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Abstract 

The subject of control system design has evolved considerably over the years. Although several design techniques 

and strategies have been adopted to realize control systems that meet a predetermined set of performance criteria, 

the fundamental problem remains that of developing controllers to adjust the performance characteristics of a 

dynamic system in order to obtain a desired output behavior. The dynamic behavior of a magnetic levitation system 

(MLS) of a ferromagnetic ball is compensated in this paper. Consolidating the exposure of undergraduate students 

to the rudiments of control system design, the paper employs the classical root locus technique to stabilize the 

system. A combination of analytical and software-based methods is used to design proportional-derivative and 

phase-lead compensators based on the linearized model of the system. Complete details of the design approach, 

from modeling and analysis of the plant to computing the values of the controller parameters, are shown. MATLAB 

scripts for plotting root loci and simulating the system are provided. 
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1. Introduction 

The magnetic levitation system has attracted a great 

deal of attention both in the industry and academia. 

In the industry, significant applications, such as 

passenger train levitation, magnetic bearing, metal 

sheet levitation, protection of sensitive machinery, 

etc., have been recorded, while in the academia, 

authors of books on control systems theory (Franklin 

et al., 1998; Nise, 2007) have used similar versions of 

the system to educate undergraduate students on the 

subject of control systems, with laboratories having 

prototypes and experimental models of the system 

handy for instructional purposes (Naumivic and 

Veselic, 2008; Green et al., 1995). The magnetic 

levitation system of a ferromagnetic ball has a 

complex nonlinear dynamic equation, and its 

characteristic response inherently unstable (Feedback 

Instrument, 2012). Successful efforts have been made 

to design nonlinear controllers (Al-Muthairi and 

Zribi, 2004) just as well as linear controllers 

(Naumivic and Veselic, 2008; Green et al., 1995; 

Feedback Instrument, 2012) to stabilize the system. 

This latter type, which is further considered in this 

paper, is based on the linearized version of the 

system operating in a small range around an 

operating point. The aim of the paper is to shed more 

light on the use of a classical technique in stabilizing 

a magnetic levitation system. The rest of the paper is 

arranged as follows. Section 2.0 considers the 

complete modeling of a magnetic levitation system, 

with both nonlinear and linearized models treated in 

detail. Section 3.0 focuses on the magnetic levitation 

system design and simulation, and also, shows 

graphical displays to buttress design results. And 

finally, Section 4.0 presents the conclusion. All the 

MATLAB scripts used for the design and simulation 

are separately given in the appendix. 

 

2. Magnetic Levitation System Modelling 

2.1 Layout of the System 

The layout of a typical magnetic levitation system is 

illustrated in Fig. 1 (Al-Muthairi and Zribi, 2004). 

This arrangement involves the adjustment of 

magnetic energy or force in order to balance or 

counteract the gravitational pull exerted on an object 

(a small light ferromagnetic ball in this case). 
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Restricted to the vertical direction only, the motion of 

the ball is monitored by a properly arranged pair of a 

light emitter and a light detector so that the 

instantaneous position of the ball can be fed back for 

the purpose of control computation. This control 

effort (generated by an electromagnetic circuit) is to 

ensure that the ball is brought to, and kept at, a 

desired position. As the ball‘s position deviates, due 

to an external disturbance, from the set point, the 

sensor output changes accordingly so that the right 

amount of control effort is computed and used to 

bring the ball back to the set point and keep it there. 

Fig. 2 is the representation of the electric circuit 

subsystem of the magnetic levitation system. It is a 

series combination of a linear resistor, with resistance 

R, and a non-linear inductor, with inductance L(y).  

 

 

 

 

 

 

 

 

 

The inductance is non-linear due to the variable 

reluctance of the magnetic circuit—the reluctance is 

directly proportional to the distance between the 

electromagnet and the ball, implying that as this 

distance decreases (i.e., ball‘s approaching the 

magnet), the inductance increases, and vice versa.  

