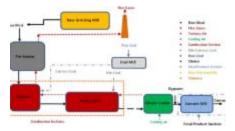
Evaluation of adaptive neuro-fuzzy inference system-genetic algorithm in the prediction and optimization of NOx emission in cement precalcining kiln

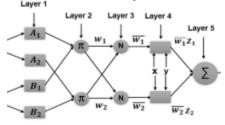

- Anthony I. Okoji,
- Ambrose N. Anozie,
- James A. Omoleye,
- Abiola E. Taiwo &
- Damilola E. Babatunde

Abstract

The increasing demand for cement due to urbanization growth in Africa countries may result in an upsurge of pollutants associated with its production. One major air pollutant in cement production is nitrogen oxides (NOx) and reported to cause serious damage to human health and the ecosystem. The operation of a cement rotary kiln NOx emission was studied with plant data using the ASPEN Plus software. It is essential to understand the effects of calciner temperature, tertiary air pressure, fuel gas, raw feed material, and fan damper on NOx emissions from a precalcining kiln. In addition, the performance capability of adaptive neuro-fuzzy inference systems and genetic algorithms (ANFIS-GA) to predict and optimize NOx emissions from a precalcining cement kiln is evaluated. The simulation results were in good agreement with the experimental results, with root mean square error of 2.05, variance account (VAF) of 96.0%, average absolute deviation (AAE) of 0.4097, and correlation coefficient of 0.963. Further, the optimal NOx emission was 273.0 mg/m^3 , with the parameters as determined by the algorithm were calciner temperature at 845 °C, tertiary air pressure -4.50 mbar, fuel gas of 8550 m³/h, raw feed material 200 t/h, and damper opening of 60%. Consequently, it is recommended that ANFIS should be combined with GA for effective prediction, and optimization of NOx emission in cement plants.

This is a preview of subscription content, log in via an institution to check access.

Similar content being viewed by others


<u>Prediction and optimization of emissions in cement manufacturing plant under</u> <u>uncertainty by using artificial intelligence-based surrogate modeling</u>

Article 03 June 2024

		· · · ·
Proximate Analysis	Physical Composition	Ultimate Analysis
 Fixed carbon Moisture content Volutile matter Ash content 	Peper Plasfie Plasfie Rabber Organic Teorifie Metal Glass	 Sulphur narbon Nitrogen bydrogen Chloripe mygen

Evolutionary-based neuro-fuzzy modelling of combustion enthalpy of municipal <u>solid waste</u>

Article 03 January 2022

<u>Performance Evaluation of Different Clustering Techniques and Parameters of</u> <u>Hybrid PSO- and GA-ANFIS on Optimization and Prediction of Biomethane</u> <u>Yield of Alkali-Pretreated Groundnut Shells</u>

Article Open access05 August 2024 Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Environmental Chemistry

Data availability

The datasets analyzed during the current study are available with the authors on reasonable request.

References

• Alam MZ, Armin E, Haque M, Kayesh JHE, Qayum A (2018) Air pollutants and their possible health effects at different locations in Dhaka City. J Curr Chem Pharm Sci 8:111

CAS Google Scholar

- Arsie I, D'Aniello F, Pianese C, De Cesare M, Paiano L (2018) Development and experimental validation of a control oriented model of scr for automotive application. SAE International United States Technical Paper, 2018–01-1263. <u>https://doi.org/10.4271/2018-01-1263</u>
- Bolaji BO, Adejuyigbe SB (2006) Vehicle emissions and their effects on the natural environment. JGIE4:35–40
- Cao P, Luo X (2013) Modeling of soft sensor for chemical process. Ciesc J 64:788-800

CAS Google Scholar

 Cao L, Chen L, Wu X, Ran R, Xu T, Chen Z, Weng D (2018) TRA and DRIFTS studies of the fast SCR reaction over CeO2/TiO2 catalyst at low temperatures. Appl Catal A: Gen 557:46–54

Article CAS Google Scholar

 Costa S, Ferreira J, Silveira C, Costa C, Lopes D, Relvas H, Borrego C, Roebeling P, Miranda AI, Paulo Teixeira J (2014) Integrating health on air quality assessment—review report on health risks of two major European outdoor air pollutants: PM and NO2. J Toxicol Environ Health Part B 17:307–340

Article CAS Google Scholar

• Dong R, Lu H, Yu Y, Zhang Z (2012) A feasible process for simultaneous removal of CO2, SO2 and NOx in the cement industry by NH3 scrubbing. Appl Energy 97:185–191

Article CAS Google Scholar

• Emberson L (2020) Effects of ozone on agriculture, forests and grasslands. Phil Trans R Soc A 378:20190327

Article CAS Google Scholar

• Feng Y, Zhang W, Sun D, Zhang L (2011) Ozone concentration forecast method based on genetic algorithm optimized back propagation neural networks and support vector machine data classification. Atmos Environ 45:1979–1985

