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Evaluation of optimization techniques for 
predicting exergy efficiency of the cement raw 
meal production process
Anthony I. Okoji1,2,3,4*, Ambrose N. Anozie5 and James A. Omoleye4

Abstract:  In cement production, raw meal preparation and energy consumption 
are extremely important for cost reduction. However, few studies have examined 
the relationship between operational process parameters and exergy efficiency. For 
this comparative study on predicting exergy efficiency of raw meal production, 
adaptive neuro-fuzzy inference systems (ANFIS), multiple linear regression (MLR), 
and response surface methodology (RSM) were used for a comparison of the pre-
dictive accuracy of these parameters. The study also suggests a routine for selecting 
the best predictive model, which includes considering raw materials, primary air, 
moisture content, and kiln hot gas flow. The established model was tested against 
different indicators of predictive performance and found to be consistent. The 
developed ANFIS, MLR, and RSM models accurately described the process (coeffi-
cient of determination, R2 > 0.9000), and in each case, the absolute relative errors 
(AARE) are 0.000692, 0.00422, and 0.00135. The current study has found that both 
ANFIS and RSM predicted correctly and consistently better than MLR, but while 
ANFIS and RSM produced similar results, ANFIS performed slightly better than RSM.

Subjects: Artificial Intelligence; Thermodynamics; Sustainable Engineering & 
Manufacturing; Chemical Engineering  

Keywords: Exergy efficiency; raw meal production; cement production; adaptive  
neuro-fuzzy inference systems; multiple linear regression; response surface methodology
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1. Introduction
Cement manufacturers face economic and environmental challenges due to their high-energy 
consumption. Periodic data collection on industry and other energy-consuming industries is crucial 
to setting objectives for energy-saving studies (Madlool, Saidur et al., 2013). Atmaca and Yumrutaş 
(2014) suggested that an estimates of 54% thermal efficiency could be achieved by the cement 
industry. This ultimately means that enormous amounts of energy are underutilized in cement 
manufacturing which invariably makes the greenhouse gas emissions generated as a waste that 
could be managed for sustainability goal. The large losses should not be regarded as an impossible 
hurdle but as an opportunity for achieving technological improvements (Boyd & Zhang, 2013). The 
cement raw mill is the primary piece of equipment used in the modern cement industry for the raw 
meal production process. As a result, it is critical to investigate the exergy efficiency in a cement 
raw mill in order to satisfy the need for the design and optimization of the cement plant 
manufacturing process. Because of its significance, exergy as a tool offers excellent assistance 
to all fields, particularly science and engineering, in the pursuit of sustainable development. 
A system with a higher exergetic performance saves energy and benefits the environment .

The first law of thermodynamics helps quantify energy conversion in a phase; however, 
the second law provides theoretical explanations for these conversions. It places constraints on 
the energy quality and energy transformation direction (Smith et al., 2018). The concept of exergy, 
which is based on the second thermodynamic law, has been widely applied to energy systems 
(Han et al., 2018), resource economics performance (Mirhosseini et al., 2019; Mirzaei et al., 2018; 
Song et al., 2019), and environmental impact assessment (Oni et al., 2017; Sogut et al., 2009). The 
system can detect the location and magnitude of energy destruction in low-efficiency transforma-
tion sectors and provide data for accurate design, simulation, and optimization of rotary kilns and 
grinding plants used in cement production. Fellaou and Bounahmidi (2017) applied an advanced 
exergy analysis tool to assess the real potential for energy system thermodynamic changes by 
separating exergy destruction into inevitable and avoidable parts. Taweel et al. (2018) presented 
a temperature profile-based analysis of clinker in the grate clinker cooler. Shao et al. (2020) 
investigated the heat distribution in the entire grate cooler system using experimental research 
and numerical simulation. Shao et al. (2016) proposed an air distribution model using multi- 
objective optimization techniques developed to address the issue of heat recovery in a cement 
grate clinker cooler.Okoji et al. (2018) examined the thermodynamic efficiency of a cement raw 
mill using the Aspen Plus software. Utlu et al. (2006) also assessed the energy and exergy 
efficiency of a cement raw mill in the sector. Atmaca and Atmaca (2016) summarised the cement 
production process in terms of exergy balance, illustrating that increasing energy efficiency can 
help reduce energy consumption.

