (9) were used to calculate maximum
energy at the network's inlet and output, whereas Eq. (11) was utilized to calculate energy e�ciency.

Table 1
Aspen Plus blocks and model representation for biomass steam gasi�cation

Block Model Function

MILL CRUSHER Breaking solid particles in a crusher into smaller particle size distribution
(PSD)

MIXER SSPLIT Combine feed streams/mixes all of its feed streams, then splits the resulting
mixture into two

SEP SEP Rotation and gravitational force are used to separate gas and solid particles

RGIBBS   Methane combustion occurs when Gibbs free energy minimization is applied
to all possible reactions

ESP ESP Solids separation from a gas stream

VSCRUB VENTURI
SCRUBBER

Separating solid particles in a screen

SCREEN SEP Separating solid particles in a screen
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Table 2
Equipment speci�cations for the production of raw meals

 

2.2.1 The collection and processing of data
A cement vertical raw mill process was studied in a cement plant, south west, Nigeria, and both input and output
variables were collected. Data was collected for about a month from the distributed control system database
every minute. The operational parameters of the cement plant for the year 2021 were analyzed and obtained
from its records. Raw mill output, material moisture, kiln hot gas �ow, mill fan �ow, grinding pressure, and
separator speed are among the operational parameters. Material inconsistency in the mill process will result in
high noise in the measured �eld data due to dust recirculation in the gas stream, particularly for the thin raw
material layer under the roller. To develop a computational intelligence model, gathered information had to be
screened to determine which operational parameters were relevant and consistent. The missing data was
interpolated using selected data, which was analyzed statistically. A set of operational parameters was selected
with 1025 monthly data points, as shown in Table 3.

Parameters Unit

Rawmilloutput kg/h 240,000

Materialmoisture kg/h 48,000

Kilnhotgasf low Nm3/h 313,473

Inputdustf low kg/h 19.353

Kilnhotgasf lowtemperature ℃ 380

Hotgasgeneratortemperature ℃ 760

Outputmaterialtemperature ℃ 92

VRMOperatingPressure atm 1

Rawmillcycloneeff iciency % 96

Classif iedseparatoreff iciency % 86

ESP − precipitatoref f iciency % 84
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Table 3
Plant operations parameter for ANFIS model

Mode

Vertical
raw
mill

Raw mill
output (kg/hr)

1025 220008 240000 200000 14909 200000

Material
moisture
(kg/hr)

1025 75000 100000 50000 18634 50000

Kiln hot gas
�ow (Nm3/hr)

1025 313473 332817 294118 18635 380000

Mill fan �ow
(Nm3/hr )

1025 584992 685000 485000 74536 485000

Grinding
pressure (bar)

1025 70 90 50 14.7 50

Separator
speed (rpm)

1025 87 100 75 9.3 75

Energy
e�ciency (%)

1025 68.78 77.78 61.34 4.2 77.78

2.3. ANFIS model building
A model was developed using �ve independent variables of plant operational data analysis: raw mill output
(kg/hr), material moisture (kg/hr), kiln hot gas �ow (Nm3/hr), mill fan �ow (Nm3/hr), grinding pressure (bar) and
separator speed (rpm). The output set contains data on energy e�ciency. The data used to develop the
comprehensive model so far is derived from plant operational data, primarily from the cement plant. Probability
analysis is used during the data selection process. Potential outliers are eliminated following an analysis. A total
of 1025 vertical raw mill plant operational data were used in this study based on this method. Three subsets of
this data set are available: 717 for training, 154 for validation, and 154 for testing. These variables are listed in
Table 2 along with their statistical characteristics. All subgroups have quite large ranges of data for each
variable.

To construct model programs, Matlab functions linked to ANFIS are used (Demuth & Beale, 2000). In general, the
fuzzy rules are described by a subject expert. However, when ANFIS is employed, the algorithm constructs the
rules automatically rather than consulting an expert. In this study, three strategies for generating fuzzy inference
system (FIS) structure from ANFIS data were studied. Grid partitioning (GP), subtractive clustering (SC), and
fuzzy c-means (FCM) clustering are the approaches used. These strategies are used in this work to create and
choose the optimum vertical raw mill energy e�ciency prediction model.