Article CAS Google Scholar

• Ghasemi A, Amanollahi J (2019) Integration of ANFIS model and forward selection method for air quality forecasting. Air Qual Atmos Health 12:59–72

Article CAS Google Scholar

• Gholami F, Tomas M, Gholami Z, Vakili M (2020) Technologies for the nitrogen oxides reduction from flue gas: A review. Sci Total Environ 714:136712

Article CAS Google Scholar

• HadiAbdulwahid A, Wang S (2018) A novel method of protection to prevent reverse power flow based on neuro-fuzzy networks for smart grid. Sustainability 10:1059

Article Google Scholar

- Hansen TK (2017) Development of new diesel oxidation and NH3 slip catalysts. Ph.D. Thesis, Technical University of Denmark (DTU), Lyngby, Denmark
- Harandizadeh H, Armaghani DJ (2021) Prediction of air-overpressure induced by blasting using an ANFIS-PNN model optimized by GA. Appl Soft Comput 99:106904

Article Google Scholar

 Hu G, Yang J, Tian Y, Kong B, Liu Q, Ren S, Li J, Kong M (2018) Effect of Ce doping on the resistance of Na over V2O5-WO3/TiO2 SCR catalysts. Mater Res Bull 104:112– 118

Article CAS Google Scholar

• Ilamathi P, Selladurai V, Balamurugan K, Sathyanathan V (2013) ANN–GA approach for predictive modeling and optimization of NOx emission in a tangentially fired boiler. Clean Technol Environ Policy 15:125–131

Article CAS Google Scholar

• Jong Y-H, Lee C-I (2004) Influence of geological conditions on the powder factor for tunnel blasting. Int J Rock Mech Min Sci 41:533–538

Article Google Scholar

• Kampouropoulos K, Andrade F, Sala E, Espinosa AG, Romeral L (2016) Multiobjective optimization of multi-carrier energy system using a combination of ANFIS and genetic algorithms. IEEE Trans Smart Grid 9:2276–2283

Article Google Scholar

• Li Y, Jiang P, She Q, Lin G (2018) Research on air pollutant concentration prediction method based on self-adaptive neuro-fuzzy weighted extreme learning machine. Environ Pollut 241:1115–1127

Article CAS Google Scholar

- Li Z, Liu XM, Yang DH, Qin WJ, Yang GS, Zhang DL (2014) Research of the SNCR Process and its Application. Adv Mat Res 953:1307–1314
- Liu Z, Wang Z, Yuan M, Yu H (2015) Thermal efficiency modelling of the cement clinker manufacturing process. J Energy Inst 88:76–86

Article CAS Google Scholar

• Lv Y, Liu J, Yang T, Zeng D (2013) A novel least squares support vector machine ensemble model for NOx emission prediction of a coal-fired boiler. Energy 55:319–329

Article CAS Google Scholar

• Mao J, Zhao H-D, Yao J-J (2011) Application and prospect of artificial neural network [J]. Electron Des Eng 19:62–65

Google Scholar

• Mehraj SS, Bhat G, Balkhi HM, Gul T (2013) Health risks for population living in the neighborhood of a cement factory. Afr J Environ Sci Technol 7:1044–1052

Google Scholar

• Mohammadi K, Shamshirband S, Kamsin A, Lai P, Mansor Z (2016) Identifying the most significant input parameters for predicting global solar radiation using an ANFIS selection procedure. Renew Sustain Energy Rev 63:423–434

Article Google Scholar

 Oguntoke O, Awanu AE, Annegarn HJ (2012) Impact of cement factory operations on air quality and human health in Ewekoro Local Government Area, South-Western Nigeria. Int J Environ Stud 69:934–945

Article Google Scholar

• Okoji AI, Anozie AN, Omoleye JA (2021) Evaluation of optimization techniques for predicting exergy efficiency of the cement raw meal production process. Cogent Eng 8:1930493

Article Google Scholar

• Okoji AI, Anozie AN, Omoleye JA (2022) Evaluating the thermodynamic efficiency of the cement grate clinker cooler process using artificial neural networks and ANFIS. Ain Shams Eng J 13:101704

Article Google Scholar

• Okoji AI, Anozie AN, Omoleye JA, Taiwo AE, Osuolale FN (2022) Energetic assessment of a precalcining rotary kiln in a cement plant using process simulator and neural networks. Alex Eng J 61:5097–5109

Article Google Scholar

• Okoji CN, Okoji AI, Ibrahim MS, Obinna O (2022) Comparative analysis of adaptive neuro-fuzzy inference system (ANFIS) and RSRM models to predict DBP (trihalomethanes) levels in the water treatment plant. Arab J Chem 15:103794