Previous works on energy efficiency have made use of mechanistic models, however, developing 
such a model for complex processes, particularly integrating exergy efficiency as the second law of 
thermodynamics may be complicated and time-consuming (Li et al., 2019). Data-driven models 
such as Aspen plus, adaptive neural network and a fuzzy inference system (ANFIS), multiple linear 
regression (MLR) and response surface methodology (RSM) models may be able to assist in 
resolving these issues (Li et al., 2019)

RSM is a powerful mathematical tool for designing, modeling, and optimizing experimental 
materials. It is an empirical modeling technique that is related to one or more responses to 
individual variables. It is distinctive in that it provides information on the various models and 
their interactions (Maddah et al., 2019). RSM has been used for the optimization, such as extraction 
of Terminalia catappa L and Kernel oil (Agu et al., 2020); prediction of parameters of optimum 
processes for activated rice husk carbon production (Mansour Ghaffari & Mostafa, 2011). MLR, on 
the other hand, involves more than one input variable, which can contribute to a “multiple linear 
regression” in many regression analysis applications. In this case, by modifying the linear equation 
to the observed data, the MLR tests the correlation between two or more input variables to give 
a desired output (Khademi & Behfarnia, 2016; Sadrmomtazi et al., 2013). While Jang and Sun 
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(1995) developed adaptive neuro-fuzzy inference system (ANFIS) as a technique that combines the 
capabilities of an adaptive neural network and a fuzzy inference system (ANFIS). This is an example 
of neural networks, fuzzy system has a simple learning procedures with a good computational 
strength, and ability to describe uncertainty (Malik & Rashid, 2000). Although the technique has 
been used to model a variety of systems, there is little evidence of its use in cement raw meal 
preparation processes.

Consider the following references for more in-depth discussion of other solutions, Awasthi and 
Omrani (2019) applied a goal-oriented approach based on fuzzy axiomatic design for prioritising 
sustainable mobility projects. Gharaei, Karimi et al. (2019) proposed an integrated multi-product 
and multi-buyer SC under penalty policies, quality management practices, and a VMI with consign-
ment stock agreement. They explored the impact of augmented penalty algorithms using the 
outer approximation including equality relaxation. The multi-objective, integrated economic pro-
duction quantity model by Gharaei, Hoseini Shekarabi et al. (2019) was based on quality assurance 
and green policy considerations as well as stochastic constraints. As part of an integrated 
approach, Sayyadi and Awasthi (2020) studied sustainable transportation policy evaluation using 
system dynamics simulation and analytic network model. A stochastic maintenance quality model 
for multi-component systems is investigated in Duan et al. (2018), which uses a simulated anneal-
ing algorithm to solve a complicated optimisation problem. Gharaei et al. (2020) addressed joint 
economic lot-sizing problem in the context of integrated four-level SC planning, utilizing general-
ised benders decomposition to optimize the MINLP model. Hoseini Shekarabi et al. (2019) evalu-
ated integrated multilevel multi-wholesaler supply chains under the shortage and limited 
warehouse space using generalized outer approximations (GOA) to determine the optimal lot- 
sizing. Kazemi et al. (2018) analysed how defects affect order quantities and the impact of 
emission costs on replenishment order sizes as well as the total profit of a retailer. Rabbani 
et al. (2019) applied a decision model based on interval-valued fuzzy sets and probabilistic 
statistical reference point systems for sustainable supplier selection under uncertainty to evaluate 
the sustainability performance of suppliers. Rabbani et al. (2020) used a hybrid robust possibilistic 
approach for a sustainable supply chain location-allocation network, and the AUGMECON2 method 
for solving the model and gaining Pareto solutions. A simulation-based optimization approach 
developed by Sayyadi and Awasthi (2018) for identifying key sustainability determinants assists 
with identifying critical variables for meeting sustainability objectives in transportation. Tsao 
(2015) used nonlinear optimization to solve a piecewise nonlinear problem in a carbon-efficient 
supply chain network through trade credits. A non-cooperative game is used to model the relation-
ship between a single manufacturer and multiple suppliers with quality variations under uncertain 
demands, according to Yin et al. (2016).

Most researches are focusing on the exergy efficiency and parametric study analysis of the raw 
meal production process. However, there are little research on using the Aspen plus to evaluate 
the exergy efficiency with the selected plant operational data which have influence on the 
intensive property of the process and in addition, incorporating the predictive model to obtain 
the optimal solution by validating with the plant operating data. In most cases, Aspen Plus must 
generate the mass, enthalpies, and exergy of all the streams involved in order to evaluate exergy 
efficiency, whereas ANFIS, MLR, and RSM brings to board improvement through predictive 
approach because they do not require the rigors of measuring stream mass, enthalpies, and 
exergy.