For this study, a �rst-order Sugeno-type model was built using four input variables and IF-THEN fuzzy logic.
Fuzzy rules, assuming two inputs (x, y) and one output (f), are as follows according to equations (12) and (13) of
the fuzzy inference method (FIS):

Unit Parameter No. ofdata Mean Maximum Minimum SD

Rule1 → ifxisA1andyisB1, thenf1 = p1x + q1y + r1 (13)
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1) Layer 1: In this layer, we use the Membership function to convert fuzzi�cation values into membership values,
as shown in Eq. (15):

where x is the input to node i and A i is the linguistic label associated with this node.

2) Layer 2: Every node in this layer reproduces the input and sends out the results. Thus, each node in the same
layer can decide the �repower of a rule. Eq. (16) shows an example of this layer (Jang & Sun, 1995;
Sadrmomtazi, Sobhani, &Mirgozar, 2013).

3) Layer 3: Membership values can be normalized using this layer. Throughout this layer, the ith node indicates
how much �repower the ith law generates compared to the sum of all �re powers. A normalized �ring force
measurement for node ith is given by Eq. (17) below.

.

4) Layer 4: This layer, also known as the adaptive layer, can de�ne the relationship between the input and output
values, as shown in Eq. (18)

where  is the output resulted from layer 3, and  is the parameter set.

5) Layer 5: Defuzzi�cation is another name for this layer. As shown in Eq. (19), the later signal node calculates
the total output as the sum of all input signals.

2.3.1 PSO-ANFIS and GA-ANFIS weight optimization
In genetic algorithms, natural selection and genetic science combines together to create an evolutionary heuristic
search algorithms. Thus, to solve optimization problems, it uses a random search method. As a result, GAs direct
calls to the regions that actually perform better in the search area based on the information they have at their
disposal. GA is primarily concerned with simulating natural systems, which have an evolutionary process.
Throughout nature, the strongest individuals always dominate the weakest in competition for insu�cient
resources. There is a group of individuals within the search �eld for a GA representing a solution to a particular
problem. The variables are the genes and these individuals are like chromosomes. An individual's "competition"
ability, however, is determined by their eligibility score for each solution (Ganjidoost, Mousavi, &Soroush, 2016;
Hasanipanah, Amnieh, Arab, &Zamzam, 2018; Rezakazemi, Dashti, Asghari, &Shirazian, 2017). Consequently,
Particle swarm optimization (PSO) is a stochastic optimization method based on population. A �sh or insect

Rule2 → ifxisA2andyisB2, thenf2 = p2x + q2y + r2 (14)

O1
i = μAi

(x) (15)

.

wi = μAi
(y)xμBi

(y) , i = 1, 2. (16)

−
wi= , i = 1, 2. (17)

wi

(w1+w2)

O4
i =

−
wi (pix + qiy + ri) (18)

−
wi {pi + qi + ri}

O
5
i = ∑

i

−
wi fi = (19)

∑iwifi

∑iwi
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moving in a swarm inspired the development of this algorithm (Kennedy & Eberhart, 1995). Iteratively updating
generations seeks optimal solutions by selecting a population of random solutions. The best available solutions
pass through the problem area as potential solutions, called particles in the PSO. Genetic algorithms (GAs) and
PSOs have many similarities. Unlike the GA, the PSO does not incorporate evolutionary operators such as
crossovers and mutations. In addition to its ease of implementation, the PSO has a low number of parameters to
con�gure. Arti�cial intelligence tools have been optimized with PSO for various applications.