 

 

 

 

 

 

2.2 Non-linear Model of the System 

To determine the complete model of this system, two 

important dynamic equations, one representing the 

variations of the magnetic flux with time (based on 

Fig. 2) and the other the Newtonian equation of 
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Fig. 1: Schematic of a magnetic levitation system 
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Fig. 2: An electric circuit subsystem of the maglev system. 
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motion of the ball based on forces acting on it as 

shown in Fig. 3, are required. 

 

 

 

 

 

 

 

 

 

 

 

 

 

From Fig. 2, it can be written that                            

i
v)t(Ri

dt

)y,t(d



   1 

where ϕ(t, y) is the magnetic flux in webers, i(t) is the 

current in amperes, R is the resistance in ohms, vi is 

the source voltage in volts, and t is time in seconds. 

Since the magnetic flux around a coil is directly 

proportional to the current flow in the coil, with the 

coil inductance being a factor of proportionality, thus, 

)t(i)y(L)y,t(                      2 

Differentiating (2) with respect to time and 

substituting the result into (1) yield 

iv)t(Ri
dt

dy
.

dy

)y(dL

dt

)t(di
)y(L   

or 

iv)t(i 
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)y(dL
R
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







 3 

where y(t) is the distance between the electromagnet 

and the ball, and L(y) is the total inductance of the 

circuit in henry. 

Also, from Fig. 3,  

Fa + Fe = Fg                       4 

where Fa is the accelerating force due to the mass of 

the ball, Fe is the magnetic force, and Fg is the 

gravitational force. 

Since  

2dt

y2d
m

a
F   and mg

g
F  , 

therefore, (4) can be rewritten as  

e
Fmg

2dt

y2d
m      

    

or 

e
Fmg

dt

dv
m     5 

In (5), m is the mass of the ball in kg, v( = dtdy ) 

is the velocity of the ball in m/s, and g is the 

acceleration due to gravity in m/s
2
. 

Equations (3) and (5), which constitute the 

mathematical representation of the system, can be 

developed further by redefining L(y) and Fe and 

finding appropriate expressions for them, 

respectively, as shown by the following derivations. 

L(y) represents the sum of two inductances, Lc and 

Lb, i.e., 

L(y) = Lc + Lb    6 

Lc, which is fixed, is the inductance due to the 

electromagnet coil; Lb is the inductance due to the 

ball. Because Lb is inversely proportional to the 

distance between the electromagnet and the ball, it 

implies that if Lo is the inductance that corresponds to 

a set-point position, yo, then the inductance, Lb, that 

corresponds to an instantaneous position, y, is 

expressed as 

y
oyoL

bL      7 

Therefore, putting (7) in (6) gives 

y
oyoL

cL)y(L    

            

        (8) 

Further, the magnetic force, Fe, is defined as the rate 

of change of work done with distance as the ball is 

moved from one position to the other by the force, 

and is given as 

dy
dW

eF                  9 

Where 

Fig. 3: A free-body diagram showing forces acting on the ball. 

Fe Fa 

Fg 
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2i)y(L
2
1W   (i.e., the energy stored in the 

magnetic field) 

Hence, (9) gives 

2y

2i
oyoL

2
1

eF    10 

which, with Lo and yo fixed, can further be reduced to 

2y

2iKeF     11 

where K(called the magnetic force constant) = 

oyoL
2
1

 

Now, substituting (8) into (3), and (11) into (5), we 

have 
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dt
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and 

2y

2iKmg
dt
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 13  

The final non-linear equations are 
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2y

2i
m
Kg

dt
dv    

  15 

Let state variables and the input be defined as: 

ivu  ; i3 ; vdtdy2;y1  xx  x  

The equivalent nonlinear state-space dynamic model 

of the system is:  
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2.3 Linearized Model of the System 

As can be seen in the model just developed, the 

maglev system is non-linear. As mentioned earlier, 

several non-linear controllers have been designed for 

this system in the literature. But the focus here is on 

how to improve the system performance for small-

range operation. Therefore, the above non-linear 

model is linearized about a nominal operating point, 

xo(t), which corresponds to a nominal input, uo, using 

a Taylor series (Kuo and Golnaraghi, 2003). 