In this study, ANFIS, RSM, and MLR models are trained by using a large number of actual 
production data to obtain the relationship between the exergy efficiency and the plant operational 
parameters, and Minitab 17 software is employed to find the optimal input parameters to achieve 
the maximum exergy efficiency. A set of Pareto optimal solutions is achieved with the selected 
design operational variables, which are raw material feed flow (kg/h), HAG gas flow (kg/h), primary 
airflow (kg/h), feed moisture mass flow (kg/h), Kiln hot gas flow (kg/h). The model can predict the 
exergy efficiency and provide a reference for implementing optimum efficiency in enterprises 
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through simulations specific to existing data. The proposed approach is capable of generating 
training data, enabling a network to be trained, and, in addition, for an early stop in prediction. 
Early stopping of ANFIS means that their predictions are continuously monitored during training, 
so that they are terminated when their predictions on testing data do not further reduce. 
A model’s prediction accuracy is enhanced if the predicted target values are closer to the actual 
experimental values.

2. Raw meal production process
The raw material used to produce clinkers is some naturally occurring minerals and some waste 
materials available from other industries. Limestone (for calcium) mixed with much smaller amounts 
of clay, shale, and sand are the most common mixture of ingredients (as a source of silica, 
aluminum, and iron) as shown in Figure 1. The various raw material components are moved by 
a standard belt conveyor directly through the rotary sluice into the mill with a capacity of 
240,000 kg/h on a dry basis. The material was spinned by the table and found its way in between 
the lowered rollers and the table for proper size reduction to take place. The spills material from the 
table comes in contact with the upward movement of the hot gases through the dam rings caused 
the ground material to be entrained in the hot air at a temperature of 430°C for proper drying and 
transport into the classifier forming the upper part of the mill by the air stream. Fine particles exit the 
separator at a temperature of about 85°C, while coarser particles are rejected and recycled for 
subsequent grinding. Those parts that leave the mill with the exhaust gases are precipitated in 
cyclones. The precipitate is transferred to a raw meals storage silo. A filter fan sends the now 
cleaned gases to the atmosphere, but the residual fine dust, which is not precipitated in cyclones, is 
transferred to the electrostatic precipitator, where dust trapped takes place. The raw meal with the 
right chemical balance is a milled fine powder made from the raw materials. The chemistry of the 
raw materials and the raw meal is very closely regulated to ensure a high cement quality. Material 
homogenization is important for ensuring consistency in product quality.

Mass balance: 

∑
n

i¼1
_min � ∑

n

i¼1
_mout ¼ 0 (1) 

Figure 1. Raw Meal Preparation 
Flowsheet, source: .Okoji et al. 
Okoji et al. (2018)

Okoji et al., Cogent Engineering (2021), 8: 1930493                                                                                                                                                        
https://doi.org/10.1080/23311916.2021.1930493                                                                                                                                                       

Page 5 of 18



Where _m is the mass flow rate of streams, in is the inlet condition, out is the outlet condition, i is 
the ith stream, and n is the nth stream.

Energy balance: 

∑
n

i¼1

_Qi þ ∑
n

i¼1

_Ws ¼ ∑
n

i¼1
_moutΔhout � ∑

n

i¼1
_minΔhin (2) 

Where _Qi is the heat crossing the boundary of the plant’s component unit, _Ws is the shaft work 
required or produced by the unit, Δh is the change specific in enthalpy of a stream for the ambient 
condition.

Exergy balance: 

∑
n

i¼1

_Qi 1 �
To

Ti

� �

þ ∑
n

i¼1

_Ws þ ∑
n

i¼1
_minexin � ∑

n

i¼1
_moutexout ¼ I (3)  

exi ¼ Δh � ToΔs ¼ hi � hoð Þ � To si � soð Þ (4) 

Where exi is the specific exergy of a stream, To is the ambient temperature, Δs is the change in 
specific entropy concerning the ambient condition, so is the stream-specific entropy at ambient 
condition, si is the specific entropy of a stream at the current state, I is the irreversibility of the 
process (Utlu et al., 2006). The plant design and process input data obtained for the Aspen plus 
process model simulation are presented in the Table 1 and 2.

3. Models development

3.1. Multiple linear regression model (MLR)
Finding a correlation between two or more variables involves many engineering challenges. The 
quest of addressing this challenges birthed a simple statistical method called regression analysis 
and ever since the scientists have always been interested in its application. It is generally possible 

Figure 2. Cement raw meal 
production flow sheet repre-
sented with Aspen Plus process 
model.
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to consider regression models as a method for fitting models to data. Using multiple linear 
regression, the relationship between variables is explored as well as the summary of data. The 
general form of multiple models of linear regression is expressed in Equation. (5) below: 

Ŷ ¼ b0 þ ∑
n

i¼1
biXi (5) 

where Ŷ is the model’s output, Xi’s are the independent input variables to the model, and 
b1; b2; bi; . . . . . . :bn are partial regression coefficients. To make the model’s performance compar-
able with that of the training set, the parameters are set to minimize variability. This study’s 
multiple linear regression model demonstrates the relationship between operational data and the 
exergy efficiency of the raw meal production process.