2.3.2. Grid partition method
The grid partition (GP) method constructs a Sugeno-type FIS structure with sigmoidal membership function
dsigmf as its input membership function as shown in Fig. 4 above. It features �ve, four, three, and two
membership function numbers for six input parameters (raw mill output, material moisture, kiln hot gas �ow, mill
fan �ow, grinding pressure and separator speed). Furthermore, the output function is constant and the best rule
number is 12. Prediction error increases dramatically when the output membership function is assumed to be
linear. An excessive number of linear parameters causes this condition. Likewise, as the membership function
number for each input parameter increases, so does the rule number. The simulation model is slowed as a result
of this condition. According to a predetermined number of membership functions, GP divides the input data into
a number of local fuzzy regions. Eight types of membership functions are used in the GP technique (trimf,
trapmf, gbellmf, gaussmf, gauss2mf, pimf, dsigmf, psigmf). With a Sugeno in use, only one output is available,
which can either be constant or linear, depending on the number of membership functions speci�ed for each
input. This approach generates same amount of rules as it does output membership functions. A variety of
membership function features (types, numbers) are used in this subsection to construct alternate models
consisting of distinct FIS structures, based on training data. In order to determine the most suitable alternative
model, a number of simulation experiments are conducted. Different alternative model (for example, GA-ANFIS-
GP1 and PSO-ANFIS-GP1) generates various sub-models. In this article, however, only the sub-model with the
lowest RMSE, MAE, AAE, and other characteristics is presented as the best sub-model. This procedure is done for
the remaining potential models (PSO-ANFIS-GP2, PSO-ANFIS-GP3, GA-ANFIS-GP2, GA-ANFIS-GP3, etc). Based on
extensive simulations, Tables 4 and 5 shows all possible models' features and performance (RMSE, MAE, and
AAE). According to the table, the best sub clustering-based energy e�ciency prediction model is PSO-ANFIS-
GP10 (R2 = 0.9492, RMSE = 0.95795, MAE = 0.70843, AAE = 0.01048) and GA-ANFIS-GP3 (R2 = 0.903, RMSE = 
1.3306, MAE = 0.9255, AAE = 0.01375) which has the smallest error. Furthermore, with trapMF or trimMF type of
output, in�uence the model outcomes, which diminishes signi�cantly. As a result, the features gaussMF and
linear/constant performance outcomes are not considerably different following the PSO-ANFIS-GP10 and GA-
ANFIS-GP3 models.
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Table 4
Models with alternative PSO-ANFIS-GP features and performance results.

Model Number of
input MF

Type of
input MF

Type of
output MF

Epochs R2 Error analysis

  RMSE MAE AAE

PSO-
ANFIS-
GP1

[2 2 2] gaussMF constant 200 0.9304 1.1307 0.8829 0.01297

PSO-
ANFIS-
GP2

[2 2 2] dsigMF constant 200 0.9028 1.3261 1.0746 0.01575

PSO-
ANFIS-
GP3

[2 2 2] trimMF constant 200 0.8734 1.51545 1.168 0.01727

PSO-
ANFIS-
GP4

[2 2 2] trapMF constant 200 0.8593 1.60298 1.30526 0.01919

PSO-
ANFIS-
GP5

[2 2 2] gaussMF constant 250 0.906 1.31372 1.04636 0.01538

PSO-
ANFIS-
GP6

[2 2 2] gaussMF linear 200 0.884 1.44757 1.12604 0.01663

PSO-
ANFIS-
GP7

[2 2 2] gaussMF linear 180 0.939 1.0485 0.80966 0.01176

PSO-
ANFIS-
GP8

[2 2 2] gaussMF constant 150 0.924 1.17908 0.99611 0.01457

PSO-
ANFIS-
GP9

[2 2 2] gaussMF linear 200 0.9451 1.00048 0.73379 0.01082

PSO-
ANFIS-
GP10

[3 2 3] gaussMF linear 220 0.9492 0.95795 0.70843 0.01048
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Table 5
Models with alternative GA-ANFIS-GP features and performance results.

Model Number of
input MF

Type of
input MF

Type of
output MF

Epochs R2 Error analysis

  RMSE MAE AAE

GA-
ANFIS-
GP1

[2 2 2] gaussMF constant 220 0.8813 1.46559 1.10701 0.01625

GA-
ANFIS-
GP2

[2 2 2] gaussMF constant 250 0.8719 1.53574 1.11051 0.01625

GA-
ANFIS-
GP3

[3 2 5] gaussMF constant 300 0.903 1.33061 0.92545 0.01375

GA-
ANFIS-
GP4

[2 2 2] dsigmf constant 300 0.8717 1.5352 1.06611 0.01560

GA-
ANFIS-
GP5

[2 1 1] gaussMF constant 300 0.9025 1.33445 0.92651 0.01376

GA-
ANFIS-
GP6

[1 1 1] gaussMF constant 200 0.8694 1.57362 1.33975 0.01966

GA-
ANFIS-
GP7

[2 2 3] dsigmf constant 300 0.8982 1.49863 1.12194 0.01658

GA-
ANFIS-
GP8

[3 2 3] dsigmf constant 350 0.8948 1.53968 1.26571 0.01845

2.3.3. Sub-clustering method
According to the sub-clustering approach (SC), every data point can be considered a cluster center as shown in
Fig. 3 above. Data points are clustered based on their proximity to each other, which is used to determine the
probability degree that a particular data point will de�ne the cluster center. An algorithm determines which data
point has the best chance of being the �rst cluster center. Using radii from the �rst cluster center, it determines
the location of the next data cluster and its center. The iteration process is repeated until all data is contained
within the cluster center radii (Akkaya, 2016). The subtractive clustering algorithm has four parameters.
In�uence, squash factor, acceptable ratio, and rejected ratio are examples.