First, the model in (16) is rewritten as 
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Then expanding (17) into a Taylor series about xo(t) = [xo1, xo2, xo3] and ignoring terms of order higher than first 

result in  
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where i = 1, 2, 3. 

Hence,
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Noting that  

),3 ,2 ,1i(                    
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xxx
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then, (19) becomes 
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The complete linearized state-space model in matrix notation, defining the output as 

        1y x  

yields  
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Now, the nominal operating point of the system can be deduced by considering the behavior of the system at an 

equilibrium point. 

At an equilibrium point, and referring back to (16), 
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Hence, 
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which implies that, given an equilibrium position, xo1, of the ball, 
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By substituting xo2 = 0 into (21), a simplified linearized state-space model  
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results, where  I = xo3 ; yo = xo1. 

Note that the incremental symbol, Δ, has been 

dropped in (23). While this makes the model appear 

more compact, however, it does not change the 

meaning and interpretation of the model. Also in the 

same equation, L has been assumed to be equivalent 

to Lc since Lc >> Lo, and, under a properly tuned 

compensator, y = yo . 

 

3. Magnetic Levitation System Design and 

Simulation 

For system design, typical parameters values used are 

(Shahian and Hasul, 1993): 

R = 31.1Ω; Lc = 0.109H; g = 9.81m/s
2
; K = 

0.0006590Nm
2
/A

2
;  

m = 0.01058kg; I = 0.125A; y0 = 0.01m; 

The transfer function of the system can be 

determined from (23) as  



 Katende et al: Proc. ICCEM (2012) 191 - 206 [Type text] 

198 
 

5518301946.5s2283.50s3s

1419.6
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



   24  

 

(The MATLAB script for finding this transfer 

function is shown in the appendix.) 

As can be seen from (24), this system is unstable—

the Routh-Hurwitz stability criterion is clearly not 

met. Therefore, a compensating network is required 

to stabilize it. The overall block diagram of the 

system is shown in Fig. 4. Here G(s) is the gain (or 

transfer function) of the plant, Gc(s) is the 

compensator gain, Gs(s) is the gain of the sensor 

(156V/m) (Shahian and Hasul, 1993), V1(s) is the 

output voltage of the desired position transducer, 

V2(s) is the output voltage of the sensor, E(s) is the 

error signal, U(s) is the compensator output, and R(s) 

and Y(s) are the desired and actual positions of the 

maglev system, respectively.   

 

 

 
 

  

 

 

 

 

 

To verify whether simple gain adjustment will 

stabilize the system, a constant-gain compensator is 

used as shown in Fig. 5. The root locus for this 

situation is depicted in Fig. 6.  

 

 

 

  

 

 

 

 

 

 

 

 Y(s) R(s) V1(s) 
+ - 
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Fig. 4: Overall closed-loop representation of the maglev system 
Sensor 

Compensator Maglev system 

Fig. 5: Block diagram of a constant gain-compensated maglev system. 
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The root locus shows that no amount of increase in 

gain will result in system stability, as two of the 

system closed-loop poles always fall in the right-half 

s-plane. This is further supported by the Bode plot of 

the uncompensated system (shown in Fig. 7), which 

clearly reveals that for any value of the system gain, 

both the gain margin and the phase 

margin remain negative. (See the appendix for a 

MATLAB script to create these plots.) Therefore, the 

most important design challenge here reduces to that 

of stabilizing the magnetic levitation system.  

 

 
 

3.1 Root Locus Design 

The maglev system can be stabilized if the 

uncompensated system root locus is reshaped such 

that a certain range of values of the system gain will 

make all the closed-loop poles fall in the right-half s-

plane. And insightful leads from the locus show that 

this corrective reshaping can be effected if a zero or a 

combination of a zero and a pole is inserted at 

appropriate locations on the negative real-axis of this 

uncompensated root locus. This implies that a 

proportional-derivative (PD) or a phase-lead 

controller will be effective in stabilizing system. The 

design of these two compensators is considered here. 