3.2. Response surface methods model (RSM)
Box-Behnken, central composite design (CCD), and factorial design are the three most widely used 
RSM methods. The main composite design is a five-level design that combines axial points while 
constructing the experimental runs, whereas the three-level designs include the Box-Behnken and 
factorial design. By applying both ORIGINPRO 2019 and Minitab 17 software, the RSM modeling 
was completed. This was also done to evaluate the interactive impacts on the exergy efficiency of 
raw meal output of the independent input variables. The independent input variables were raw 
material feed flow (kg/h), HAG gas flow (kg/h), primary airflow (kg/h), feed moisture mass flow (kg/ 
h), Kiln hot gas flow (kg/h).

The quadratic model has been used to express the behavior of the exergy efficiency (Y) system 
response as a function of the independent input variables in Equation. (6).

The input variables were raw material feed flow x1ð Þ, HAG gas flow x2ð Þ, primary airflow x3ð Þ, 
moisture mass flow x4ð Þ, Kiln hot gas flow x5ð Þ. 

Y ¼ δ0 þ δ1X1 þ δ2X2 þ δ3X3 þ δ4X4 þ δ5X5 þ δ11X2
1 þ δ22X2

2 þ δ33X2
3 þ δ44X2

4
þδ55X2

5 þ δ12X1X2 þ δ13X1X3 þ δ14X1X4 þ δ15X1X5 þ δ23X2X3 þ δ24X2X4
þδ25X2X5 þ δ34X3X4 þ δ35X3X5 þ δ45X4X5 þP

(6) 

where δ0 is the offset term or model constant; δ1; δ2; δ3; δ4; δ5 are the linear or first-order terms; 
δ11; δ22; δ33; δ44; δ55 are the pure quadratic or squared terms; δ12; δ13; δ14; δ15; δ23; δ24; δ25; δ34; δ35; δ45. 
These are the quadratic function’s interactive terms; P is the random error term that makes uncer-
tainties between the values that are experimental and predicted. The acceptability of the quadratic 
model was based on the p-value of the variance analysis and the coefficient of correlation (R2) value.

In evaluating the significance of the obtained regression model, the discrepancy between the 
operational data and the expected values was used.

3.3. Adaptive neuro-fuzzy inference system model (ANFIS)
ANFIS was used to create a multi-input single-output (MISO) fuzzy model with five input variables 
and one output variable to predict the energy efficiency of a raw meal production process. 
Furthermore, Figure 3 depicts the architecture of the proposed ANFIS model, which is comprised 
of five distinct layers: fuzzification, product, norm or standardization, defuzzification, and layers of 
total production summation (Naderpour et al., 2010). The first-order Sugeno-type model, which 
has five input variables with both Takagi and Sugeno’s fuzzy IF-THEN law, was used for this 
investigation. Assuming there are two inputs (x, y) and one output (f) for the fuzzy inference 
method (FIS) under consideration, the fuzzy rules apply as follows (Jang & Sun, 1995): 
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Rule 1! if x isA1 and y isB1; then f1 ¼ p1xþ q1y þ r1:

Rule 2! ifx isA2 and y isB2; thenf2 ¼ p2xþ q2y þ r2:

As Figure 2 shows, the ANFIS model architecture comprises 5 separate layers defined as follows, 
each of them (Jang & Sun, 1995):

(1) Layer 1: This is the fuzzification layer, and any node I in this layer is transformed to 
membership values by using the Membership function, as shown in Equation. (7):

O1
i ¼ μAi

xð Þ (7) 

in which the input to node i is x, and the linguistic label associated with this node function Ai:

2) Layer 2: Every node in this layer reproduces the input and sends out the results. Furthermore, 
the firing power of each rule can be determined by each specific node in the same layer. This layer 
is shown as an example in Equation (8) (Jang & Sun, 1995; Sadrmomtazi et al., 2013). 

wi ¼ μAi
yð ÞxμBi

yð Þ; i ¼ 1;2 . . . . . . (8) 

3) Layer 3: This layer is capable of normalizing values for membership. In this layer, the ith node 
specifies the proportion of the firing power of the ith law to the sum of the firing intensity of all 
rules. Equation (9) indicates the normalized firing force measurements in this layer for node ith. 

wi ¼
wi

w1 þw2ð Þ
; i ¼ 1;2 . . . . . . (9) 

4) Layer 4: This layer, also known as the adaptive layer, could define the connection of the input 
and output values as shown in Equation. (10) 

Figure 3. ANFIS model archi-
tecture with five input 
variables.