Manually adjusting the clustering settings yields the best GA-ANFIS and PSO-ANFIS structures based on the SC
technique. The range of in�uence (RI) is modi�ed from 0.12 to 0.15 with a 0.01 increment value, while the
squash factor (SF) is adjusted from 1.3 to 1.5 with a 0.1 increment value. It does not have any positive effect to
change the default accept and reject ratios, so they remain at 0.5 and 0.15. As a result, 8 different models are
developed. The program assigns gauss and linear membership function types to input and output membership
functions for the considered models. Sub-clustering parameters determine the membership function number and
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any input variable's membership function number determines the number of rules. According to the Table 5 and
6 below, the best sub clustering-based energy e�ciency prediction model is PSO-ANFIS-SC3 (R2 = 0.9387, RMSE 
= 1.0522, MAE = 0.8654, AAE = 0.01272) and GA-ANFIS-SC2 (R2 = 0.8737, RMSE = 1.52288, MAE = 1.09126, AAE 
= 0.01595) which has the smallest error. When RI and SF are set to 0.14 and 1.4, respectively, the model yields
three rules. Furthermore, lower RI and SF values are associated with greater rule numbers. Furthermore, with
lower RI levels, the in�uence of SF on model outcomes diminishes signi�cantly. As a result, the features and
performance outcomes are not considerably different following the PSO-ANFIS-SC3 and GA-ANFIS-SC2 models.

Table 6
Models with alternative PSO-ANFIS-SC features and performance results..

Model R1 SF Number of input
MF

Epochs R2 Error analysis

  RMSE MAE AAE

PSO-ANFIS-
SC1

0.15 1.5 [2 2 2] 200 0.8968 1.36472 1.07685 0.01581

PSO-ANFIS-
SC2

0.12 1.5 [2 2 2] 200 0.9058 1.30485 1.05645 0.01547

PSO-ANFIS-
SC3

0.13 1.5 [2 2 2] 200 0.9387 1.0522 0.86541 0.01272

PSO-ANFIS-
SC4

0.14 1.5 [2 2 2] 200 0.8921 1.39852 1.06451 0.0158

PSO-ANFIS-
SC5

0.2 1.5 [2 2 2] 150 0.881 1.46483 1.13523 0.01676

PSO-ANFIS-
SC6

0.25 1.5 [2 2 2] 180 0.9337 1.09561 0.86026 0.01263

PSO-ANFIS-
SC7

0.25 1.5 [2 2 2] 200 0.9166 1.22865 1.00633 0.01474

PSO-ANFIS-
SC8

0.18 1.5 [2 2 2] 180 0.9302 1.12319 0.90035 0.01321
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Table 7
Models with alternative GA-ANFIS-SC features and performance results..