 

3.1.1 Proportional-Derivative Compensator  

A general cascade proportional-derivative controller 

is described by the transfer function 

 

                     (25)   

 

where Kp and KD are the proportional and derivative constants of the controller, respectively.  
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Fig. 8: Block diagram of a PD-compensated maglev system. 
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Combining this with the maglev system transfer function, as shown in Fig. 8, results in the open-loop 

transfer function   

 

 

 

          

   26 

 

To determine the ranges of values of Kp and KD that will ensure system stability, the popular Routh-Hurwitz 

criterion (Nise, 2007) is used. The analysis is shown in Table 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From this table, the system is stable if the condition 

  27 

  

  

           

is met. The information given in (27) is used to 

generate root loci for the system in (26) in order to 

obtain an appropriate combination of values of Kp 

and KD that guarantees stability and gives good 

response. This is carried out by sweeping through 

various values for the ratio KP/KD and determining 

proper corresponding values for Kp. The resulting 

loci are displayed in Fig. 8. 
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Table 1: The Routh array for PD-compensated system stability analysis 
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For the values of Kp/KD considered, 

Table 2 shows the corresponding pairs of values of 

Kp and KD as well as the closed-loop poles. The 

closed-loop responses are also shown in Fig. 9. From 

the responses, it is clear that the system can be 

stabilized by an appropriately designed PD 

compensator, although the system steady-state error 

is a bit high.  It is important also to point out that the 

use of a proportional-derivative controller is limited 

in practice because of its inherent ability to amplify 

noise signals.  

Table 2: Selected pairs of values of Kp and KD and corresponding closed-loop poles 

Kp/KD Kp KD Pole s1 Poles s1, s2 

150 22.2 0.1480 -231.74 -25.88+134.77j, -25.88-134.77j  

100 16.8 0.1680 -185.51 -48.99+121.16j, -48.99-121.16j 

80 14.3 0.1788 -148.64 -67.43+114.22j, -67.43-114.22j 

60 8.66 0.1443 -137.38 -73.06+67.86j, -73.06-67.86j 

50 5.85 0.1170 -166.28 -58.61+32.21j, -58.61-32.21j 

35 10 0.2857 -31.09 -126.20+193.78j, -126.20-193.78j 

30 13.1 0.4367 -26.73 -128.39+267.23j, -128.39-267.23j 

20 9.14 0.4570 -15.48 -134.01+277.76j, -134.01-277.76j 
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3.1.2 Phase-Lead Compensator 

As can be seen from the uncompensated maglev 

system root locus, a pair of a zero (located between s 

= 0 and s = - 44.1190) and a pole (located elsewhere 

in the right-half s-plane, but farther away to the left 

of the zero) can be used to augment the 

uncompensated open-loop transfer function of the 

maglev system in order to stabilize it. This gives rise 

to a phase-lead compensator. And a typical 

representation of a phase-lead compensator is given 

by  

 

  

 28 

 

where Kc, a, and b are the compensator gain, zero, 

and pole, respectively. 

If (28) is used to compensate the maglev system, the 

resulting open-loop transfer function becomes   

 

          

 29 

 The root-contour approach can be employed to find 

the appropriate values of Kc, a, and b, or since an 
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approximate range of values of ‗b‘ is known, and the 

value of ‗a‘ can be deduced based on the reasoning 

that the farther ‗a‘ is from the imaginary axis (but not 

too close to the system open-loop pole at s = -

44.1190) the better the stability,  then the 

compensator parameters can be determined from root 

loci generated for varying values of Kc. The latter 

approach is used here. 