Okoji et al., Cogent Engineering (2021), 8: 1930493                                                                                                                                                        
https://doi.org/10.1080/23311916.2021.1930493

Page 8 of 18



O4
i ¼ wi pixþ qiy þ rið Þ (10) 

where wi is the output resulted from layer 3, and pi þ qi þ rif g is the parameter set.

5) Layer 5: This is also known as the de-fuzzification layer. The later signal node is a circle node 
labeled ƒ° that computed the total output as the summation of all input signals shown in 
Equation. (11). 

O5
i ¼ ∑

i
wifi ¼

∑i wifi

∑i wi
(11) 

Using the hybrid learning algorithm, contexts and parameters are determined by combining least 
squares and gradient descent. Lately, for its predictive purposes, ANFIS has implemented the 
hybrid algorithm, which is an effective learning process. Many scientists have validated the hybrid 
algorithm (Vu-Bac et al., 2014).

3.4. Performance criteria
In this analysis, statistical goodness-of-fit parameters were provided to compare the results 
between the three separate ANFIS, RSM, and MLR models. The best predictor is the coefficient of 
determination R2 with Adjusted R2to verify the correlation efficiency of the model. Besides, some 
statistical models have been used to measure the size of the error between the experimental 
values and expected values. These include mean square error (MSE), root-mean-square error 
(RMSE), sum square error (SSE), and absolute average relative error (AARE) as shown in equation 
(Jian et al., 2011; Vu-Bac et al., 2014).

4. Results and discussion

4.1. Development of the model of mathematical regression by RSM
The results of RSM process modeling have provided a mathematical expression that relates to the 
raw material feed, primary airflow, hot gas generator gas flow, moisture mass flow, and kiln hot 
gas flow (i.e. independent variables) in terms of exergy efficiency (i.e. response) in terms of the 
actual values, and are represented by the RSM. Equation. (18). 

Y ¼ 66:6 � 0:420X1 � 0:0762X2 þ 20:02X3 � 0:9082X4 � 0:0503X5 � 0:000153X2
2 þ 6:245X2

3

þ 0:008198X2
4 þ 0:000313X2

5 þ 0:000098X1X2 � 0:0195X1X3 þ 0:000967X1X4 � 0:000099X1X5

� 0:04025X2X3 þ 0:000911X2X4 � 0:27029X3X4 þ 0:01652X3X5 þ 0:001888X4X5

(18) 

where Y is exergy efficiency (%),X1 is the raw material feed (kg/h), X2 is the primary airflow (kg/ 
h), X3 hot gas generator gas flow (kg/h), X4 moisture mass flow rate (kg/h) and X5 kiln hot gas flow 
(kg/h).

The value of R, which is close to unity, indicates that the operational data and expected values were 
well correlated. Also, the value of R2 indicates the model can explain 90.8% of the variance in the 
operational data and expected values. R2, it implies a strong fit of the model that is similar to unity. The 
description of each model terminology and its interactions have also been examined by drawing up 
a Pareto map (Figure 5d) using Minitab 17 software. The longer the bar, the greater the importance and 
the insignificance of every bar. The figure shows that the most important model term was moisture 
mass flow ratio, followed by hot gas generator gas flow, followed by kiln hot gas flow.

4.2. Parametric effect of using RSM model
The interaction between the five parameters examined for the exergy efficiency of the raw meal 
production process was considered using three-dimensional surface plots (Figure 4a-e), which 
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enabled visual observations to be made. The plots were created with the RSM design of experiment 
(DOE) and Minitab 17 software.

(1) Effect of moisture mass flow and raw material feed flow.

Figure 4. 3D surface plots by 
RSM (a–d) and ANFIS (e–h).

Okoji et al., Cogent Engineering (2021), 8: 1930493                                                                                                                                                        
https://doi.org/10.1080/23311916.2021.1930493

Page 10 of 18



This three-dimensional plot of the parameters in Figure 4a is similar to Figure 3b, and it shows an 
interaction between moisture mass flow and feed with significant effects on the exergy efficiency 
of the raw meal production process. The exergy efficiency was highest at the lowest moisture mass 
flow with high raw material feed. As the raw material feed increases, at a reduced moisture mass 
flow the exergy efficiency of the system increased as high as greater than 35% at variables which 
are of the value of 260,000 kg/h for raw material feed and 55,000 kg/h for moisture mass flow. This 
could only be achieved at 17.5% of the moisture in the raw material feed. The figure suggests 
moisture mass flow had a more significant effect on the increase of the raw meal exergy efficiency 
than the raw material feed.