Model R1 SF Number of input MF Epochs R2 Error analysis

  RMSE MAE AAE

GA-ANFIS-SC1 0.15 1.5 [2 2 2] 200 0.8678 1.58918 1.3242 0.01945

GA-ANFIS-SC2 0.3 1.5 [2 2 2] 200 0.8748 1.52288 1.09126 0.01595

GA-ANFIS-SC3 0.12 1.5 [2 2 2] 200 0.8806 1.468 1.16489 0.01715

GA-ANFIS-SC4 0.25 1.5 [2 2 2] 300 0.8887 1.53387 1.30137 0.01894

GA-ANFIS-SC5 0.2 1.5 [2 2 2] 150 0.8681 1.57029 1.32245 0.01942

GA-ANFIS-SC6 0.25 1.5 [2 2 2] 180 0.8479 1.65868 1.26434 0.01871

GA-ANFIS-SC7 0.25 1.5 [2 2 2] 150 0.8828 1.45645 1.2067 0.01773

2.3.4. Fuzzy c-means method
A FIS structure is created using the Fuzzy C-means (FCM) clustering algorithm. This structure can generate rules
based on data behavior. For the input and output variables, the FCM method is used to identify the number of
rules and membership functions. FCM can be con�gured to generate any number of clusters you desire and this
is usually more clusters if you choose a smaller cluster radius. This means that there will be more rules in the
created FIS. When Sugeno is chosen as the FIS structure type, the input and output membership function types
are gauss and linear, respectively. By varying the number of clusters, six different models are constructed (NC).
The number of clusters dictates the number of MFs and rules. Simulations on these different models are run in
order to determine the best FIS structure. Table 6 shows the model's attributes and performance results.

As seen in the Tables 8 and 9, additional clusters do not necessarily result in higher performance. The PSO-
ANFIS-FCM8 model 8 clusters (R2 = 0.9304, RMSE = 1.1296, MAE = 0.8305, AAE = 0.0123) and GA-ANFIS-FCM3
model 3 clusters (R2 = 0.9028, RMSE = 1.3261, MAE = 1.0746, AAE = 0.01575) had the lowest error. As a result, the
PSO-ANFIS-FCM8 model with four rules is regarded as the best. The model over-learns (�ts) as the number of
clusters increases.
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Table 8
Models with alternative PSO-ANFIS-FCM features and performance results..

Models Number
of
clusters

Number
of input
MF

Number
of
output
MF

Number
of rule

Epochs R2 Error analysis

  RMSE MAE AAE

PSO-
ANFIS-
FCM1

2 [2 2 2] [2] 2 200 0.8725 1.5192 1.2069 0.0178

PSO-
ANFIS-
FCM2

3 [3 3 3] [3] 3 200 0.8919 1.3995 1.0986 0.0161

PSO-
ANFIS-
FCM3

4 [4 4 4] [4] 4 180 0.8959 1.3699 1.1212 0.0165

PSO-
ANFIS-
FCM4

5 [5 5 5] [5] 5 180 0.9036 1.3222 1.0125 0.0150

PSO-
ANFIS-
FCM5

6 [6 6 6] [6] 6 150 0.9244 1.1672 0.8882 0.0131

PSO-
ANFIS-
FCM6

7 [7 7 7] [7] 7 120 0.9067 1.3012 0.9969 0.0146

PSO-
ANFIS-
FCM7

8 [8 8 8] [8] 8 140 0.9304 1.1296 0.8305 0.0123

PSO-
ANFIS-
FCM8

9 [9 9 9] [9] 9 130 0.8971 1.3684 1.0440 0.0155



Page 17/35

Table 9
Models with alternative GA-ANFIS-FCM features and performance results.

Models Number
of
clusters

Number
of input
MF

Number
of
output
MF

Number
of rule

Epochs R2 Error analysis

    RMSE MAE AAE

GA-
ANFIS-
FCM1

2 [2 2 2] [2] 2 200 0.8745 1.5168 1.1194 0.01635

GA-
ANFIS-
FCM2

3 [3 3 3] [3] 3 200 0.8964 1.4261 1.0746 0.01575

GA-
ANFIS-
FCM3

4 [4 4 4] [4] 4 150 0.8847 1.4798 1.1252 0.01663

GA-
ANFIS-
FCM4

5 [5 5 5] [5] 5 100 0.8674 1.5862 1.3295 0.01949

GA-
ANFIS-
FCM5

6 [6 6 6] [6] 6 180 0.8863 1.5376 1.2827 0.01871

GA-
ANFIS-
FCM6

7 [7 7 7] [7] 7 180 0.8871 1.5441 1.2848 0.01875

3.0 Results and discussion
Based upon reference plant data, the process simulator was used to identify areas for improving the cement
vertical raw mill plant's energy e�ciency. Table 10 shows both the inlet and outlet streams of the vertical raw mill
process and their mass and energy balances. According to Table 3, the cement vertical raw mill system has an
energy e�ciency of 67.3 percent. Energy e�ciency percentages in this study followed a similar pattern, with
estimated values between 60 and 70%. According to the Aspen Plus process simulator (Table 3), the material
moisture drying unit loses a signi�cant amount of energy. This was primarily due to the drying process that
occurs in the grinding unit, with inlet material moisture ranging from 20 to 25% and ground material moisture of
less than 1%. This is done to prevent moist product from clogging the transport system and silo cake-up during
ex-mill product storage. As a result of this, moisture mass �ow has a signi�cant impact on energy e�ciency
(Atmaca & Kanoglu, 2012). Drying unit is one of the major thermodynamic ine�ciencies in vertical raw mills
(Ghalandari et al., 2021).
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Table 10
Simulated data for energy analysis of a cement vertical raw mill.