Fig. 10 shows root loci for values of b between 

44.119 and 490, and a = 35. From this figure, it is 

apparent that the greater the value of 

‗b‘ the farther to the left the branches of the locus 

between s = -44.119 and s = -283.50 (or -b) are. And 

for a typical pair of a = 35 and b = 290, the range of 

values of Kc that guarantees system stability is 24 < 

Kc < 212. For these values of a and b, and a selected 

set of values of Kc, the closed-loop poles are given in 

Table 3 while the closed-loop responses are displayed 

in Fig. 11.  

 
Table 3: Selected values of Kc and the corresponding closed-loop poles for a = 35; b=290 

Kc Poles s1, s2, s3, s4 

30 -408.98;         -71.17 -68.99j;             -71.17 +68.99j;                 -22.17 

40 -425.34;         -59.37 - 101.15j;            -59.37 +101.15j                -29.42 

50 -439.38;         -50.98 -124.34j;           -50.98 +124.34j;               -32.16     

60 -451.79;         -44.09 -142.77j;             -44.09 +142.77j;               -33.53   

70 -463.00;         -38.08 - 158.24j;            -38.08 +158.24j;               -34.35   

80 -473.25;         -32.68 - 171.69j;          -32.68 +171.69j;               -34.89        
90 -482.74;         -27.74 - 183.65j;          -27.74 +183.65j;               -35.27  
100 -491.59;         -23.17 -194.47j;           -23.17 +194.47j;               -35.56     

120 -507.77;         -14.89 - 213.54j;            -14.89 +213.54j;               -35.95   

130 -515.23;         -11.09 - 222.09j;            -11.09 +222.09j;               -36.10 
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4. Conclusion 

Stabilization of a magnetic levitation system has been 

the focus of this paper. Although the system is an 

unstable nonlinear one, it is clear that a linear 

compensator can be designed to stabilize it if its 

operation is limited to a small range. We develop a 

complete nonlinear model of the system, and then 

form an approximate linearized equivalent from it. 

Based on this linearized model, we consider two 

linear compensators—proportional-derivative and 

phase lead—and show that the magnetic levitation 

system can be stabilized by an appropriate selection 

of the parameters of the compensators using a 

classical design approach aided by a computer 

software tool. We compute and present the closed-

loop poles of each design and the corresponding step 

responses, and also show the system stability limits. 

This approach proves quite useful and effective, as 

several simulation runs can be performed quickly to 

expedite the design. However, for a large-range 

operation, a more robust controller will be required to 

effectively bring the system into a region of stability. 

And for this latter type of controllers, several 

strategies have been employed and are available in 

the literature, while the maglev system continues to 

attract more research attention. 

 

Appendix  

The various MATLAB scripts used in this tutorial are 

highlighted below. 

A. Computation of the maglev system transfer 

function  
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% This script computes the 

transfer function of a maglev 

system using 

% Y/U=C((SI-A)^-1)B. 

syms s 

% Define the parameters of the 

model. 

R = 31.1; Lc = 0.1097; g = 9.81; K 

= 0.00065906;m = 0.01058;I = 

0.125;  

y0 = 0.01; 

% Compute the values of A, B, and 

C. 

A=[0 1 0;(2*K*I^2)/(m*y0^3) 0 -

(2*K*I)/(m*y0^2);0 0 -R/Lc];B=[0 0 

1/Lc]'; 

C=[1 0 0];  

% Find the transfer function, Y/U. 

id=eye(3,3); 

disp('The transfer function is:') 

Tfunction=C*(inv(s*id-A))*B 

% Find the simplified transfer 

function, Y/U. 

[numTfunc,denTfunc]=numden(Tfuncti

on);numTfunc=sym2poly(numTfunc); 

denTfunc=sym2poly(denTfunc);numTfu

nction=numTfunc/denTfunc(1); 

denTfunction=denTfunc/denTfunc(1); 

disp('While the simplified 

transfer function is now') 

tf(numTfunction,denTfunction) 

B. The Root locus and bode plots of the 

uncompensated maglev system 

% This script plots the root locus 

and the bode diagram of the maglev  

% system when compensated by a 

constant gain. 