4.2.1. Effect of kiln hot gas flow and moisture mass flow
The surface plot of three-dimension for the parameters in Figure 4b looks similar to Figure 4a and it 
shows a strong interaction that occurred between the two parameters was more significantly 
observed when compare to Figure 4a and c. An increase in exergy efficiency is also observed at the 
lowest moisture mass flow and moderately on the kiln hot gas flow. The exergy efficiency of the 
raw meal production process is noted at moisture mass flow of 50,000 kg/h and with a consistent 
increase of kiln hot gas flow until a maximum kiln hot gas flow with temperature increase to affect 
the drying process in raw mill internals for efficient grinding. The exergy efficiency is affected 
significantly by moisture mass flow (Atmaca & Kanoglu, 2012).

4.2.2. Effect of raw material feed and kiln hot gas flow
The surface plot of three-dimension in Figure 4c looks similar to Figure 4b and it shows interface 
occurs between the raw material feed and kiln hot gas flow with a substantial effect on the exergy 
efficiency of the raw meal production process. The exergy efficiency was highest at the lowest raw 
material feed with consistently high kiln hot gas flow. As the raw material feed increases, at an 
increase in the kiln hot flow the exergy efficiency of the system increased as high as greater than 
26% at the peak of both variables which are of the value of 260,000 kg/h for raw material feed and 
440,000 kg/h for kiln hot gas flow. This could only be achieved at 22% of the moisture in the raw 
material feed. The figure suggests kiln hot gas flow which is waste heat from the kiln had a more 
significant effect on the increase of the raw meal exergy efficiency than the raw material feed.

Figure 5. The plots of predicted 
value versus actual exergy effi-
ciency for ANFIS, RSM, and MLR 
(a—c), Pareto chart of standar-
dized effects for exergy effi-
ciency (d).
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4.2.3. Effect of moisture mass flow and hot gas generator gas flow
Figure 4d depicts a three-dimensional surface plot of moisture mass flow and hot gas generator 
gas flow to the exergy efficiency. The surface plot imitates Figure 4b, and it demonstrates a strong 
interaction between the two parameters that was more significantly observed when compared to 
Figure 4a, b, and c.

The highest exergy efficiency is also observed at the lowest moisture mass flow and moder-
ately on the hot gas generator gas flow. The highest exergy efficiency of the raw meal production 
process is noted at moisture mass flow of 50,000 kg/h and hot gas generator gas flow of 
1350 kg/h. The exergy efficiency is affected significantly by moisture mass flow (Atmaca and 
Atmaca, 2016).

4.3. ANFIS modeling
Figure 3 shows the plots of five inputs (raw material feed, primary airflow, hot gas generator 
gas flow, moisture mass flow, and kiln hot gas flow) using Gaussian membership functions 
(MF). Figure 5a depicts a plot of the operation data and expected values. The calculated R and 
R2 values were 0.998 and 0.9961, respectively. The value of R2 which is near unity, indicates 
a strong good agreement between the operational data and predicted values. Furthermore, the 
value of R2 shows that the model can explain 99.61% of the variation in the operational data 
and the predicted values. The high value of R2 also indicates the model’s fitness (Utlu et al., 
2006).

4.4. Effect of parametric analysis using ANFIS model
In order to determine the exergy efficiency of raw meal production, 3D surface plots were used to 
examine the interactions between five parameters (Figure 4e–h). These plots can be viewed 
visually, and were produced using the ANFIS model.

4.4.1. Effect of moisture mass flow and raw material feed flow
The relationship between moisture mass flow and raw material feed flow on the exergy efficiency 
is expressed in Figure 4e. The figure shows that the relationship between the two parameters 
influenced the exergy efficiency of the process in the production of raw meals considerably. When 
moisture mass flow and raw material feed were lowest, exergy efficiency was highest. As both 
factors increased, exergy efficiency decreased (Figure 4e). The exergy efficiency decreased from 
over 35% to less than 20% for the raw meal production process. Decreasing the moisture mass 
flow beyond 75,000 kg/h increases the exergy efficiency of the system. Likewise, decreasing the 
raw material feed below 230,000 kg/h considerably increases the exergy efficiency. It is under-
stood that both parameters are considered to have a major impact on the process exergy 
efficiency