Equipment/ No of
input stream

Mass

(kg/kg raw
mix)

Energy

(kJ/kg)

Equipment/ No of
output stream

Mass (kg/kg
raw mix)

Energy

(kJ/kg)

Raw material (1) 1.05 1251.14 Ex-mill Product exit
(36)

1.00 363.57

Combustion air (2) 0.44 82.55 GCT exit (31) 0.06 1577.33

Hot gas generator (4) 0.01 4816.55 ESP exhaust (33) 2.58 4881.65

Material moisture (10) 0.33 1584.35      

Kiln hot gas �ow (37) 1.81 2440.29      

Total 3.64 10174.88 Total 3.64 6822.55

Energy E�ciency                      67.05%

No-Number; Process �ow sheet Fig. 2 shows 1, 2, 4, 10, 31, 33, 36, and 37.

3. 1. Model testing results and discussion
A modeling approach using arti�cial intelligence assists scientists in understanding how a set of variables or
properties in�uence a determinant variable in multiple, nonlinear ways. Based on three methods of generating
FIS from the vertical raw mill operations data set in the model building section, PSO-ANFIS-GP4, PSO-ANFIS-SC5,
and PSO-ANFIS-FCM3 are the optimal models. Additionally, the model performance of the PSO-ANFIS-FCM, PSO-
ANFIS-GP, PSO-ANFIS-SC, GA- ANFIS-FCM, GA- ANFIS-GP and GA-ANFIS-SC approaches for the training and
validation databases was also discussed and compared based on plant operation parameter data of a vertical
raw mill. Afterwards, each input is analyzed to determine its relative importance. Through the use of reliable
optimization algorithms, the predictive capacity of the model can be signi�cantly improved. This study utilized
PSO and GA algorithms in order to train ANFIS-FCM, ANFIS-GP and ANFIS-SC. The PSO values were �tted in the
PSO- ANFIS-FCM, PSO- ANFIS-GP and PSO-ANFIS-SC through a comprehensive parametric study. As a hybrid
algorithm, the PSO algorithm's output data is highly dependent on its input data. Consequently, the PSO
algorithm is remarkably effective at handling nonlinear problems. The membership function (MF) utilized in this
work was Gaussian. The best parameters were also determined by trial-and-error. Table 2 shows the optimal
parameters for the PSO algorithm. Similar to the PSO-ANFIS model, GA-ANFIS-FCM, GA-ANFIS-GP, and GA-ANFIS-
SC models used the Gaussian membership function. The MATLAB package was used to simulate the model.
Similarly to PSO, we optimized various important GA parameters in order to obtain the best results. Tracking
model performance with different GA parameters was again performed using the trial-and-error method.

Here we are determining the best GA-ANFIS and PSO-ANFIS model from the optimal ones obtained. In the testing
phase, these generated models are evaluated for their prediction abilities so that the best optimal ANFIS model
can be found. A performance criterion provides an evaluation of how closely the model prediction corresponds to
the actual outcome. The remaining 154 data will be used in the testing phase. For each ANFIS model, Fig. 2
illustrates actual energy e�ciency versus prediction results. Compared to actual results, the prediction results are
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quite consistent. Among the six models, PSO-ANFIS-SC5 has the highest correlation coe�cient, with better
differentiation between them as shown in Fig. 3.

3.2. Model performance evaluation
A variety of statistical quality measurement methods were used to determine the precision of the model results.

