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Abstract 

The consequences of highly saline freshwater on the ecosystem and humans are quite alarming 
and have gained little attention in recent times. Progressive advances in pervaporation have 
helped to unlock its potentials in the desalination of salty streams. In this study, desalination of 
lagoon-water using cellulose acetate membrane (CAM) and its copper-doped nanocomposite 
(CA-CuNP) membrane was investigated. A newly developed model was used in estimating salt 
diffusion coefficients in steady and unsteady state situations. At the experimental phase, 
permeate fluxes increased with temperature but dropped when the critical fluxes (5.11–
6.01 L/m2h and 5.29–7.56 L/m2h) were exceeded for the CAM and CA-CuNP membranes 
respectively. At steady state, the critical permeate volumes for the pristine and nanocomposite 
membranes were 0.2273 and 0.1826 L with corresponding fluxes of 0.034 and 0.031 L/m2h after 
10 and 9 h, respectively. The estimated steady and unsteady diffusivities for the membranes are: 
1.46 * 10–4–8.43 * 10–3 m2/h (4.06 * 10–7–2.34 * 10–6 m2/s) and 2.44 * 10–4–0.17 * 10–4 (6.78 * 10–

8–4.72 * 10–9 m2/s), respectively. The nanocomposite membrane gave slightly higher salt 
rejection with fluxes mimicking the power law model. Thermal resistance of the pristine 
membrane improved from 219.36 to 221.18 °C after doping it with copper nanoparticles. 
Furthermore, the estimated critical permeate fluxes are indicative of saturation conditions for the 
CAM and CA-CuMP membranes and hence are signals for membrane plugging which then 
implies that proactive measures can then be taken to abate such situations. 
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