4.4.2. Effect of kiln hot gas flow and moisture mass flow
Figure 4f shows the three-dimensional surface plot of kiln hot gas flow and moisture mass 
flow the exergy efficiency of the raw meal production process. The figure showed looks 
similar to Figure 4e, and the relationship between the two parameters influenced the exergy 
efficiency of the process in the production of raw meals considerably. The exergy efficiency of 
the system was highest at the lowest moisture mass flow and highest kiln hot gas flow. As 
the moisture mass flow and kiln hot gas flow increases, the exergy efficiency of the raw meal 
production process decreases (Figure 4f). The exergy efficiency decreased from about 40% to 
less than 20%. The lowest exergy efficiency is observed at moisture mass flow of 100,000 kg/ 
h and kiln hot gas flow of 380,000 kg/h. increasing the kiln hot gas above this value increases 
the exergy efficiency. Similarly, decreasing the moisture mass flow, significantly increases the 
exergy efficiency of the raw meal production process.
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4.4.3. Effect of raw material feed and kiln hot gas flow
Figure 4g illustrates the relationship between raw materials feed and kiln hot gas flow on exergy 
efficiency. The figure shows that the relationship between the two parameters influenced the 
exergy efficiency of the process in the production of raw meals considerably. The exergy efficiency 
was highest at the lowest raw material feed and highest at the hot gas generator gas flow. As the 
raw material feed increases at the highest hot gas generator gas flow, the exergy efficiency 
started decreasing (Figure 4g). The exergy efficiency decreased from over 26% to less than 24%. 
The lowest exergy efficiency is observed at the raw material feed of 260,000 kg/h and the hot gas 
generator gas flow of 380,000 kg/h. Increasing the kiln hot gas flow beyond 430,000 kg/h increases 
the exergy efficiency of the raw meal production process. Likewise, decreasing the raw material 
feed to 220,000 kg/h considerably increases the exergy efficiency of the process.

4.4.4. Effect of moisture mass flow and hot gas generator gas flow
The relationship between moisture mass flow and hot gas generator gas flow on the exergy efficiency 
is described in Figure 4h. The figure shows the interaction of the two parameters that significantly 
influenced the exergy efficiency of the raw meal process. The exergy efficiency was highest at the 
lowest moisture mass flow and highest at the hot gas generator gas flow. When the moisture mass 
flow increases at the highest hot gas generator gas flow, the exergy efficiency started decreasing 
(Figure 4h). The exergy efficiency decreased from over 40% to less than 20%. The lowest exergy 
efficiency is observed at moisture mass flow of 100,000 kg/h and the hot gas generator gas flow of 
800 kg/h. Increasing the hot gas generator gas flow beyond 1500 kg/h increases the exergy efficiency 
of the raw meal production process. Likewise, decreasing the moisture mass flow to 75,000 kg/h 
increases significantly the exergy efficiency of the process. It is understood that both parameters are 
considered to have a major impact on the process exergy efficiency (Atmaca & Kanoglu, 2012).

4.5. Multiple linear regression (MLR) modeling
The values suggested that the operating data were well aligned with the predicted values. The 
results also checked that the MLR model has been generalized to allow the results to be predicted. 
Figure 5b depicts a plot of the operation data and expected values and estimated value of R and R2 

for MLR model are, respectively, 0.953 and 0.9091. The value of R, which is nearly unity, indicates 
that the operational data and expected values were in good agreement. Also, the value of the R2 

shows that the model can explain 90.9% of the variance in the experimental and expected values. 
For the model, the value of R2 achieved is a good fit indicative.

4.6. Evaluation of the predictive potential of the models developed
By determining their R, R2, adjusted R2 mean square error (MSE), root-mean-square error (RMSE), 
sum square error (SSE), and average absolute relative error (AARE), The efficacy of the ANFIS, MLR, 
and RSM models developed to predict the exergy efficiency of the raw meal production process has 
been evaluated. Table 6 presents the results obtained. The parity plots are shown in Figure 5 (a—c) 
for operational data and expected values, which supports the high observed R values for the three 
models in Table 6. The value of R should be close to unity (1) for a strong correlation between 
experimental and expected values. In all the three predictive models, the achieved correlation 
determination are with indication of good fit having high R2 almost 1. Moreover, for the models, 
the RMSE, which is the MSE square root, was also determined. All of the values obtained were low 
for both MSE and RMSE, confirming the models’ good fit. AARE (also known as the average absolute 
relative error) calculates a model’s precision and accuracy. Furthermore, the model’s performance 
improves as the values are reduced. Table 6 shows the values that have been determined for the 
proven models. ANFIS was more closely followed by RSM and finally by the MLR, based on 
statistical index results. Operational data with the actual exergy efficiency values were plotted 
against the predicted exergy efficiency for the three examined model for the study as expressed in 
Figure 5(a–c). The figure shows the least reliable model to be MLR, backed by its relatively 
increased SSE. However, this current work shows that the findings from the predictions are reliable 
and accurate with R2 almost 1. This work showed that the results of ANFIS and RSM modeling were 
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Table 1. Specifications of raw meal production equipment
Parameters Unit
Inlet material flow kg=h 240,000