The PSO- ANFIS-FCM, PSO- ANFIS-GP, PSO-ANFIS-SC, GA-ANFIS-FCM, GA-ANFIS-GP, and GA-ANFIS-SC models
were evaluated using the root mean square error (RMSE), mean absolute error (MAE), and average absolute error
(AAE) between actual and predicted energy e�ciency as shown in Eq. 20 to 23:

The �rst method entails plotting estimated energy e�ciency data against plant operational energy e�ciency
data. As shown in Figs. 5 and 6, the plotted data are su�ciently adjacent to the line, implying that the model
predicted and the measured energy e�ciency data agree. The R2 of prognostication of the best models was
0.9492, 0.9387, 0.9304, 0.903, 0.8964, and 0.8737, respectively, for the PSO-ANFIS-GP10, PSO-ANFIS-SC3, PSO-
ANFIS-FCM7, GA- ANFIS-GP3, GA-ANFIS-FCM2 and GA-ANFIS-SC2 models, which is a criterion of precision for
the models. The RMSE, MAE, AAE, and R2 were used to evaluate the predictions of the developed models. Models
presented in Table 11 have statistical properties that support their reliability, including a high R2 value and low
RMSE, MAE, and AAE magnitudes. As a result, the PSO-ANFIS-GP10, PSO-ANFIS-SC3, PSO-ANFIS-FCM7 models
are superior. The outputs of the predicted model was compared to the outputs of the process simulator energy
e�ciency evaluated. Table 5 contains the formulas for these correlations. The comparison con�rms the model
developed in this study's high precision.

Based on the comparison, it was found that the PSO-ANFIS-GP10 model outperformed other models based on
the lowest AAE value it could estimate for the entire dataset.

R
2 = 1 − (20)

∑n
i=1(Ei,estd − Ei,meas)

2

∑n
i=1(Ei,meas − Emeas,mean)2

RMSE = √ (21)
∑

n

i=1 (Ei,meas − Ei,estd)
2

n

MAE =
n

∑
i=1
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1

n

AAE =
n

∑
i=1

∣
∣
∣

∣
∣
∣
(23)

1
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Ei,meas
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Table 11
The features and performance results of the best of ANFIS models

Models Epochs R2 Error analysis

RMSE MAE AAE

PSO-ANFIS-GP10 220 0.9492 0.95795 0.70843 0.01048

PSO-ANFIS-SC3 200 0.9387 1.0522 0.86541 0.01272

PSO-ANFIS-FCM7 140 0.9304 1.1296 0.83049 0.01227

GA-ANFIS-GP3 300 0.903 1.33061 0.925448 0.013746

GA-ANFIS-SC2 200 0.8737 1.52288 1.09126 0.01595

GA-ANFIS-FCM2 190 0.9028 1.32611 1.07461 0.01575

3.3. The in�uence of key operational parameters on energy
e�ciency
Three major independent variables should be optimized to increase a VRM's �rst law e�ciency and reduce its
power consumption: separator speed, grinding pressure, and mill gas �ow rate. Furthermore, VRM separator
speed (rpm) is one of the key operational parameters that determines product particle size. Increasing the
classi�er rotor speed from 60 to 80 rpm decreases the particle size of the product from 16.5 to 10.6% residue on
90µm sieve (Altun et al., 2017). In contrast, increasing the separator speed from 60 to 80 rpm at a constant
grinding pressure results in a reduced raw material production rate from 240,000 kg/h to 230,000 kg/h and
which invariably, reduce the VRM energy e�ciency from 68.0 to 67.4% of raw material. Moreover, decreasing the
separator speed housing classi�er results in temporary increase in �rst law of thermodynamic e�ciency as
shown in Fig. 11. Consequently, if a �ner product becomes the target, the VRM's energy e�ciency values will be
on downward trend. It is noteworthy to mention that vertical raw mill performance is largely affected by the
amount of circulating load in the internal grinding classifying circuit. As a result of particle loading and gas �ow
within the VRM, this load is managed by adjusting the pressure drop across the VRM. This re�ects in the drop of
the mill differential pressure, as the separator speed housing the classi�er increases, resulting in the particle
bed's height increase. Further increase in the mill pressure drop, leading to creating more internal grinding
circuits, which lowers the VRM product rate and reduces the system energy e�ciency. When the grinding
pressure is increased, the product particle size changes slightly due to a change in compressive force impact
between the materials and the rollers on the grinding table. This is an important parameter that can affect
grinding e�ciency of a VRM as shown in Fig. 8. Additionally, the production rate increases with the energy
e�ciency by moderately increasing the grinding pressure, as shown in Fig. 12. From both the surface and
contour plot, as shown in Fig. 12, increasing the grinding pressure from 60 to 80 bar raises the raw material
production rate from 240,000 kg/h to 248,000 kg/h as well as the energy e�ciency with a merging of 0.58%. By
increasing grinding pressure, �ner particles are produced, which leave the classifying circuit more quickly,
increasing grinding e�ciency. In order to achieve the increased product rate, the particle size of the product is
decreased, and reject materials that may be di�cult to be lifted by mill fan �ow to the classi�er are reduced,
causing the rate to increase. Consequently, the mill's motor should be protected against damage by adjusting the
grinding pressure. Furthermore, an important operational parameter which in�uence the VRM performance is
also the quantity of gas entering the mill, which is determined by the gas temperature, pressure drop across the
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mill, and raw material moisture content. Figure 9 shows that the product particle size varies from 620,000 to
560,000 Nm3/h (gas �ow), ranging between 90µm = 16.3% and 90µm = 16.9%. Furthermore, Fig. 13 depict the
relationship between gas �ow changes and the raw mill output (kg/h) with effect on VRM unit's energy e�ciency,
respectively. The raw material production rate �uctuates between 200,000 kg/h and 230,000 kg/h, after dropping
the gas �ow from 620,000 to 560,000 Nm3/h (Fig. 14), but the energy e�ciency of the VRM production process
decreases by approximately 12.8 percent due to the reduced fan motor power consumption. In addition, lowering
the �ow rate below 560,000 Nm3/h increases the pressure drop, and therefore the e�ciency of internal grinding
circuits, reducing the energy e�ciency of the process. The raw material production rate decreases by 20,000
kg/h as a result of this variation, while the energy e�ciency decreases by 0.25%. Consequently, the VRM unit's
energy e�ciency should be increased by optimizing the gas �ow.