Article CAS Google Scholar

• Praveena V, Martin MLJ (2018) A review on various after treatment techniques to reduce NOx emissions in a CI engine. J Energy Inst 91:704–720

Article CAS Google Scholar

- Qiuyun S, Zhugang Y (2014) Working Condition recognition of cement decomposition furnace based on art-2 neural network. In: 2014 Sixth International Conference on Measuring Technology and Mechatronics Automation, Zhangjiajie, China, IEEE, pp 807–812
- Shahin H, Hassanpour S, Saboonchi A (2016) Thermal energy analysis of a lime production process: Rotary kiln, preheater and cooler. Energy Convers Manage 114:110–121

Article CAS Google Scholar

• Stadler KS, Poland J, Gallestey E (2011) Model predictive control of a rotary cement kiln. Control Eng Pract 19:1–9

Article Google Scholar

• Tan L, Guo Y, Liu Z, Feng P, Li Z (2019) An investigation on the catalytic characteristic of NOx reduction in SCR systems. J Taiwan Inst Chem Eng 99:53–59

Article CAS Google Scholar

• Wang C, Liu Y, Zheng S, Jiang A (2018) Optimizing combustion of coal fired boilers for reducing NOx emission using Gaussian Process. Energy 153:149–158

Article CAS Google Scholar

• Wu H, Cai J, Ren Q, Xu J, Chu F, Lyu Q (2020) An efficient and economic denitration technology based on fuel pretreatment for cement cleaner production. J Clean Prod 272:122669

Article CAS Google Scholar

• Xiuzhang J, Shaokang Z (2018) Prediction of denitrification system inlet nitrogen oxide based on neural network online learning. J Hebei Univ (Natural Science Edition) 38:423

Google Scholar

• Yao Y, Chen Y (2020) Technical Route to Achieve Ultra-Low Emission of Nitrogen Oxides with Predictive Model of Nitrogen Oxide Background Concentration. Processes 8:1104

Article CAS Google Scholar

• Yin S, Li X, Gao H, Kaynak O (2014) Data-based techniques focused on modern industry: An overview. IEEE Trans Industr Electron 62:657–667

Article Google Scholar

• Zhang Y, Wang W, Shao S, Duan S, Hou H (2017) ANN-GA approach for predictive modelling and optimization of NOx emissions in a cement precalcining kiln. Int J Environ Stud 74:253–261

Article CAS Google Scholar

• Zheng J, Du W, Lang Z, Qian F (2020) Modeling and Optimization of the Cement Calcination Process for Reducing NO x Emission Using an Improved Just-In-Time Gaussian Mixture Regression. Ind Eng Chem Res 59:4987–4999

Article CAS Google Scholar

Download references

Acknowledgements

The authors would like to acknowledge the Process and Simulation Laboratory of Landmark University for providing a suitable environment to carry out this research.

Author information

Authors and Affiliations

- 1. Department of Chemical Engineering, Landmark University, Omu-Aran, Kwara State, Nigeria Anthony I. Okoji
- 2. Department of Chemical Engineering, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria Ambrose N. Anozie
- 3. Department of Chemical Engineering, Covenant University, Ota, Ogun State, Nigeria

James A. Omoleye & Damilola E. Babatunde

4. Faculty of Engineering, Mangosuthu University of Technology, Durban, South Africa Abiola E. Taiwo

Contributions

Conceptualization, writing of the first draft preparation—Anthony I. Okoji; supervision and editing—Ambrose N. Anozie and James A. Omoleye; review, editing, simulation, and modeling—Abiola E. Taiwo; review and editing—Damilola E. Babatunde.

Corresponding author

Correspondence to Abiola E. Taiwo.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Informed consent was obtained from all individual participants included in the study.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Philippe Garrigues

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Cite this article

Okoji, A.I., Anozie, A.N., Omoleye, J.A. *et al.* Evaluation of adaptive neuro-fuzzy inference system-genetic algorithm in the prediction and optimization of NOx emission in cement precalcining kiln. *Environ Sci Pollut Res* **30**, 54835–54845 (2023). https://doi.org/10.1007/s11356-023-26282-0

Download citation

- Received22 September 2022
- Accepted28 February 2023
- Published07 March 2023
- Issue DateApril 2023
- DOIhttps://doi.org/10.1007/s11356-023-26282-0

Keywords

- Environmental pollution, Nitrogen oxides
- Precalcining kiln
- <u>Cement production</u>
- <u>Adaptive neuro-fuzzy inference systems</u>
- Genetic algorithms

Access this article

Log in via an institution

Subscribe and save

Springer+ Basic €32.70 /Month

• Get 10 units per month

- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime

Subscribe now

Buy Now

Buy article PDF 39,95 €

Price includes VAT (Nigeria) Instant access to the full article PDF.

Cancel contracts here

165.73.223.224

Covenant University Ota (3006481499)

© 2025 Springer Nature