Inlet moisture flow kg=h 48,000

Inlet hot gas flow kg=h 440,086

Inlet dust flow kg=h 19.353

Inlet hot gas temperature 380

HAG temperature 760

Inlet material temperature 30

Operating Pressure atm 1

Cyclone efficiency % 96

Separator efficiency % 86

Electro-static precipitator efficiency % 84

Table 2. Statistical models for evaluation
Equations Number

R2 ¼ 1 �
∑n

i¼1 Yi;pre � Yi;exp
� �2

∑n
i¼1 Yi;exp � Ym
� �2 (12) 

AdjustedR2 ¼ 1 � 1 � R2� �
x

n � 1
n � k � 1

(13) 

MSE ¼
∑n

i¼1 Yexp � Ypre
� �2

n
(14) 

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑n
i¼1 Yexp � Ypre
� �2

n

s

(15) 

SSE ¼ ∑
n

i¼1
Yexp � Ypre
� �2 (16) 

AARE ¼
1
n

∑
n

i¼1

Ypre � Yexp

Yexp

� �

(17) 

Table 6. ANFIS, MLR, and RSM model performance assessment
Parameter ANFIS MLR RSM
R 0.9980 0.9535 0.9941

R2 0.9961 0.9091 0.9883

AdjustedR2 0.9961 0.9086 0.9882

MSE 0.36208 7.9906 1.0298

RSME 0.60173 2.8268 1.0148

SSE 371.132 8190.337 1055.531

AARE 0.000692 0.04215 0.001353
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similar in terms of prediction accuracy but ANFIS was better than RSM, even though the results 
obtained by RSM and ANFIS were very similar. Using Minitab 17 software for the optimization of the 
actual exergy efficiency and a Pareto chart (Figure 5d), the significance of each design variables 
and their interactions was also investigated as it affects the raw meal exergy efficiency. The higher 
the significance, the longer the bar, and the bar behind the reference line of 50 showed how 
insignificant the design variables is to affect the raw meal exergy efficiency. According to the 
graph, moisture was the most influential operational variable which influence the exergy efficiency 
of the entire process, while others were behind the reference line of 50 with little or no significant.

4.7. Model optimization and validation
Figure 6 shows with the aid of Minitab 17 software the optimum exergy efficiency of the raw meal 
production process is estimated to be 31.05%, which was predicted at a raw material feed of 
240,000 kg/h, primary airflow of 80,000 kg/h, hot gas generator gas flow of 1,400 kg/h, maximum 
moisture mass flow of 70,000 kg/h, and kiln hot gas mass flow of 430,000 kg/h. The predicted 
optimal value was validated with the plant operational data using the ASPEN Plus and average 
exergy efficiency of 31.5% was obtained. There was a good agreement between the predictive 
optimal model value and the operational plant value.

5. Conclusions
It is difficult and time-consuming to evaluate the exergy performance of a raw meal production 
process using a mechanistic approach. To overcome this limitation, prediction models were devel-
oped using plant operational and experimental data, and ANFIS, MLR, and RSM were used as 
prediction tools. The developed prediction models are highly predictive and can be used to 
estimate the exergy efficiency of the cement raw meal production process while in operation.

To evaluate the accuracy of the prediction models, a statistical analysis was performed with 
a correlation analysis, RMSE, and AARE for prediction error estimation.

When comparing the ANFIS, MLR, and RSM models proposed in this study, it is clear that the 
ANFIS models outperform the RSM models and are followed by the MLR models. This could be 
attributed to the non-linearity of the independent and dependent variables.

Finally, the raw meal manufacturing process was optimized with Minitab 17 numerical optimiza-
tion program in order to improve its exergy efficiency. The maximum exergy efficiency, minimum 
raw material feeding, and minimum primary air flow, as well as minimum moisture flow, are among 
the Pareto optimization solutions validated and compared. After comparing the models, the final 
choice is determined by raw meal maximum exergy efficiency. Although the models perform well in 
practice, predictive models do not always produce optimal solutions. It is worth noting that in the 
case study, the exergy efficiency of the raw meal production process of the optimal design point 
achieved was increased by 20.5% with designed variables of raw material feeding of 240,000 kg/h, 
primary air flows of 80,000 kg/h, HAG gas flow of 1,403 kg/h, moisture flow of 70,000 kg/h, and hot 
gas flow of Kiln of 430,000 kg/h, demonstrating a significant impact on exergy efficiency. A further 
study should be performed on the effect of intensive properties on the overall exergy efficiency of the 

Figure 6. Optimization of 
exergy efficiency of the raw 
meal production process of 
a cement plant.

Okoji et al., Cogent Engineering (2021), 8: 1930493                                                                                                                                                        
https://doi.org/10.1080/23311916.2021.1930493                                                                                                                                                       

Page 15 of 18



process. Even though the electrical and communition exergy were left out in the final analysis, these 
effects can also impact the overall energy efficiency of the process.
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