4.0. Conclusion
This study uses the PSO-ANFIS-FCM, PSO-ANFIS-GP, PSO-ANFIS-SC, GA-ANFIS-FCM, GA-ANFIS-GP, GA-ANFIS-SC
models to predict the energy e�ciency of a vertical raw mill based on output (kg/h), material moisture (kg/h),
kiln hot gas �ow (Nm3/hr), mill fan �ow (Nm3/hr), grinding pressure (bar), and separator speed (rpm). To develop
the proposed models, 1025 plant operating data was collected over a range of 2020 to 2021 of a steady state
operating data to avoid a misrepresentation of data. The �ndings indicate that the PSO-ANFIS-GP10, PSO-ANFIS-
SC3, PSO-ANFIS-FCM7 algorithms have high potential for use in vertical roller mill energy e�ciency prediction.
Furthermore, the PSO-ANFIS-GP10 model has the highest precision when compared to other model in the study.
It shows that the low moisture and high raw feed of VRM as inputs help to increase the process' energy
e�ciency. Cement grinding processes can bene�t from the use of models for estimating the energy e�ciency of
VRMs. Future experimental data can also be used to improve the performance of the models presented and
develop more advanced models to also predict the e�ciency of the second law of thermodynamics (exergy
e�ciency). In addition, the VRM product residue can also be studied extensively as it relates to the vertical raw
mill speci�c power consumption.
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Figures

Figure 1

Vertical raw mill process �ow diagram
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Figure 2

Process �ow sheet for cement vertical raw mill production represented with Aspen Plus process model (A. I. Okoji
et al., 2021)
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Figure 3

Architecture diagram of Subtractive clustering (SC)

Figure 4

Architecture diagram representing Grid partitioning (GP)
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Figure 5

Comparison of predicted and measured energy e�ciency values for GA-ANFIS-FCM2
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Figure 6

Comparison of predicted and measured energy e�ciency values for GA-ANFIS-SC2
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Figure 7

Comparison of predicted and measured energy e�ciency values for GA-ANFIS-GP3
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Figure 8

Comparison of predicted and measured energy e�ciency values for PSO-ANFIS-FCM7
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Figure 9

Comparison of predicted and measured energy e�ciency values for PSO-ANFIS-SC3,



Page 32/35

Figure 10

Comparison of predicted and measured energy e�ciency values for PSO-ANFIS-GP10
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Figure 11

Interaction between the raw mill output and mill separator speed (surface and contour plot)

Figure 12

Interaction between the raw mill output and grinding pressure (surface and contour plot)
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Figure 13

Interaction between the raw mill output and mill fan �ow (surface and contour plot)

Figure 14
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Interaction between the mill fan �ow and grinding pressure (surface and contour plot)
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