fnum=1419.6*156;fden=[1 283.50 -

1946.55 -551830]; 

sys1=tf(fnum,fden); 

figure(1) 

rlocus(sys1) 

figure(2) 

bode(sys1) 

C. The root loci for simulating the pd-compensated 

maglev system 

% Script for simulating the root 

locus-based pd-compensated design  

kp_kd=[150 100 80 60 50 35 30 20]; 

L=length(kp_kd); 

sysden=[1 283.50 -1946.5 -551830]; 

i=1; 

while(i<=L) 

    f=kp_kd(i); 

    sysnum=221457.6*[0 0 1/f 1]; 

    subplot(4,2,i) 

    rlocus(sysnum, sysden) 

    str=['The root locus for kp / 

kD = ' num2str(f)]; 

    title(str) 

    axis([-150 50 -200 200]); 

    i=i+1; 

end 

D. Closed-loop poles and step responses of the pd-

compensated maglev system 

% Script for generating the 

closed-loop poles as well as the 

responses of  

% the pd-compensated maglev 

system. 

kp_kd=[150 100 80 60 50 35 30 20]; 

kp=[22.2 16.8 14.3 8.66 5.85 10 

13.1 9.14]; 

kd=kp./kp_kd; 

L=length(kp_kd); 

sysden=[1 283.50 -1946.5 -551830]; 

sys2=1;syspoles=zeros(8,3); 

i=1; 

while(i<=L) 

    f1=kp_kd(i);f2=kp(i); 

    sysnum=f2*221457.6*[0 0 1/f1 

1]; 

    sys1=tf(sysnum,sysden); 

    sysfun=feedback(sys1,sys2); 

    syspole=eig(ss(sysfun))'; 

    syspoles(i,1:3)=syspole; 

    subplot(4,2,i) 

    step(sysfun)     

    str=['The step response for kp 

= ' num2str(f2) ' and kd ='... 

    num2str(f1)]; 

    title(str) 

    i=i+1; 

end 

disp('The closed-loop poles are:') 

syspoles; 

E. The root loci for simulating the phase lead-

compensated maglev system 

% Script for simulating the root 

locus-based phase lead-compensated 

design. 

a=35; 

sysnum=221457.6*[0 0 0 1 a]; 

sysden1=[1 283.50 -1946.5 -

551830]; 

b=[50 100 150 200 250 290 340 390 

440 490]; 

Lb=length(b); 

i=1;clf; 

while(i<=Lb) 



 Katende et al: Proc. ICCEM (2012) 191 - 206 [Type text] 

207 
 

    f1=b(i); 

    sysden=conv([1 f1],sysden1); 

    figure(3) 

    subplot(5,2,i) 

    rlocus(sysnum, sysden)  

    str=['The root locus for a = ' 

num2str(a) ' and b = ' 

num2str(f1)]; 

    title(str) 

    axis([-200 100 -200 200]) 

    i=i+1; 

end 

F. Closed-loop poles and step responses of the 

phase lead-compensated maglev system 

% Script for generating the 

closed-loop poles as well as the 

responses of  

% the pase lead-compensated maglev 

system when b = 290. 

a=37.5; 

b=290; 

kc=[30 40 50 60 70 80 90 100 120 

130]; 

L=length(kc); 

sys2=1;syspoles=zeros(10,4); 

i=1; 

while(i<=L) 

    f1=kc(i); 

    sysnum=f1*221457.6*[0 0 0 1 

a]; 

    sysden=conv([1 b],[1 283.50 -

1946.5 -551830]); 

    sys1=tf(sysnum,sysden); 

    sysfun=feedback(sys1,sys2); 

    syspole=eig(ss(sysfun))'; 

    syspoles(i,1:4)=syspole; 

    figure(5) 

    subplot(5,2,i) 

    step(sysfun)     

    str=['The step response for a 

= ' num2str(a)' , b = ' 

num2str(b)',...  

    and kc = ' num2str(f1)]; 

    title(str) 

    i=i+1; 

end 

disp('The closed-loop poles are:') 

syspoles 
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